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multiphasic behavior of materials under anisothermal loading

(application to two low-carbon steels)
M. Coreta, A. Combescureb

aLMT-Cachan, E.N.S. Cachan=C.N.R.S. UMR 8535=Universit�e Paris 6, 61, Avenue du Pr�esident Wilson,
94 235 Cachan Cedex, France
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The determination of residual stresses induced by welding or heat treatment operations requires the use
of complex models taking into account thermal, metallurgical and mechanical phenomena. In this paper, we
propose a mechanical model in which each phase can follow its own constitutive law. This model also takes
into account phase transformation plasticity, which is treated independently of the behavior of each phase.
This model has been implemented into the French FEM code Castem 2000. The interest of the proposed
method is that it allows one to mix any type of nonlinear behavior using Taylor homogenization hypothesis.
There is no need to develop a theory to get the equations of the homogenized material law. Two numerical
examples demonstrate the e3ciency and the 4exibility of this approach. The results obtained are compared to
experimental values for a typical welding situation and a high-temperature response. This comparison seems
to indicate that viscous e5ects in the materials have a signi6cative in4uence on the residual stresses produced
by welding.

Keywords: Finite element calculation; Multiphase material; Transformation-induced plasticity; Residual stresses

0. Introduction

The performance in service of parts that have been subjected to welding or heat treatment depends
on the residual stress state of the structure. Proper evaluation of these stresses is available only
through calculation. However, the models involved in such calculations must take into account
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Nomenclature

Et total macroscopic strain
Ee elastic macroscopic strain
Ethm thermometallurgical macroscopic strain
Ep plastic macroscopic strain
Etp phase transformation plastic strain
	ti total microscopic strain of the ith phase
	ei elastic microscopic strain of the ith phase
	thmi thermometallurgical strain of the ith phase
	vpi viscoplastic microscopic strain of the ith phase
C	Tref�; di5erence of compactness of phases � compared to phases  at Tref

� macroscopic stress
S deviator of macroscopic stresses
�y yield strength
h macroscopic hardening coe3cient
�i microscopic stress of the ith phase
si deviator of microscopic stresses
�y
i yield strength of the ith phase

hi hardening coe3cient of ith phase
� yield strength of austenite
H Hooke’s operator
Xi kinematic strain hardening
Ri isotropic strain hardening
�i thermal expansion coe3cient of the ith phase
zi volume ratio of the ith phase
z volume ratio of the austenitic phase
d austenitic grain size
T temperature
Tref reference temperature
q heat 4ux
� mass density
c thermal capacity
li latent heat of the ith phase
k ′ thermal conductivity
r heat input
1 unit tensor

the structural transformations undergone by the parts. The modeling procedure proposed is applied
to low-alloy ferritic steels such as 16MND5 or SA533, which are used in the manufacturing of
pressurized water nuclear reactor vessels. Let us recall that phase transformations in low-carbon
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Fig. 1. Coupling mechanisms.

steels are predominant factors, along with thermal expansion, in the generation of residual stresses.
These steel types have an austenitic structure at high temperature and a ferritic structure at ambient
temperature. Let us recall that because these two phases have di5erent densities, the transition from
one to the other causes a volume variation (which we called C	Tref�; ). Moreover, depending on
the cooling rate, a number of ferrites, with considerably di5erent behavior, are likely to develop.
Therefore, the material must be treated as a heterogeneous medium whose di5erent constituents’
characteristics depend greatly on the thermomechanical history.

The simulation of such problems must account for the various coupling mechanisms which exist
among the di5erent loads. A graphic representation of these coupling mechanisms (see Fig. 1) was
given by Inoue [1]. Some authors [1–3] proposed macroscopic models to take all these phenomena
into consideration in a common framework. In our approach, we consider the in4uences of me-
chanics on thermics (arrow no. 4) and of mechanics on metallurgy (arrow no. 6) as second-order
e5ects, since it has been observed that for such steels the in4uence of the stress state on the transfor-
mation diagrams is small [4,5]. This assumption enables us to solve the thermometallurgical problem
independently of the mechanical one. We rely on thermomechanics calculation and prediction
methods which were described in detail in Refs. [6,7]. Our work focuses only on the simulation of
the mechanical behavior given the thermometallurgical state of the material.

In the 6rst part, we present the equations of the problem. A speci6c treatment is provided for the
mechanical behavior of the multiphasic material. The second part is dedicated to the application of
the model to two numerical simulation examples.

1. Modeling

1.1. The thermometallurgical problem

The 6rst step in the calculation consists of determining the temperature T , the heat 4ux q and the
phase ratios zi at each point in the structure K. The material is considered to be homogeneous with
respect to the thermal characteristics and its behavior follows Fourier’s law (Eq. (4)). Coe3cients c,
k and � depend only on the temperature. The coupling between thermics and metallurgy is re4ected,
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on the one hand, by the in4uence of the temperature and its derivative on the evolution of the phase
ratios and, on the other hand, by the latent heat which coincides with phase transformations and is
expressed by coe3cients li.

Furthermore, Td and qd are the prescribed temperature and heat 4ux on the boundary of the
structure (Eqs. (1) and (2)) (Fig. 2).

Boundary conditions: Imposed temperatures on @1�

T = Td: (1)

Imposed heat 4ux on @2�

qn= qd: (2)

Heat equation:

�cṪ =−div q− �
n∑

i=1

liżi + �r: (3)

Constitutive relation:

q=−k grad(T ): (4)

In calculating the phase ratios, we assume that their evolution is governed by T , Ṫ and d. Thus,

żi = f(zi; T; Ṫ ; d) (5)

and
n∑

i=1

zi = 1: (6)

It is extremely di3cult to present a uni6ed formulation of all possible transformations in a low-carbon
steel. There are di5erent laws which apply either to the di5usion transformations [1,8–10] or to
the martensitic transformation [11]. Here, we use a Waeckel’s model [7], in which the evolution
of the phase ratios is calculated from a continuous cooling transformation (CCT) diagram obtained
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experimentally. The evolution of the phases, generated by di5usion is obtained by linear interpolation
in the CCT. For temperatures lower than the martensitic transformation temperature, the generation
of martensite is governed by Koistinen–Marburger’s law.

The thermometallurgical problem is solved using the 6nite element calculation program Castem
2000 [12], in which the thermometallurgical model was implemented by Martinez [6].

1.2. The mechanical problem

1.2.1. Equilibrium equations
In the second step of the calculation, given the temperature and phase ratio 6elds, we seek the

stress � and displacement U ·Ud and �n are the prescribed displacements and loads on the boundary
of the structure Fig. 3.

Boundary conditions:
U = Ud on @3�;

F = �n on @4�:
(7)

Equilibrium equations:

div�(M) = 0 ∀M ∈�: (8)

Constitutive relation: to be determined.

1.2.2. Behavior of the multiphasic material
The phases obtainable with a low-alloy steel such as 16MND5 or A533 (austenite, martensite,

bainite or ferrite–perlite) are morphologically very di5erent. Consequently, their mechanical prop-
erties are, of course, di5erent. For example, austenite—which appears at high temperature—is by
nature much more viscous than martensite. Thus, studying the macroscopic behavior becomes a
homogenization problem which is extremely di3cult to solve without making numerous
assumptions.

Explicit models can do away with the behavior of the di5erent phases by seeking a behavioral
model only on the macroscopic scale. Thus, Inoue et al. [1], Hamata et al. [2] or Aliaga et al. [3]
assume only internal variables on the macroscopic scale and infer the ratios of the di5erent phases
from an energy-based mixing law. The behavior can be plastic or viscoplastic and transformation
plasticity is viewed as an additional dissipative term. The problem with such models is that they
must be identi6ed for all possible temperatures and phase ratios. Besides, all phases are assumed to
have similar behavior.
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Another approach, called micro–macro, consists of starting from the behavior of each phase and
working back to the macroscopic behavior of the material. Thus, Leblond et al. [13] showed, in
the case of two elastic–plastic phases with strain hardening having the same yield strength, that the
global behavior is also elastic–plastic with strain hardening. Furthermore, they gave a theoretical
account of the source of the phase transformation plasticity and provided an expression for this
quantity which is valid under a wide range of hypotheses. However, it seems rather di3cult to
extend this work to the case of n elastic–viscoplastic phases.

(a) Homogenized macroscopic behavior. Therefore, we chose to group the models mentioned
above under the term “mixing law” and we programmed the following model as denoted by the
reference model.

We choose the following:

Partitioning of the macroscopic strain rates:

Ė
t
= Ė

e
+ Ė

thm
+ Ė

p
+ Ė

tp
: (9)

The elastic macroscopic constitutive equations are

Ee =H−1(T )�+ [Ethm(T )− Ethm(Tref )] (10)

with

Ethm(T ) =
n∑

i=1

zi�i(T ):T1− (1− z(T ))C	Tref�; ; (11)

where H is the homogenized elastic sti5ness matrix. H is here extremely simple as we can consider
that all phases have the same Young’s modulus and the same Poisson’s ratio [1,6].

We use an usual elastoplastic model, with isotropic hardening, de6ned by

f = J2(S)− h− �y(zi) (12)

with

J2(S) =
[
3
2S : S

]1=2 ; (13)

�y(zi) =
n∑

i=1

zi�
y
i and h(zi) =

n∑
i=1

zihi: (14)

The associated law for de6nition of elastoplastic macroscopic strain rate is the usual one:

Ė
p
=

3
2

S
J2(S)

)̇: (15)

The phase strain rate is given by the Leblond [13] rate equations

Ė
tp
=




0 if z6 0:03;

−3
C	Tref�;

�y


ln(z)żS if z¿0:03:
(16)

(b) Mesomodel. Our approach, which is much more numerically oriented, ignores an a priori
constitutive law for each phase. As already noted, there seems to be no valid reason to use the
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same type of behavior for the austenitic and martensitic phases, for example. Furthermore, we do
not always have, at our disposal, exhaustive test results for all phases. Indeed, identi6cations of
viscoplastic models are more complex and more expensive than a simple elastic–plastic identi6-
cation. The homogenizing procedure used is the following: Taylor’s localization law [14] (which
assumes homogeneous deformations in a heterogeneous medium with nonlinear behavior) is used,
which provides the closest possible match with Leblond’s theoretical case for elastic–plastic phases.
Therefore, we split the total strain rate into two parts, one coming from the total microscopic strain
rate of the phases and the other representing the plastic transformation strain rate. Thus

Ė
t
= Ė + Ė

tp
; (17)

Ė = 	i ∀i: (18)

In this model, classical plasticity and transformation plasticity are assumed to be uncoupled, which
is true for small strains. Thus, the homogenization law for stresses is

�=
n∑

i=1

zi�i: (19)

This modeling scheme provides great 4exibility in the calculation. Arbitrary constitutive laws, as
well as di5erent models of transformation plasticity rates, can be selected for each phase.

We now describe the equation of the mesomodel.
We partition the strains using

Ė
t
= 	̇i + Ė

tp ∀i (20)

and

	̇i = 	̇ei + 	̇thmi + 	̇vpi ∀i: (21)

The transformation plasticity strain rate is given by [13]

Ė
tp
=




0 if z6 0:03;

−3
C	Tref�;

�y


ln(z)żS if z¿0:03:
(22)

For the behavior of phases, various behavioral models were tested. Elastic and thermometallurgical
strains are the same for all models.

	ei =H−1(T )�i + [	thmi (T )− 	thmi (Tref )] (23)

with

	thmi (T ) = �i(T ):T1 for the ferritic phases (24)

and

	thmi (T ) = �i(T ):T1− (1− z(T ))C	Tref�; for austenite: (25)
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The nonlinear characteristics chosen are explained now:

• For the martensite, elastic–plastic model with kinematic strain hardening is chosen.

f = J2(si − Xi)− �y
i ; (26)

	̇pi =
3
2

(si − Xi)
J2(si − Xi)

; (27)

Xi = 2
3 H	

p
i : (28)

We choose an elastoplastic behavior because the martensite appears at low temperature.
• For bainite and ferrite, we have used either elastic–plastic (Eqs. (26)–(28)) or Chaboche [15]

elastic–viscoplastic models. This model includes two kinematic hardening and one isotropic hard-
ening mechanisms.

f = J2(si − Xi)− Ri − �y
i ; (29)

	̇pi =
3
2

(si − Xi)
J2(si − Xi)

; (30)

ṗi =
〈
J2(si − Xi)− Ri − �y

i

Ki

〉n

; (31)

Ṙi = bi(Qi − Ri)ṗi Ri(0) = 0; (32)

Xi = X1i + X2i ; (33)

X1i = C1�1i �̇1i = 	̇vpi − D1i�1iṗi �1i(0) = 0; (34)

X2i = C2�2i �̇2i = 	̇pi �2i(0) = 0: (35)

Bainite and ferrite appear at rather high temperature (600◦C) for slow cooling rates. We have
chosen to modelize their behavior either with elastoplastic or with viscoplastic in order to see the
in4uence of the viscosity on the residual stresses.

• For austenite, we have used either elastic–plastic (Eqs. (26)–(28)) or Chaboche elastic–viscoplastic
models for 16MND5 (Eqs. (29)–(35)) or Norton–Bailey creep model for SA533. Equations of
the Norton–Bailey model are

f = J2(si)− �y
i ; (36)

	̇vpi = ṗi
3
2

si
J2(si)

; (37)

pi = A(T )J2(si)m(T )tn(T ): (38)

Austenite appears at high temperature, we have then chosen a viscous model for this phase. For
the application to the 16MND5 material, an identi6cation was available from the work of Martinez
[6]. For the application to SA533, the identi6cation was available with a Norton’s law from US data
base [16].
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Fig. 4. Laser heating: (a) laser-heated disk; and (b) prescribed heat 4ux.

1.2.3. Integration of the equations in the time domain
The equations of the behavioral model are expressed in terms of strain rates; therefore, they must

be integrated over time in order to obtain strains. Usually, explicit or implicit Euler-type methods
are used. We use an implicit formulation in which the temperature-dependent material properties are
assumed to remain constant during the integration step and equal to their values at the end of the step.

2. Applications

All model characteristics are given in Appendix A

2.1. Simulation of a laser-heated disk

This 6rst simulation reproduces a test made at INSA de Lyon [17]. Its purpose was to understand
and analyze the residual stresses produced during a welding operation. A disk made of 16MND5,
160 mm in diameter and 8 mm thick, was heated at the center by a spot laser for 70 s, then cooled
by natural convection (Fig. 4(a)). The temperatures at the underside of the disk were measured along
with the displacement at the center. At the end of the test, the residual stresses were measured by
X-ray di5raction.

The numerical simulation was performed with the analysis program Castem 2000. The mesh
consisted of 320 QUA4 elements and the problem was considered axisymmetric.

2.1.1. Operating sequence of the thermometallurgical calculation
The spot laser was modeled by a heat 4ux whose distribution on the upper side is known

(Fig. 4(b)). The lower and lateral sides were subjected to free convection. Finally, initial structure
of the disk was completely bainitic. One can see that at the end of the heating stage (Fig. 5(a)),
only the central part of the disk reached a temperature higher than 700◦C, which is the starting tem-
perature of austenitic transformation. Since cooling occurred very rapidly, this austenite produced
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Fig. 5. Phase ratio 6eld and temperature 6eld: (a) temperature at the end of the heating stage; and (b) phase ratios at the
end of the test.
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Fig. 6. Displacement at the center and hoop stress on the upper side—experimental values.

mostly martensite at the end of the cooling stage. The computed distributions are represented in
Fig. 5(b). These computed 6elds are in very good agreement with experimental observations in
terms of metallurgical composition as well as geometrical position [17].

2.1.2. Operating sequence of the mechanical calculation
The mechanical loading consisted of prescribing the temperatures and phase ratios previously

calculated. The time discretization can be di5erent for the thermometallurgical and for the mechanical
calculations. If this is the case, the loading values are interpolated linearly. Various simulations were
performed: the 6rst one used the mixing law model in which the di5erent phases are elastic–plastic
(Figs. 6 and 7); the next two simulations were performed with the mesomodel. In the 6rst case, all
phases were elastic–plastic with strain hardening (Fig. 8), whereas in the second case the martensite
was elastic–plastic with strain hardening and the other phases were viscoplastic (Fig. 9). We 6rst note
that the mesomodel with elastic–plastic phases and the mixing law model give very similar results
both in terms of displacements and in terms of stresses. However, the response with these two models
does not match the experimental results of Fig. 6 very well. These simulations produce stresses which
are too high and displacements which are too large. Further, the evolution of the displacement at the
beginning of the heating stage matches the measured data quite poorly. The results obtained with the
mesomodel, using viscoplastic constitutive laws (Fig. 9) are much closer to the experimental results.
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Fig. 7. Displacement at the center and hoop stress on the upper side—macroscopic elastic–plastic model.
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Fig. 8. Displacement at the center and hoop stress on the upper side—mesomodel with elastic–plastic phases.
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The residual stress level is good and the evolution of the displacement matches the measured data.
The main di5erence between these simulations is viscosity. This parameter lowers the residual stress
level and softens the structure at high temperature.

2.2. Simulation of the rupture of a vessel heated under internal pressure

The second example proposed is the simulation of a test carried out at Sandia National Laboratory
on a scale 1=4.85 nuclear reactor vessel subjected to low internal pressure and a 200◦C temperature
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Fig. 10. Prescribed temperatures: (a) inner temperature; and (b) outer temperature.

gradient through the thickness. This type of simulation is particularly important in order to predict
the behavior of the vessel during an emergency procedure following fusion of the reactor’s core.
The miniature SA533B1 steel vessel had an interior diameter of 91:4 cm and a thickness of 7:62 cm.
The spherical part was welded to a 61 cm high cylinder closed by a heavy cap bolted along the
circumference. A susceptor heated by a 750 kW inductor was used to raise the vessel’s temperature
at a rate of 12◦Cmn−1, to an inside temperature of 1500◦C. The numerical simulation was performed
with a mesh made of 100 QUA4 elements and the problem was considered axisymmetric.

2.2.1. Operating sequence of the thermometallurgical calculation
The temperatures at the inner and outer faces were prescribed and equal to those measured during

the test. Fig. 10(a) and (b) describe the measured temperatures on the inner and outer surface of
the shell at angles 0–90◦, where 0◦ is the pole of the hemisphere. The thermal characteristics (c; k)
were those of US steel except that, in the absence of information on the CCT diagram for this steel,
we used the one for 16MND5, which seemed reasonable considering how close these steel grades
are. The initial structural content of the vessel was purely bainitic. The temperature 6eld and the
austenitic phase ratio 6eld are plotted in Fig. 11(a) and (b). Let us observe that at time t =170 mn
the austenitic transformation front had not gone completely through the wall yet, which is very
important for the strength of the vessel because austenite is much more viscous than bainite. The
maximum temperature at the end of the test was on the order of 1500◦C inside the vessel.

2.2.2. Operating sequence of the mechanical calculation
The prescribed pressure through the calculation was the pressure measured during the test, i.e.

5:25 MPa. The behavior of the bainite was considered to be elastic–viscoplastic according to
Chaboche’s model whereas the behavior of austenite followed a Norton model. Moreover, the trans-
formation plasticity term was also included during the heating stage using Leblond’s law. The results
of the mechanical calculation are shown in Fig. 11(c) and (d). One can observe a relatively com-
plex stress state resulting from the temperature gradient and the phase change with volume variation.
Given the stress level reached, the austenite appears completely plastic. Therefore, rupture occurs
rapidly by viscoplastic collapse once the transformation proceeds throughout the thickness. We note
the good quality of the displacements predicted from the calculation, which come very close to the
measured values.
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Fig. 11. Simulation of OLHF2: (a) temperatures (t = 170 mn); (b) Austenitic phase ratio (t = 170 mn); (c) Von Mises’
stresses (t = 170 mn); and (d) vertical displacement at the vessel’s center.

3. Conclusion

The model proposed takes into account the thermal, metallurgical and mechanical phenomena
which occur during the simulation of welding or quenching operations. The phase ratios are pre-
dicted based on a CCT diagram. The mechanical calculation, which includes the di5erence in phase
compactness and transformation plasticity, takes into account the actual behavior of each phase. The
consistency of the model is demonstrated by the good correlation between simulations and experimen-
tal results. Moreover the proposed two scale model allows one to make a numerical homogenization
through Taylor’s approximation. This avoids the theoretical development of a homogenization law.
The price to pay is that we have to keep track of the material state of each phase during the
whole process. This can also have some interest if one wants to take into account history e5ects.
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There is also no coup ling between elastoviscop lasticity and transformation p lasticity. The numerical 

homogenization has the limitation in giving any exp licit equation for the homogenized material.
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Appendix A. Constants and coe�cients

A.1. Metallurgy (see Fig. 12)

Fig. 12. CCT diagram of 16MND5 [15].
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A.2. Thermics (see Table 1)

Table 1
Thermal characteristics [18]

T (
◦
C) 20 200 300 400 600 750 900 1000

�c(106 J=m3 K) 3.49 4.09 4.42 4.80 6.1 10.13 5.88 4.76
k(W=mK) 37.7 40.5 39.5 37.7 33 29.3 25.3 26.9

A.3. Mechanics

Expansion coe3cient:
ferritic phases: �� = 15× 10−6

◦
C−1

austenitic phase: � = 23:5× 10−6
◦
C−1

Di5erence in phase compactness: C	Tref�; = 1:1e−2.

A.3.1. Elastic–perfectly plastic model and elastic–plastic model with strain hardening (see
Table 2)

Table 2
Characteristics of the elastic–plastic models [6]

T (
◦
C) 0. 100 200 400 600 700 800 900 1000

E(Gpa) 208 204 200 180 135 80 50 32 30
�ym(MPa) 1200 1170 1100 980 680 350 100 50 20
�yb(MPa) 480 450 430 390 270 140 70 30 20
�yf(MPa) 320 300 275 230 170 100 60 30 20
�ya(MPa) 140 130 120 110 100 70 60 30 20
Hm(MPa) 10,000 10,000 10,000 10,000 9000 8000 7000 6000 5000

m=martensite; b= bainite; f = ferrite–perlite; a= austenite.

A.3.2. Chaboche’s elastic–viscoplastic model (see Tables 3 and 4)

Table 3
Characteristics of the viscoplastic model for ferrite and bainite [6]

T (
◦
C) �yb �yf Q b C1 D1 C2 K n

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa s1=n)

20 254 200 65 0.38 349,000 960 4220 30 10
300 254 200 65 0.38 349,000 960 4220 30 10
550 15 15 4 2 154,600 970 2950 1140 6.72
650 2.1 2.1 0 2 40,587 970 500 1112 5.68
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Table 4
Characteristics of the viscoplastic model for austenite (16MND5 steel) [6]

T (
◦
C) �ya Q b C1 D1 C2 K n

(MPa) (MPa) (MPa) (MPa) (MPa s1=n)

300 110 65 0.38 67,200 960 1400 30 10
550 15 0 0.38 48,500 970 1000 390 6.72
650 2.1 0 0.38 38,800 970 500 600 5.68
750 1 0 0.38 29,100 970 470 820 4.75
900 0.33 0 0.38 1570 970 390 770 2.97

1000 0.31 0 0.38 0 970 264 472 2.95
1100 0.29 0 0.38 0 970 100 234 2.86

A.3.3. Norton–Bailey model for US steel (see Table 5)

Table 5
Characteristics of the creep model for austenite (AS533 steel) [16]

T (
◦
C) 0 300 550 650 750 900 1000 1300

m 4.22 4.22 4.22 4.22 4.22 3.67 3.67 3.67
n 1 1 1 1 1 1 1 1
A(MPa s) 8:27e−27 4:78e−20 1:01e−16 1:03e−14 1:42e−12 2:36e−10 1:22e−9 7:36e−8
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