Keywords: Finite element calculation, Multiphase material, Transformation-induced plasticity, Residual stresses

The determination of residual stresses induced by welding or heat treatment operations requires the use of complex models taking into account thermal, metallurgical and mechanical phenomena. In this paper, we propose a mechanical model in which each phase can follow its own constitutive law. This model also takes into account phase transformation plasticity, which is treated independently of the behavior of each phase. This model has been implemented into the French FEM code Castem 2000. The interest of the proposed method is that it allows one to mix any type of nonlinear behavior using Taylor homogenization hypothesis. There is no need to develop a theory to get the equations of the homogenized material law. Two numerical examples demonstrate the e ciency and the exibility of this approach. The results obtained are compared to experimental values for a typical welding situation and a high-temperature response. This comparison seems to indicate that viscous e ects in the materials have a signiÿcative in uence on the residual stresses produced by welding.

A mesomodel for the numerical simulation of the multiphasic behavior of materials under anisothermal loading (application to two low-carbon steels)

Introduction

The performance in service of parts that have been subjected to welding or heat treatment depends on the residual stress state of the structure. Proper evaluation of these stresses is available only through calculation. However, the models involved in such calculations must take into account steels are predominant factors, along with thermal expansion, in the generation of residual stresses. These steel types have an austenitic structure at high temperature and a ferritic structure at ambient temperature. Let us recall that because these two phases have di erent densities, the transition from one to the other causes a volume variation (which we called

T ref ;
). Moreover, depending on the cooling rate, a number of ferrites, with considerably di erent behavior, are likely to develop. Therefore, the material must be treated as a heterogeneous medium whose di erent constituents' characteristics depend greatly on the thermomechanical history.

The simulation of such problems must account for the various coupling mechanisms which exist among the di erent loads. A graphic representation of these coupling mechanisms (see Fig. 1) was given by Inoue [START_REF] Inoue | Coupling between stress, temperature, and metallic structures during processes involving phases transformations[END_REF]. Some authors [START_REF] Inoue | Coupling between stress, temperature, and metallic structures during processes involving phases transformations[END_REF][START_REF] Hamata | A model for nodular graphite cast iron coupling anisothermal elasto-viscoplasticity and phase transformation[END_REF][START_REF] Aliaga | 3d ÿnite element simulation of residual stresses and distortions of cooling workpieces[END_REF] proposed macroscopic models to take all these phenomena into consideration in a common framework. In our approach, we consider the in uences of mechanics on thermics (arrow no. 4) and of mechanics on metallurgy (arrow no. 6) as second-order e ects, since it has been observed that for such steels the in uence of the stress state on the transformation diagrams is small [START_REF] Denis | Stress-phase-transformation interaction, basics principle, modelling, and calculation of internal stresses[END_REF][START_REF] Denis | In uence of stresses on the kinetics of pearlitic transformation during continuous cooling[END_REF]. This assumption enables us to solve the thermometallurgical problem independently of the mechanical one. We rely on thermomechanics calculation and prediction methods which were described in detail in Refs. [START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF][START_REF] Waeckel | Une loi de comportement thermo-mà etallurgique des aciers pour le calcul mà ecanique des structures[END_REF]. Our work focuses only on the simulation of the mechanical behavior given the thermometallurgical state of the material.

In the ÿrst part, we present the equations of the problem. A speciÿc treatment is provided for the mechanical behavior of the multiphasic material. The second part is dedicated to the application of the model to two numerical simulation examples.

Modeling

The thermometallurgical problem

The ÿrst step in the calculation consists of determining the temperature T , the heat ux q and the phase ratios z i at each point in the structure . The material is considered to be homogeneous with respect to the thermal characteristics and its behavior follows Fourier's law (Eq. ( 4)). Coe cients c, k and depend only on the temperature. The coupling between thermics and metallurgy is re ected, on the one hand, by the in uence of the temperature and its derivative on the evolution of the phase ratios and, on the other hand, by the latent heat which coincides with phase transformations and is expressed by coe cients l i .

Furthermore, Td and qd are the prescribed temperature and heat ux on the boundary of the structure (Eqs. ( 1) and ( 2)) (Fig. 2).

Boundary conditions: Imposed temperatures on @ 1 T = Td:

Imposed heat ux on @ 2 qn = qd:

Heat equation:

c Ṫ = -div q - n i=1 l i żi + r: (3) 
Constitutive relation:

q = -k grad(T ): (4) 
In calculating the phase ratios, we assume that their evolution is governed by T , Ṫ and d. Thus, żi = f(z i ; T; Ṫ ; d)

and

n i=1 z i = 1: (6) 
It is extremely di cult to present a uniÿed formulation of all possible transformations in a low-carbon steel. There are di erent laws which apply either to the di usion transformations [START_REF] Inoue | Coupling between stress, temperature, and metallic structures during processes involving phases transformations[END_REF][START_REF] Avrami | Kinetics of phase change I: general theory[END_REF][START_REF] Johnson | Reaction kinetics in process of nucleation and growth[END_REF][START_REF] Fernandes | Mathematical model coupling phase transformation and temperature evolution during quenching of steels[END_REF] or to the martensitic transformation [START_REF] Ko Stinen | A general equation prescribing extent of austenite-martensite transformation in pure Fe-C alloys and plain carbon steels[END_REF]. Here, we use a Waeckel's model [START_REF] Waeckel | Une loi de comportement thermo-mà etallurgique des aciers pour le calcul mà ecanique des structures[END_REF], in which the evolution of the phase ratios is calculated from a continuous cooling transformation (CCT) diagram obtained
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Fig. 3. Mechanical and R.E.V. boundary conditions.

experimentally. The evolution of the phases, generated by di usion is obtained by linear interpolation in the CCT. For temperatures lower than the martensitic transformation temperature, the generation of martensite is governed by Koistinen-Marburger's law.

The thermometallurgical problem is solved using the ÿnite element calculation program Castem 2000 [START_REF] Verpeaux | CASTEM 2000: une approche moderne du calcul des structures[END_REF], in which the thermometallurgical model was implemented by Martinez [START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF].

The mechanical problem 1.2.1. Equilibrium equations

In the second step of the calculation, given the temperature and phase ratio ÿelds, we seek the stress and displacement U •Ud and n are the prescribed displacements and loads on the boundary of the structure Fig. 3.

Boundary conditions: U = Ud on @ 3 ; F = n on @ 4 :

Equilibrium equations:

div (M ) = 0 ∀M ∈ : (8) 
Constitutive relation: to be determined.

Behavior of the multiphasic material

The phases obtainable with a low-alloy steel such as 16MND5 or A533 (austenite, martensite, bainite or ferrite-perlite) are morphologically very di erent. Consequently, their mechanical properties are, of course, di erent. For example, austenite-which appears at high temperature-is by nature much more viscous than martensite. Thus, studying the macroscopic behavior becomes a homogenization problem which is extremely di cult to solve without making numerous assumptions.

Explicit models can do away with the behavior of the di erent phases by seeking a behavioral model only on the macroscopic scale. Thus, Inoue et al. [START_REF] Inoue | Coupling between stress, temperature, and metallic structures during processes involving phases transformations[END_REF], Hamata et al. [START_REF] Hamata | A model for nodular graphite cast iron coupling anisothermal elasto-viscoplasticity and phase transformation[END_REF] or Aliaga et al. [START_REF] Aliaga | 3d ÿnite element simulation of residual stresses and distortions of cooling workpieces[END_REF] assume only internal variables on the macroscopic scale and infer the ratios of the di erent phases from an energy-based mixing law. The behavior can be plastic or viscoplastic and transformation plasticity is viewed as an additional dissipative term. The problem with such models is that they must be identiÿed for all possible temperatures and phase ratios. Besides, all phases are assumed to have similar behavior.

Another approach, called micro-macro, consists of starting from the behavior of each phase and working back to the macroscopic behavior of the material. Thus, Leblond et al. [START_REF] Leblond | Mathematical modelling of transformation plasticity in steel I. Case of ideal-plastic phases[END_REF] showed, in the case of two elastic-plastic phases with strain hardening having the same yield strength, that the global behavior is also elastic-plastic with strain hardening. Furthermore, they gave a theoretical account of the source of the phase transformation plasticity and provided an expression for this quantity which is valid under a wide range of hypotheses. However, it seems rather di cult to extend this work to the case of n elastic-viscoplastic phases.

(a) Homogenized macroscopic behavior. Therefore, we chose to group the models mentioned above under the term "mixing law" and we programmed the following model as denoted by the reference model.

We choose the following:

Partitioning of the macroscopic strain rates:

Ėt = Ėe + Ėthm + Ėp + Ėtp : (9) 
The elastic macroscopic constitutive equations are

E e = H -1 (T ) + [E thm (T ) -E thm (T ref )] (10) 
with

E thm (T ) = n i=1 z i i (T ):T 1 -(1 -z (T )) T ref ; ; (11) 
where H is the homogenized elastic sti ness matrix. H is here extremely simple as we can consider that all phases have the same Young's modulus and the same Poisson's ratio [START_REF] Inoue | Coupling between stress, temperature, and metallic structures during processes involving phases transformations[END_REF][START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF].

We use an usual elastoplastic model, with isotropic hardening, deÿned by

f = J 2 (S) -h -y (z i ) (12) 
with

J 2 (S) = 3 2 S : S 1=2 ; (13) 
y (z i ) = n i=1 z i y i and h(z i ) = n i=1 z i h i : (14) 
The associated law for deÿnition of elastoplastic macroscopic strain rate is the usual one:

Ėp = 3 2 S J 2 (S) ˙ : (15) 
The phase strain rate is given by the Leblond [START_REF] Leblond | Mathematical modelling of transformation plasticity in steel I. Case of ideal-plastic phases[END_REF] rate equations

Ėtp =      0 i f z 6 0:03; -3 T ref ; y ln(z ) ż S if z ¿0:03: (16) 
(b) Mesomodel. Our approach, which is much more numerically oriented, ignores an a priori constitutive law for each phase. As already noted, there seems to be no valid reason to use the same type of behavior for the austenitic and martensitic phases, for example. Furthermore, we do not always have, at our disposal, exhaustive test results for all phases. Indeed, identiÿcations of viscoplastic models are more complex and more expensive than a simple elastic-plastic identiÿcation. The homogenizing procedure used is the following: Taylor's localization law [START_REF] Taylor | Plastic strains in metals[END_REF] (which assumes homogeneous deformations in a heterogeneous medium with nonlinear behavior) is used, which provides the closest possible match with Leblond's theoretical case for elastic-plastic phases. Therefore, we split the total strain rate into two parts, one coming from the total microscopic strain rate of the phases and the other representing the plastic transformation strain rate. Thus

Ėt = Ė + Ėtp ; (17) 
Ė = i ∀i: [START_REF] Dupas | Recueil bibliographique de caractà erisation thermomà ecanique pour l'acier de cuve, les revêtements inoxydables et les alliages 182 et 600[END_REF] In this model, classical plasticity and transformation plasticity are assumed to be uncoupled, which is true for small strains. Thus, the homogenization law for stresses is

= n i=1 z i i : (19) 
This modeling scheme provides great exibility in the calculation. Arbitrary constitutive laws, as well as di erent models of transformation plasticity rates, can be selected for each phase. We now describe the equation of the mesomodel. We partition the strains using

Ėt = ˙ i + Ėtp ∀i ( 20 
)
and

˙ i = ˙ e i + ˙ thm i + ˙ vp i ∀i: (21)
The transformation plasticity strain rate is given by [START_REF] Leblond | Mathematical modelling of transformation plasticity in steel I. Case of ideal-plastic phases[END_REF] Ėtp =

     0 i f z 6 0:03; -3 T ref ; y ln(z ) ż S if z ¿0:03: (22) 
For the behavior of phases, various behavioral models were tested. Elastic and thermometallurgical strains are the same for all models. T ref ;

e i = H -1 (T ) i + [ thm i (T ) -thm i (T ref )] (23 
for austenite:

The nonlinear characteristics chosen are explained now:

• For the martensite, elastic-plastic model with kinematic strain hardening is chosen.

f = J 2 (s i -X i ) -y i ; (26) 
˙ p i = 3 2 (s i -X i ) J 2 (s i -X i ) ; (27) 
X i = 2 3 H p i : (28) 
We choose an elastoplastic behavior because the martensite appears at low temperature. • For bainite and ferrite, we have used either elastic-plastic (Eqs. ( 26) -( 28)) or Chaboche [START_REF] Lemaitre | Mà ecanique des matà eriaux solides, 2ià eme ed[END_REF] elastic-viscoplastic models. This model includes two kinematic hardening and one isotropic hardening mechanisms.

f = J 2 (s i -X i ) -R i -y i ; (29) 
˙ p i = 3 2 (s i -X i ) J 2 (s i -X i ) ; ( 30 
) ṗi = J 2 (s i -X i ) -R i -y i K i n ; (31) 
Ṙi = b i (Q i -R i ) ṗi R i (0) = 0; (32) 
X i = X 1i + X 2i ; (33) 
X 1i = C 1 1i ˙ 1i = ˙ vp i -D 1i 1i ṗi 1i (0) = 0; (34) 
X 2i = C 2 2i ˙ 2i = ˙ p i 2i (0) = 0: (35) 
Bainite and ferrite appear at rather high temperature (600 • C) for slow cooling rates. We have chosen to modelize their behavior either with elastoplastic or with viscoplastic in order to see the in uence of the viscosity on the residual stresses.

• For austenite, we have used either elastic-plastic (Eqs. ( 26 

f = J 2 (s i ) -y i ; (36) 
˙ vp i = ṗi 3 2 s i J 2 (s i ) ; (37) 
p i = A(T )J 2 (s i ) m(T ) t n(T ) : (38) 
Austenite appears at high temperature, we have then chosen a viscous model for this phase. For the application to the 16MND5 material, an identiÿcation was available from the work of Martinez [START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF]. For the application to SA533, the identiÿcation was available with a Norton's law from US data base [START_REF] Benoit | etude thermomà etallurgique mà ecanique sur des cuves de rà eacteurs PWR application  a un scà enario d'accident grave et interprà etation d'essais[END_REF]. 

Integration of the equations in the time domain

The equations of the behavioral model are expressed in terms of strain rates; therefore, they must be integrated over time in order to obtain strains. Usually, explicit or implicit Euler-type methods are used. We use an implicit formulation in which the temperature-dependent material properties are assumed to remain constant during the integration step and equal to their values at the end of the step.

Applications

All model characteristics are given in Appendix A

Simulation of a laser-heated disk

This ÿrst simulation reproduces a test made at INSA de Lyon [START_REF] Cavallo | Contribution  a la validation expà erimentale de mod eles dà ecrivant la ZAT lors d'une opà eration de soudage[END_REF]. Its purpose was to understand and analyze the residual stresses produced during a welding operation. A disk made of 16MND5, 160 mm in diameter and 8 mm thick, was heated at the center by a spot laser for 70 s, then cooled by natural convection (Fig. 4(a)). The temperatures at the underside of the disk were measured along with the displacement at the center. At the end of the test, the residual stresses were measured by X-ray di raction.

The numerical simulation was performed with the analysis program Castem 2000. The mesh consisted of 320 QUA4 elements and the problem was considered axisymmetric.

Operating sequence of the thermometallurgical calculation

The spot laser was modeled by a heat ux whose distribution on the upper side is known (Fig. 4(b)). The lower and lateral sides were subjected to free convection. Finally, initial structure of the disk was completely bainitic. One can see that at the end of the heating stage (Fig. 5(a)), only the central part of the disk reached a temperature higher than 700

• C, which is the starting temperature of austenitic transformation. Since cooling occurred very rapidly, this austenite produced mostly martensite at the end of the cooling stage. The computed distributions are represented in Fig. 5(b). These computed ÿelds are in very good agreement with experimental observations in terms of metallurgical composition as well as geometrical position [START_REF] Cavallo | Contribution  a la validation expà erimentale de mod eles dà ecrivant la ZAT lors d'une opà eration de soudage[END_REF].

Operating sequence of the mechanical calculation

The mechanical loading consisted of prescribing the temperatures and phase ratios previously calculated. The time discretization can be di erent for the thermometallurgical and for the mechanical calculations. If this is the case, the loading values are interpolated linearly. Various simulations were performed: the ÿrst one used the mixing law model in which the di erent phases are elastic-plastic (Figs. 6 and7); the next two simulations were performed with the mesomodel. In the ÿrst case, all phases were elastic-plastic with strain hardening (Fig. 8), whereas in the second case the martensite was elastic-plastic with strain hardening and the other phases were viscoplastic (Fig. 9). We ÿrst note that the mesomodel with elastic-plastic phases and the mixing law model give very similar results both in terms of displacements and in terms of stresses. However, the response with these two models does not match the experimental results of Fig. 6 very well. These simulations produce stresses which are too high and displacements which are too large. Further, the evolution of the displacement at the beginning of the heating stage matches the measured data quite poorly. The results obtained with the mesomodel, using viscoplastic constitutive laws (Fig. 9) are much closer to the experimental results. The residual stress level is good and the evolution of the displacement matches the measured data.

The main di erence between these simulations is viscosity. This parameter lowers the residual stress level and softens the structure at high temperature.

Simulation of the rupture of a vessel heated under internal pressure

The second example proposed is the simulation of a test carried out at Sandia National Laboratory on a scale 1=4.85 nuclear reactor vessel subjected to low internal pressure and a 200

• C temperature gradient through the thickness. This type of simulation is particularly important in order to predict the behavior of the vessel during an emergency procedure following fusion of the reactor's core. The miniature SA533B1 steel vessel had an interior diameter of 91:4 cm and a thickness of 7:62 cm. The spherical part was welded to a 61 cm high cylinder closed by a heavy cap bolted along the circumference. A susceptor heated by a 750 kW inductor was used to raise the vessel's temperature at a rate of 12

• Cmn -1 , to an inside temperature of 1500 • C. The numerical simulation was performed with a mesh made of 100 QUA4 elements and the problem was considered axisymmetric.

Operating sequence of the thermometallurgical calculation

The temperatures at the inner and outer faces were prescribed and equal to those measured during the test. Fig. 10(a) and (b) describe the measured temperatures on the inner and outer surface of the shell at angles 0 -90

• , where 0

• is the pole of the hemisphere. The thermal characteristics (c; k) were those of US steel except that, in the absence of information on the CCT diagram for this steel, we used the one for 16MND5, which seemed reasonable considering how close these steel grades are. The initial structural content of the vessel was purely bainitic. The temperature ÿeld and the austenitic phase ratio ÿeld are plotted in Fig. 11(a) and (b). Let us observe that at time t = 170 mn the austenitic transformation front had not gone completely through the wall yet, which is very important for the strength of the vessel because austenite is much more viscous than bainite. The maximum temperature at the end of the test was on the order of 1500

• C inside the vessel.

Operating sequence of the mechanical calculation

The prescribed pressure through the calculation was the pressure measured during the test, i.e. 5:25 MPa. The behavior of the bainite was considered to be elastic-viscoplastic according to Chaboche's model whereas the behavior of austenite followed a Norton model. Moreover, the transformation plasticity term was also included during the heating stage using Leblond's law. The results of the mechanical calculation are shown in Fig. 11(c) and (d). One can observe a relatively complex stress state resulting from the temperature gradient and the phase change with volume variation. Given the stress level reached, the austenite appears completely plastic. Therefore, rupture occurs rapidly by viscoplastic collapse once the transformation proceeds throughout the thickness. We note the good quality of the displacements predicted from the calculation, which come very close to the measured values. 

Conclusion

The model proposed takes into account the thermal, metallurgical and mechanical phenomena which occur during the simulation of welding or quenching operations. The phase ratios are predicted based on a CCT diagram. The mechanical calculation, which includes the di erence in phase compactness and transformation plasticity, takes into account the actual behavior of each phase. The consistency of the model is demonstrated by the good correlation between simulations and experimental results. Moreover the proposed two scale model allows one to make a numerical homogenization through Taylor's approximation. This avoids the theoretical development of a homogenization law. The price to pay is that we have to keep track of the material state of each phase during the whole process. This can also have some interest if one wants to take into account history e ects.

There is also no coup ling between elastoviscop lasticity and transformation p lasticity. The numerical homogenization has the limitation in giving any exp licit equation for the homogenized material.

A.2. Thermics (see Table 1) A.3.2. Chaboche's elastic-viscoplastic model (see Tables 3 and4) 
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 1 Fig. 1. Coupling mechanisms.
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 2 Fig. 2. Boundary conditions.
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  ) -(28)) or Chaboche elastic-viscoplastic models for 16MND5 (Eqs. (29) -(35)) or Norton-Bailey creep model for SA533. Equations of the Norton-Bailey model are
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 4 Fig. 4. Laser heating: (a) laser-heated disk; and (b) prescribed heat ux.
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 56 Fig. 5. Phase ratio ÿeld and temperature ÿeld: (a) temperature at the end of the heating stage; and (b) phase ratios at the end of the test.
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 789 Fig. 7. Displacement at the center and hoop stress on the upper side-macroscopic elastic-plastic model.

Fig. 10 .

 10 Fig. 10. Prescribed temperatures: (a) inner temperature; and (b) outer temperature.

Fig. 11 .

 11 Fig. 11. Simulation of OLHF2: (a) temperatures (t = 170 mn); (b) Austenitic phase ratio (t = 170 mn); (c) Von Mises' stresses (t = 170 mn); and (d) vertical displacement at the vessel's center.

  

Table 1 Thermal

 1 Di erence in phase compactness: .3.1. Elastic-perfectly plastic model and elastic-plastic model with strain hardening (see

		characteristics [18]							
	T (	• C)	20	200	300	400	600	750	900	1000
	c(10 6 J=m 3 K)	3.49	4.09	4.42	4.80	6.1	10.13	5.88	4.76
	k(W=mK)	37.7	40.5	39.5	37.7	33	29.3	25.3	26.9
	A.3. Mechanics								
		Expansion coe cient: ferritic phases: = 15 × 10 -6 • austenitic phase: = 23:5 × 10 -6 • C -1 C -1					
					T ref					

; = 1:1e -2 .

A

Table 2 )

 2 

Table 2

 2 Characteristics of the elastic-plastic models[START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF] 

	T (	• C)	0.	100	200	400	600	700	800	900	1000
	E(Gpa)	208	204	200	180	135	80	50	32	30
	ym(MPa)	1200	1170	1100	980	680	350	100	50	20
	yb (MPa)	480	450	430	390	270	140	70	30	20
	yf (MPa)	320	300	275	230	170	100	60	30	20
	ya(MPa)	140	130	120	110	100	70	60	30	20
	Hm(MPa)	10,000	10,000	10,000	10,000	9000	8000	7000	6000	5000

m = martensite; b = bainite; f = ferrite-perlite; a = austenite.

Table 3

 3 Characteristics of the viscoplastic model for ferrite and bainite[START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF] 

	T (	• C)	yb	yf	Q	b	C 1	D1	C2	K	n
			(MPa)	(MPa)	(MPa)		(MPa)		(MPa)	(MPa s 1=n )	
	20	254	200	65	0.38	349,000	960	4220	30	10
	300	254	200	65	0.38	349,000	960	4220	30	10
	550	15	15	4	2	154,600	970	2950	1140	6.72
	650	2.1	2.1	0	2	40,587	970	500	1112	5.68

Table 4

 4 Characteristics of the viscoplastic model for austenite (16MND5 steel)[START_REF] Martinez | Jonction 16MND5-INCONEL 690-316LN par soudage di usion elaboration et calcul des contraintes rà esiduelles de procà edà e[END_REF] 

	T (	• C)	ya	Q	b	C 1	D1	C2	K	n
			(MPa)	(MPa)		(MPa)		(MPa)	(MPa s 1=n )	
	300	110	65	0.38	67,200	960	1400	30	10
	550	15	0	0.38	48,500	970	1000	390	6.72
	650	2.1	0	0.38	38,800	970	500	600	5.68
	750	1	0	0.38	29,100	970	470	820	4.75
	900	0.33	0	0.38	1570	970	390	770	2.97
	1000	0.31	0	0.38	0	970	264	472	2.95
	1100	0.29	0	0.38	0	970	100	234	2.86

A.3.3. Norton-Bailey model for US steel (see

Table 5) 

Table 5

 5 Characteristics of the creep model for austenite (AS533 steel)[START_REF] Benoit | etude thermomà etallurgique mà ecanique sur des cuves de rà eacteurs PWR application  a un scà enario d'accident grave et interprà etation d'essais[END_REF] 

	T (	• C)	0	300	550	650	750	900	1000	1300
	m		4.22	4.22	4.22	4.22	4.22	3.67	3.67	3.67
	n		1	1	1	1	1	1	1	1
	A(MPa s)	8:27e -27	4:78e -20	1:01e -16	1:03e -14	1:42e -12	2:36e -10	1:22e -9	7:36e -8
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Appendix A. Constants and coe cients

A.1. Metallurgy (see Fig. 12) Fig. 12. CCT diagram of 16MND5 [START_REF] Lemaitre | Mà ecanique des matà eriaux solides, 2ià eme ed[END_REF].