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A level set model for delamination – Modeling crack growth without
cohesive zone or stress singularity

F.P. van der Meer a,b,⇑, N. Moës b, L.J. Sluys a
a Delft University of Technology, Faculty of Civil Engineering and Geosciences, PO Box 5048, 2600 GA Delft, The Netherlands

b Ecole Centrale de Nantes, GeM Institute, UMR CNRS 6183, 1 Rue de la Noë, 44321 Nantes, France

A new method is presented for the modeling of progressive delamination which allows for the use of elements that are larger than the 
cohesive zone. The central idea is that the crack front location is described implicitly with a level set field and the cohesive zone reduces to 
a line. This means that the crack front does not have to be aligned with the element bound-aries. At the crack front, weak discontinuities 
are inserted in the displacement to allow for a sharp transition between the cracked and uncracked parts. The weak discontinuity is 
derived from a strong discontinuity formulation and the most favorable technique for gap closure is investigated. Crack growth is handled 
with an explicit energy-based relation, in which the configurational force is computed as the jump in Eshelby tensor over this transition. 
The same energy-based criterion is used to predict initiation along the free edge. In numerical examples results are compared with 
analytical solutions and results from computational cohesive zone analyses.

1. Introduction

Delamination is one of the main failure processes in composite laminates. It may appear as a consequence of out-of-plane
impact, it may arise due to the stress transfer near transverse matrix cracks through the thickness of the plies, or it may grow
from the free edge due to the mismatch in thermal and lateral contraction properties of neighboring plies with differing fiber
orientation. As a consequence of delamination, the plies are no longer cooperating as they were designed to be, and the
mechanical properties of the laminate deteriorate. This is the case for in-plane loading, but particularly strong for
out-of-plane loading. Therefore, the simulation of delamination growth is of interest for composites design and engineering.

In current computational practice, delamination is most often modeled by means of interface elements, as first done by
Allix and Ladevèze [1] and Schellekens and De Borst [2] and later by many others, see e.g. [3–8]. Central in this approach is
the relation between the separation of the crack surfaces and the traction that is applied on the crack surfaces. This relation
typically consists of an initial stiff and elastic part, followed by a softening part. During crack growth, there is a zone in which
the material is in the softening regime. This is the so-called cohesive zone. The traction–separation relation can be related to
the strength of the interface via the maximum traction, and to its fracture toughness via the area under the curve. As such,
both initiation and propagation of delamination are dealt with in a rather simple single model.

However, this approach has one limiting requirement, which is that a fine in-plane discretization is required. For stability
and accuracy, it is necessary that the cohesive zone is meshed with several elements. And since the cohesive zone moves
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Nomenclature

Latin characters
a crack length
C material tangent tensor
d nodal displacement vector
E, E1, E2 Young’s moduli
f force vector
F total external load
g energy release per unit volume front movement
G energy release per unit area crack growth
Gc fracture toughness
G12,G13 Shear moduli
h typical element size
I identity tensor
K global stiffness matrix
l specimen length
l nodal Lagrange multiplier vector
n number of nodes
n normal vector to crack front
N shape function matrix (vector field)
N shape function vector (scalar field)
M resistance matrix against crack growth
P Eshelby tensor
s parametrized crack front coordinate
s tangent vector to crack front
t specimen thickness
t traction
tN prescribed external traction
u (prescribed) displacement value
_u applied displacement rate
u displacement field
vn normal velocity field
vn nodal normal velocity vector
w specimen width
x, y, z spatial coordinates with x and y in the plane of the laminate
x spatial coordinate vector

Greek characters
b interaction coefficient for Nitsche’s method
d variation operator
Dt time step size
Dt0 initial time step size
Du0 initial displacement increment size
e strain tensor
� error
C surface domain through the thickness of the laminate at front location
CN boundary domain on which prescribed traction is applied
C 2D projection of C
h penalty parameter
j stabilization parameter
k lagrange multiplier field
l crack growth resistance parameter
m12 in-plane Poisson’s ratio
P potential energy
r stress tensor
/ level set field
w strain energy density
X volume domain
X 2D projection of X
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through the domain during delamination growth, the part of the domain where a fine mesh is necessary can be large, or
remeshing has to be applied. Given that the cohesive zone length for delamination in composite laminates is typically of
the order of 1 mm [5], this puts a severe restriction on the dimensions of the problems that can be analyzed numerically
against acceptable computation costs.

This cannot easily be resolved by modeling the crack with the eXtended Finite Element Method (X-FEM), a method that
allows discontinuities to run through the finite elements. Most commonly this method is combined with asymptotic enrich-
ment functions to accurately represent the singular stress field near the crack tip [9], which has been applied in the context
of delamination by Esna Ashari and Mohammadi [10]. For laminates however, representation of the singular stress field
requires an even finer discretization around the crack tip than the cohesive approach, particularly through the thickness
of the laminate. Alternatively X-FEM can be combined with cohesive tractions, as has been done in the context of delami-
nation by Wells et al. [11] and Remmers et al. [12], but this approach suffers from the same requirement on the in-plane
element size as the use of interface elements.

In the context of interface elements, several strategies have been proposed to allow for the use of larger elements in
delamination problems. One crude solution is to add viscosity to the traction–separation law as done by Chaboche et al.
[13]. In this way the fracture toughness is artificially increased, with uncertain influence on the global behavior. Alterna-
tively, Turon et al. [14] have proposed to artificially increase the cohesive zone length by reducing the interface strength
parameter while keeping the fracture toughness constant. This technique is certainly meritable for its simplicity, but a later
study by Harper and Hallett [15] has shown that its applicability without loss of accuracy is limited even in simple cases, and
Van der Meer et al. [16] have reported a significant influence of the moderate changes in the interface strength on the peak
load in more complex cases.

Instead of changing model parameters, Yang et al. [17] have proposed to use a richer integration scheme close to the crack
front. This does improve the stability of the response to some extent, but the core issue, that the discretization of the dis-
placement field around the front is too coarse to describe the solution, is not addressed.

Another direction to improve the performance of large interface elements is to locally enrich the displacement field.
Improvement was already reported by Crisfield and Alfano [18] with a relatively simple hierarchical enrichment. Guiamatsia
et al. [19] enriched the displacement field with the analytical solution of a beam on elastic foundation. This was based on the
assumption that it is underrepresentation of the variation of the stress ahead of the crack tip which needs to be addressed.
However, the real challenge is to enrich the kinematics such that deformation of an element containing the crack tip can be
represented accurately, resulting in a smooth response for a smooth progression of the crack tip through the element. Such
an enrichment scheme has been proposed by Samimi et al. [20], who added a hat-enrichment where the location of the peak
of the enrichment is another degree of freedom. However, this strategy has only been shown to work in 2D with line inter-
faces; generalization to cases with plane interfaces is not obvious.

In contrast with all mentioned strategies to solve the cohesive zone with relatively large elements, we choose in this work
to start from a fracture mechanics point of view, where the crack front is a line instead of a band. Where adding viscosity or
reducing the interface strength improves stability by increasing the length of the cohesive zone when the elements cannot be
chosen smaller than that zone, we start from the other end, supposing that the cohesive zone length is smaller than the ele-
ment size. In fact, in order to analyze large scale delamination, one is not interested in what is happening inside the cohesive
zone, apart from the fact that a certain amount of energy is dissipated during crack growth. As remarked by Willis, ‘‘the
Barrenblatt [cohesive] approach has no great advantage over that of Griffith [fracture mechanics], if used just to predict
growth’’ [21]. Obviously, when trying to eliminate the cohesive zone from the analysis, one will have to turn to fracture
mechanics to model crack growth.

There already exists one method in which the crack front is modeled as a line and an energy based criterion is used to
predict crack growth, namely the virtual crack closure technique (VCCT). This method, introduced by Rybicki and Kanninen

Other symbols and sub/superscripts

r gradient operator
rs symmetric gradient operator
s�t jump operator
h�ib weighting operator for Nitsche’s method
h�i+ McCauley brackets (positivity constraint)
�+ related to cracked subdomain
�� related to uncracked subdomain
�top related to top sublaminate
�bot related to bottom sublaminate

Abbreviations

1D, 2D, 3D one/two/three dimensional
VCCT virtual crack closure technique
X-FEM extended finite element method
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[22], is based on Irwin’s theory, that the amount of energy dissipated during crack growth over a small distance is equal to
the energy required to close the crack over the same distance [23]. For an historic review of the VCCT we refer to Krueger
[24]. Although initiation is fundamentally excluded, this technique is very efficient for the assessment of crack growth cri-
teria on a predefined crack. However, for the modeling of progressive failure it has several drawbacks. Firstly, the node-
to-node basis of crack growth leads to a non-smooth global response. Secondly, the fact that the crack front remains aligned
with the mesh implies that a poor representation of the crack front will arise for crack growth that is not self-similar, leading
to poor estimates of the energy release along the crack front. Nevertheless, several examples of successful progressive
delamination analyses based on VCCT-models can be found in literature [25–27].

In the context of the VCCT, Zou et al. [28] have pointed out that when laminate theory is applied, i.e. when high order
gradients are eliminated from the through thickness variations in displacement, the stress singularity around the crack
tip is eliminated. The singularity is transformed into discontinuities in stress over the plane through the thickness of the lam-
inate. In later publications, Zou et al. have shown that this jump in stress can be used as a configurational force that drives
crack growth [29,30], although the VCCT requirement that the delamination front is located on the element edges was not
overcome.

In this paper, a new approach to delamination modeling is presented, in which, in contrast with cohesive models, the
crack front is represented as a line, and, in contrast with the VCCT, the crack front can be arbitrarily shaped and can grow
continuously. For this purpose, the level set method is applied, a method with many applications in the mesh-independent
representation of moving fronts [31]. In the level set method, a scalar field is defined, and the line where this field is equal to
zero is taken to be the front. Thus, the front is implicitly described and does not have to match the element boundaries.

The model is comprised of two submodels that are solved in a staggered fashion. Firstly, there is the finite element model
of a partially cracked medium. This submodel contains a special kinematic formulation for those elements that contain the
crack front, which will be introduced in Section 2. Secondly, there is the crack growth model, which takes the displacement
field from the first submodel and computes the front velocity via energy release relations. Next, the crack is updated and the
new front location is given to the first submodel, and so on. The second submodel will be the subject matter of Section 3.
Furthermore, the issue of initiation will be addressed in Section 4. In Section 5 the global algorithmwill be summarized, after
which the validity of the approach will be demonstrated with several numerical examples in Section 6.

For simplicity, the model is only presented in 2D, focusing on the plane of the laminate (the (x,y)-plane). In this, the issue
of how to represent an arbitrarily located crack front in the interface plane is emphasized. This issue has not yet been ad-
dressed in previous enrichment strategies for delamination. These were also implemented in 2D but then in a plane through
the thickness of the laminate (the (x,z)-plane) [19,20]. The 2D case in the (x,y)-plane is more challenging, because it calls for
representation of a crack front rather than of a crack tip. From earlier work, it is known that in some cases with extensive
delamination neglecting out-of-plane deformations has only a small influence on the global response [8]. Therefore the cur-
rent 2D approach is of practical use. Additionally, in Section 7, a 2D model for the (x,z)-plane will be introduced to illustrate
how out-of-plane variations, and hence the third dimension, can be added.

2. Cracked laminate model

In this section the model with given crack location is introduced. The crack location is described implicitly with a level set
field /. It is of high practical use in level set methods to define the level set field as the signed distance function to the frontC
[31], i.e. as

jr/j ¼ 1 on X ð1Þ
/ ¼ 0 on C ð2Þ

In the Section 3, it will be outlined how / evolves in time. For now we assume it to be given, and use it to distinguish be-
tween cracked and uncracked subdomains and to describe the front location. The laminate is delaminated where / > 0 and
intact where / < 0. Hence, the crack front is located where / = 0 (see Fig. 1).

Γ : φ = 0 (front)

Ω+ : φ > 0

(cracked)

Ω− : φ < 0

(uncracked)

x
x

y y
u

front element

Fig. 1. Implicit definition of crack front with level set field / and schematic deformation of quadrilateral element containing the crack front.
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2.1. Kinematics

Away from the front, implementation of the delamination model is straightforward: on the cracked side there are two
layers of elements that are not connected, and on the uncracked side there is a single layer of elements that represents
the intact laminate. In the elements that are cut by the front, however, a non-standard formulation is required. The funda-
mental case that should be represented exactly consists of three different constant strain fields, one on the uncracked side
and two on the cracked side. At the location of the delamination front, a jump in strain, or a weak discontinuity in the
displacements, must be accommodated. More precisely, a pair of weak discontinuities must be embedded in the element
formulation, one for each of the two sublaminates (top and bottom).

Modeling weak discontinuities with level sets can be done by enriching the finite element basis with special functions
that have a discontinuity in the derivative exactly where / = 0 (see e.g. [32,33]). In the present case, however, this does
not work. One could define two weakly discontinuous fields, one for the top part of the laminate, and one for the bottom
part, as Fig. 2a. Two fields utop and ubot are depicted that both have a discontinuity in the derivative at C. For the present
purpose, these two fields would have to be linked such that on one side of C they are equal u�top ¼ u�bot

� �

, while on the other
side they are not uþtop – uþbot

� �

. With the enrichment functions from literature [32,33] this cannot be achieved, because all
basis functions in such an element are defined over the whole element domain. This makes it impossible to isolate the dis-
placement field on one side of the front u�top ¼ u�bot $ uþtop ¼ uþbot

� �

.
When, alternatively, both fields are defined with a strong discontinuity at C either with Heaviside enrichment [9] or with

duplicate nodes [34] the constraint u�top ¼ u�top can be easily achieved—in fact, it is possible to define only one field in X
�,

which we will henceforth refer to as u�. In this formulation, jumps may appear in the displacement fields, annotated as sutopt

and subott in Fig. 2b. These jumps then have to be constrained. One way to do this is with Lagrange multipliers, in which case
one has to be careful in defining the Lagrange multiplier space [35]. Another option is to use Nitsche’s method [36,37]. A
third alternative is to use a traction formulation earlier used in cohesive modeling in the context of X-FEM [38,39]. In Section
6.1 performance of the three methods will be compared, therefore the numerical formulation of all will be introduced here.
But first, the kinematic formulation with strong discontinuities will be specified.

The complete displacement field consists of three independent vector fields, utop
+,ubot

+ and u�. In 3D they would all be
defined on separate domains. In 2D, however, the two fields utop

+ and ubot
+ are both defined on the same domain. Integration

through the thickness is implicit, in the sense that integrals are evaluated as:
Z

X

f dX ¼ ttop

Z

X

ftop dx dyþ tbot

Z

X

fbot dx dy ð3Þ

and
Z

C

g dC ¼ ttop

Z

C

gtop dsþ tbot

Z

C

gbot ds ð4Þ

where C and X are the projections of the volume and surface domainsX and C on the plane of the laminate, ttop and tbot are
the thickness of the top and bottom parts, and s is the parametrization of the front in the plane of the laminate.

For the discretized displacement field, we use Hansbo and Hansbo’s method [34]. The top and bottom displacement fields
are discretized as:

utop ¼
N � dþtop x 2 X

þ

N � d� x 2 X
�

(

ubot ¼
N � dþbot x 2 X

þ

N � d� x 2 X
�

( ð5Þ

Ω+ Ω−

u+
top

u+
bot

u−
top

u−
bot

Γ

u

x

(a)Weak discontinuities

Ω+ Ω−

u+
top

u+
bot

u−
top

u−
bot

Γ

− utop

ubot

u

x

(b)Strong discontinuities

Fig. 2. Two weakly discontinuous 1D fields utop and ubot and two strongly discontinuous fields with displacement jumps sutopt and subott (right).
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where d are nodal displacement values and N is the shape function matrix that relates the nodal values to the vector field.
This means that in the elements that are completely in the cracked subdomain there are two layers of nodes and elements,
while in elements that contain the crack front there are three layers of nodes and elements (see Fig. 3). Compatibility be-
tween utop and ubot is easily achieved by defining a single displacement field in X

�.
When the front moves, the set of elements that contains the crack front may change and the mesh topology around the

front must be updated. Each element that starts as uncracked may at some point during the analysis be crossed by the crack
front, during which time the element is replaced with a triplet of elements: two for the uncracked side and one for the
cracked side. After the crack front has passed through the entire element domain, a pair of elements remains, each with
the same shape and area as the original element but with a different thickness.

Subtriangulation is used to evaluate integrals over the cracked elements. This means that the location of integration
points changes when the front moves through an element. This is not problematic as long as linear elasticity is assumed
for the bulk material. However, with a nonlinear material law, transfer of history variables will be necessary, or, alternatively,
storage of history variables at the nodes. Integrals over the crack front are evaluated with two Gausspoints per cut element.

When the / = 0 line is very close to a node, it is assumed to cross the node exactly. The location of the front is moved to
the node when j/j 6 ch, where in this work the constant c is set to 0.01. The characteristic element size h is in this paper
defined as the length of the diagonal of the smallest rectangle around an element:

h ¼min
nel

ie¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DxieDyie
p

� �

ð6Þ

The kinematic formulation in Eq. (5) allows for a jump in the displacement field, which has to be closed. In the remainder of
this section, different formulations will be introduced, and the complete finite element formulation will be derived for each
of those.

2.2. Lagrange multipliers

The first method to close the gap is to make use of Lagrange multipliers. A second vector field k is introduced in the po-
tential energy of the system, which (neglecting body forces) is written as:

Pðu; kÞ ¼
Z

X

wðrsuÞ dXþ
Z

C

k � sut dC�
Z

CN

u � tN dC ð7Þ

where w(rsu) is the strain energy density and k and u are the primary vector fields. CN is the part of the boundary on which
Neumann boundary conditions are applied with traction tN. Note that with Eq. (4), there are in fact two Lagrange multiplier
vector fields, one related to the top sublaminate and the other related to the bottom sublaminate.

This leads to the following variational formulation that will be discretized and solved:

dPðu; k; du; dkÞ ¼
Z

X

rsdu : r dXþ
Z

C

sdut � k dCþ
Z

C

dk � sut dC�
Z

CN

du � tN ¼ 0 ð8Þ

where r = @w/@(rsu).
There is a difficulty concerning the discretization of the Lagrange multiplier field. The value is only meaningful on the

surface C, while this surface is not meshed. The most intuitive choice is to define degrees of freedom related to the Lagrange
multiplier fields on the nodes of the set of elements that contain the front. However, this choice has proven to be unstable
[40,41]. However, this can be solved by constraining the Lagrange multiplier space as proposed by Béchet et al. [35]. The idea
is that variations in the Lagrange multiplier field normal to the surface are eliminated. This is done by tying the degrees of
freedom related to node pairs that are connected across the front as illustrated in Fig. 4.

N d
+
bot

N d
+
top

N d
−

x

u

u

utop

ubot

=

+

Fig. 3. One-dimensional representation of discretization with duplicate nodes. On the uncracked side there is one layer of elements while on the cracked
side there are two, except in the element that contains the crack front, where there are three overlapping elements: one for the uncracked side and two for
the cracked side.
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The space is built in a variation to the algorithm by Béchet et al. [35]. The algorithm is such that the resulting space sat-
isfies the following rules:

1. Nodes that are on the front remain untied.
2. All other nodes are connected to at least one node on the other side of the front.
3. It is not possible to remove a single tie without violating rule #2.

Generally, more than one space can be constructed that satisfy these three rules. Which of these is actualized depends on
the quasi-random element numbering.

For second order elements, the degree of freedom related to the mid-nodes in cut elements is eliminated (assuming linear
interpolation on the element boundary) except on the element boundary that is not cut. This means that there is one qua-
dratic term in the basis for each cut element. However, if the length of the cut through an element is small with respect to the
element size (Ds 6 0.1h), this quadratic term is also eliminated.

We now discretize the primary fields and their variations as:

u ¼ N � d du ¼ N � dd
k ¼ N � l dk ¼ N � dl

ð9Þ

With Eqs. (8) and (9), the discretized set of equations becomes:

K�
X

0 Kk

0 Kþ
X
�Kk

Kk �Kk 0

2

6

4

3

7

5
�

d
�

d
þ

l

2

6

4

3

7

5
¼

f
�

f
þ

0

2

6

4

3

7

5
ð10Þ

with

K�
X
¼

Z

X
�
rsN

T
: C : rsN dX ð11Þ

Kk ¼
Z

C

NT � N dC ð12Þ

f
� ¼

Z

C�N

NT � tN dC ð13Þ

where C ¼ @r=@ðrsuÞ. In this notation, Kk is square and d�,d+ and l have equal lengths. In the implementation this is not the
case, but for notational simplicity, it is here formulated as if u+,u� and k are discretized all over X.

2.3. Nitsche’s method

Another way to close the gap is with Nitsche’s method [36,37]. Here, two new terms are added to the potential (cf. Eq.
(7)):

PðuÞ ¼
Z

X

wðrsuÞ dXþ
Z

C

sut � hr � nib dCþ 1
2
h

Z

C

sut � sut dC�
Z

CN

u � tN dC ð14Þ

The first additional term already closes the gap in simple cases, but the second additional term is needed to stabilize the
solution, where h is a penalty parameter. The variational form is:

dPðu; duÞ ¼
Z

X

rsdu : r dXþ
Z

C

hn � C : rsduib � sut dCþ
Z

C

sdut � hr � nib þ h

Z

C

sdut � sut dC�
Z

CN

du � tN

¼ 0 ð15Þ

Cut element

Lagrange dofs

Tied Lagrange dofs

Fig. 4. Lagrange multiplier space: intuitive definition (left) and stabilized version (right).
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The brackets in the first additional term of Eq. (14) indicate that the stress value has to be related to the two values of the
stress that are available on both sides of the discontinuity:

hr � nib ¼ bðrþ � nÞ þ ð1� bÞðr� � nÞ ð16Þ

where n is the normal vector to the plane over which the discontinuity is defined. According to Mergheim and Steinmann
[36] it is best to choose b equal to 1 or 0 depending on the location of the discontinuity in the element, such that the stress
from the larger sub-element is used, but for simplicity, Mergheim et al. use an average value with b = 1/2, as do Dolbow and
Hariri [37]. In the current work, however, r � n is not continuous over C. The idea behind Nitsche’s method is that for a zero
jump, the r � n term adds a traction on the face of the discontinuity that is in equilibrium with the neighboring stress. There-
fore, the solution with zero crack opening is the equilibrium solution. In the delamination model, the equilibrium relation
that should be satisfied over the discontinuity is:

tbot r
þ
bot � n

� �

þ ttop rþtop � n
� �

¼ tbot r
�
bot � n

� �

þ ttop r�top � n
� �

ð17Þ

For the cracked part, the traction that is added on the face should be in equilibrium with the stress in the neighboring mate-
rial, but for the uncracked part, this only needs to hold after summation through the thickness. Therefore, b must be set to 1.
This is not good for the stability of the method, because the minimum value of h that is required for stability is inversely
dependent on the size of the smallest cut element.

The discretized set of equations is:

K�
X
þ Kh Kr � Kh

KT
r � Kh Kþ

X
� Kr � KT

r þ Kh

� �

� d
�

d
þ

� �

¼ f
�

f
þ

� �

ð18Þ

with

Kr ¼
Z

C

NT � ðC : rsN � nÞ dC ð19Þ

Kh ¼ h

Z

C

NT �N dC ð20Þ

2.4. Equilibrating traction

A third way to close the gap is by using an internal traction onC that is directly related to the neighboring stress. When an
internal traction on the crack faces is added, the potential becomes:

PðuÞ ¼
Z

X

wðrsuÞ dXþ
Z

C

sut � t;dC�
Z

CN

u � tN dC ð21Þ

And the variational form is:

dPðu; duÞ ¼
Z

X

rsdu : r dXþ
Z

C

sdut � t dC�
Z

CN

du � tN ¼ 0 ð22Þ

Then, in order to let the traction close the gap effectively, t is made to depend on u as:

t ¼ ðrþ � nÞ þ hsut ð23Þ

This is similar to earlier formulations in the context of cohesive cracking [38,39], except that again the stress r+ is taken in-
stead of the average of r+ and r� and that there is no possibility of damage. With this definition of t and nonzero h, equi-
librium is satisfied if and only if the gap is closed sut = 0. Substitution into Eq. (22) gives:

Z

X

rsdu : r dXþ
Z

C

sdut � ðrþ � nÞ þ h

Z

C

sdut � sut dC�
Z

CN

du � tN ¼ 0 ð24Þ

This is less mathematically rigorous, because in going from Eq. (21) to Eq. (22) we assumed t to be independent of u. There-
fore, in fact, the weak form Eq. (24) can no longer be traced back to the potential Eq. (21), with loss of symmetry as a con-
sequence. Nevertheless, this is still an equilibrium relation with a unique solution that satisfies sut = 0. The resulting system
of equations is very similar to that in Eq. (18) except that the KT

r terms are missing:

K�
X
þ Kh Kr � Kh

�Kh Kþ
X
� Kr þ Kh

� �

� d
�

d
þ

� �

¼ f
�

f
þ

� �

ð25Þ

2.5. Augmented Lagrange

Finally, it is possible to combine the Lagrange multipliers with a penalty term. The potential is then defined as (cf. Eqs. (7)
and (14))
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Pðu; kÞ ¼
Z

X

wðrsuÞ dXþ
Z

C

k � sut dCþ 1
2
h

Z

C

sut � sut dC�
Z

CN

u � tN dC ð26Þ

It follows from the previous considerations that the system of equations in this case is:

K�
X
þ Kh �Kh Kk

�Kh Kþ
X
þ Kh �Kk

Kk �Kk 0

2

6

4

3

7

5
�

d
�

d
þ

l

2

6

4

3

7

5
¼

f
�

f
þ

0

2

6

4

3

7

5
ð27Þ

The accuracy of the different gap closure methods that have been presented here will be assessed in Section 6.1.

3. Crack growth model

The model described in the previous section allows for mechanical analysis of a partially delaminated structure, where
the delamination front can be arbitrarily located. Now we move on to a method with which this crack grows. Without cohe-
sive zone, the crack necessarily grows according to the principle of fracture mechanics, i.e. growth occurs if the energy
release upon crack growth is higher than the energy needed to form the additional crack surface. This is done in an explicit
framework, which means that the difference between the current energy release G and the critical energy release Gc deter-
mines the velocity of the crack front (see Fig. 5). Obviously, G can vary along the crack front, and as such the velocity is a
function of the location on the front, which is denoted s. A simple expression is used to compute the normal velocity vn:

vnðsÞ ¼
1
l

GðsÞ
Gc

� 1
	 


þ
ð28Þ

where l is a constant that can be interpreted as a viscous resistance against crack growth. Brackets are used to denote the
positivity condition h�i+ = (j�j + �)/2, which reflects the irreversibility of crack growth.

In this section we will first develop the expression that is used to compute G for a given front location and displacement
field. Then the discretized form of Eq. (28) will be derived. Finally, it will be explained how this velocity is taken to update the
level set field.

3.1. Energy release

As observed by Zou et al. [28] the use of laminate theory eliminates the stress singularity and introduces a discontinuity
in the stress field that can be used as a configurational force for the crack growth. Laminate theory, or even shell theory, is
not applied in a strict sense in this paper, but we do work from the assumption that higher order variations through the
thickness are eliminated. Each of the displacement fields u�,utop

+ and ubot
+ is defined in 2D, without out-of-plane variations.

In Section 7, linear variations of displacement will be introduced in each of the three fields. But it is fundamental for the pre-
sented method that through thickness variations are constrained as they typically are in plate, shell and laminate theories. In
such a framework, the stress singularity around the front of a delamination crack cannot be represented and it is transformed
into a jump in strain (and stress). Although our formulation differs from that by Zou et al. [28–30], we will also use this
discontinuity to compute the energy release for crack growth.

For any transition from one state to another with a sharp front, the energy dissipation due to movement of that front g can
be expressed in terms of the jump in Eshelby tensor as [42]:

g ¼ n � sPt � n ð29Þ

where sPt is the jump in Eshelby tensor over the front, defined as:

sPt ¼ P� � Pþ ð30Þ

with

φ > 0

φ < 0

G

Gc

vn

n
s

s
x

y

Fig. 5. Relation between energy release G on the front and front velocity vn.
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P ¼ wI�ruT � r ð31Þ

and, for linear elasticity:

w ¼ 1
2
rsu : C : rsu ð32Þ

Eq. (29) is valid for general surfaces in 3D. In the current case, although the crack front is a line, the discontinuity is defined
over a surface through the thickness of the laminate. Therefore, in order to move from g, the energy release per unit area, to
G, the energy release per unit crack front length, one needs to integrate g over the thickness of the laminate:

GðsÞ ¼
Z

t

gðs; zÞ dz ð33Þ

where t is the thickness of the laminate. A similar expression for the energy release upon delamination crack growth has
been used before by Nilsson and Storåkers [43] and Ousset [44].

This formulation is also applicable to problems with large displacements, as long as ru,r and n are expressed in the
current spatial configuration. Furthermore, any material law can be used that is derived from a potential w such that
r = @w/@(rsu). For nonlinear materials, however, interpolation of the history variables or the stress will be necessary, be-
cause Eq. (29) is evaluated on the front, which is not where the history variables are stored.

3.2. Discretization

For the level set update, the velocity needs to be known at the nodes. However, G is defined on the front. This is reminis-
cent of the formulation for the Lagrange multiplier in Section 2.2 where the field is also defined on C and discretized on the
nodes of the finite elements. In fact, the constrained space that has been introduced for the Lagrange multiplier (see Fig. 4) is
the ideal basis for the normal velocity field.

Because the velocity degrees of freedom are then defined on the nodes, the field Eq. (28), which is defined on the front,
cannot be imposed directly. Instead, a weak form is derived that is solved for the nodal velocities. First the velocity field is
discretized with shape functions N as N � vn. Then it is imposed that Eq. (28) is satisfied in an integral sense after pre-
multiplication with a set of test functions, for which the shape functions N are chosen following Galerkin’s method. The
system of equations that is solved is then formulated as:

M � vn ¼ f ð34Þ

with

M ¼ l
t

Z

C

N� N dC ð35Þ

f ¼
Z

C

N
n � sPt � n

Gc

� 1
t

� �

dC ð36Þ

The normal velocity vn is computed on the nodes of which the support is intersected by C, where ties between the nodal
values are applied as in the Lagrange multiplier space. The thickness t is introduced to cancel the integration through the
thickness according to Eq. (4) on terms that are defined on C rather than on C. Note that the positivity condition has been
removed; it will further on be reintroduced. Furthermore, the vector N for scalar field vn is similar to but not the same as the
matrix N for vector fields in Eq. (9). In the numerical examples presented in this work, first order triangular elements are
used for discretization of the level set field / and the normal velocity vn because this simplifies the fast marching algorithms,
while second order elements are used for the discretization of the displacement and Lagrange multiplier fields because of
their superior convergence properties.

However, to avoid oscillations on the front due to local inaccuracy in G, a diffusion term is added, after which Eq. (28)
becomes:

vnðsÞ þ
jh2

l
@2
vn

@s2
¼ 1
l

GðsÞ
Gc

� 1
	 


þ
ð37Þ

where j is a stabilization parameter and h is the typical element size from Eq. (6). The element size h is included here to
make the stabilization term vanish upon mesh refinement.

The discretized set of Eq. (34) becomes:

½Mþ K� � vn ¼ f ð38Þ

with

K ¼ jh2

t

Z

C

ðrN � sÞ � ðrN � sÞ dC ð39Þ
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3.3. Level set update

After solution of the system from Section 2, the system in Eq. (38) is solved to compute nodal velocity values around the
front. In order to update the level set field which is defined over the whole domain X, the velocity is extended. For this pur-
pose, a fast marching method [31] is used. The set of nodes on which vn is defined as a degree of freedom is exactly the same
as the set of nodes on which values are needed to initiate the fast marching method. The current level set values are used to
sort the nodes on which the vn has not been solved, and to determine the order in which the nodes can be updated, marching
away from the front. The nodal velocity is computed by solving the condition of normality between r/ and rvn on an
element where two values of vn are known and one is unknown:

r/ �rvn ¼ 0 ð40Þ

Using the constant gradients of the standard interpolation functions on a triangle, this is a linear equation which can easily
be solved for the unknown velocity value. If a node has multiple elements for which already two velocity values are known
the value is taken from the element that is most normal to the level set, i.e. the element with the highest value for jr/ �rNij
where i is the index of the node on which vn is unknown. In Fig. 6, the result of the velocity extension is visualized for a
circular front.

Because the level set field is defined as a signed distance function, and the velocity field is defined as normal to the level
sets, the update of the field with the obtained normal velocity field is very simple [45]. With forward Euler time discretiza-
tion, the update is performed with:

/ /þ hvniþDt ð41Þ

where Dt is the time step size. The brackets in Eq. (41) indicate that it is here that the positivity condition from Eq. (28) is
imposed. For stability of the explicit level set update, Dt is reduced when this is necessary to limit the growth of the front
with more than half the element size per time step:

Dt ¼min Dt0;
h

2maxfvng

 �

ð42Þ

whereDt0 is the initial and maximum time step size. In combination with a loading scheme in which the displacement incre-
ment of the subsequent time step is adapted accordingly, it is possible to capture sharp load drops. The prescribed displace-
ment value u is updated with:

u uþ Du0 Dt

Dt0
ð43Þ

Hence the loading rate _u ¼ Du0=Dt0, which in interplay with the resistance parameter l determines the viscosity of the crack.
In the limit case where _ul! 0, the quasi-static solution is obtained in which G is not allowed to be larger than Gc. If G
becomes very high, Dtwill become very small, which results in an effective arrest of the increase in prescribed displacement
during unstable crack growth.

Theoretically, if the normal velocity vn is defined on the front and extended to satisfy Eq. (40), and the level set field is a
signed distance function satisfying Eq. (1), the level set field remains a signed distance function [45]. After discretization in
time and space, however, the level set field may deviate from being an accurate representation of the signed-distance to the
crack front. Therefore, occasional reinitialization of the level set field is necessary. This is also done with a fast marching
method. Because it is a relatively cheap operation, it is performed every time step. The procedure is similar to that for
the velocity extension, but this time the equation that is solved on the element is Eq. (1). With two known values of / on

(a) After solving system of equations (38)

−5

0

5

10

vn

(b) After extension and taking positive part

−5

0

5

10

vn +

Fig. 6. Velocity field extension from a circular front.
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the triangle this results in a quadratic equation which is solved for the unknown value, where the root with the maximum
absolute value is chosen. If a node has multiple elements for which already two velocity values are known the value is taken
from the element with the lowest value for maxj/jj,j/kj, where j and k are the indices of the nodes for which the level set
value is known.

4. Initiation

Fracture mechanics models, such as the one described in the previous section, with their energy based failure criteria are
generally not suitable for prediction of initiation of failure. However, for the proposed model it may be noticed that one can
approach the limit case of an infinitesimal crack without problems. Consider the 2D version of a free edge delamination on a
rectangular [0/90]-laminate. For this case, it can even be shown that, for a straight crack parallel to the free edge, G is indepen-
dent of the crack location. There are three strain fields, one for the uncracked part, and two for the cracked part; and each of
these is independent of the exact crack location. We know (see Fig. 7) that the strain exx is equal to the applied strain every-
where, exy is equal to zero everywhere and for the three different values of eyy, we know that e�yy is such that r�yy; bot ¼
�r�yy;top;rþyy;bot ¼ 0 and rþyy;top ¼ 0.

From this we infer, that even on an uncracked free edge, one can compute hypothetical strain fields for an infinitesimal
crack. Generalizing to an (n,s)-frame aligned to an arbitrarily oriented free edge, the strain component ess in the cracked
sublaminates will be the same as in the uncracked laminate, while the other strain components will be such that
rnn = rns = 0. With the constitutive law for the ply (or sublaminate) it is possible to compute the two unknown strain com-
ponents ens and enn, and subsequently the missing stress component rss. This means hypothetical stress and strain tensors
can be computed in the cracked sublaminates before a crack arises. With these, a hypothetical value for the component
Pnn = n � P � n can be computed. Pnn is defined as:

Pnn ¼
1
2
ui;jrij � rnkuk;n ði; j; kÞ ¼ ðn; sÞ ð44Þ

It can be observed that the off-diagonal terms ofru (which remain unknown) are all canceled by the zero off-diagonal terms
of r. To be precise, Eq. (44) can be worked out for the cracked sublaminate near the free edge to:

Pnn ¼
1
2
us;srss ð45Þ

Therefore, we can compute the energy dissipation for crack growth from the free edge even in absence of an initial crack, and
hence we can also use our energy criterion for initiation.

In terms of level set update, initiation also requires special treatment because we do not have a zero level set waiting on
the boundary to be given a velocity. When the initiation criterion is met somewhere in an element along the free edge, a new
zero level set is introduced in that element by setting the level set value its nodes which are on the boundary to 0.1h. The
signed distance function is updated accordingly where necessary.

As said in the beginning of this section, energy criteria are generally not useful for initiation. It is known from linear elas-
tic fracture mechanics that the energy release for an infinitesimal crack in an uncracked body is equal to zero [46]. So one
may wonder how it is possible that nonzero values are obtained in this case. The answer is this is due to assumptions of shell
mechanics. Higher order variations in stress and strain through the thickness of the laminate are not modeled. Therefore, the
influence of an infinitesimal crack is immediately felt through the thickness of the laminate. Obviously, this is not realistic.
The stress field around the crack tip is not as simple as we assume. It is therefore reasonable to say that the assumptions of
shell theory only start to be realistic when the crack length is several times more than the thickness of the laminate. Unstable
initial crack growth, for instance, which can be expected when a crack nucleates along the free edge, will not be captured
with this simplified approach.

Having said that, we observe that if one nevertheless makes the assumptions of shell theory even for infinitesimal cracks,
this makes the initiation problem well-posed. Since we are mainly interested in large cracks, we take the inaccuracy in shell
theory for small cracks for granted and make use of the observation that within the context of shell theory, an energy based

Cracked

Uncracked

y y

x z

ε −

ε +
bot

ε+
top

n

s

Free edge

Fig. 7. Three strain fields in a 2D representation of rectangular laminate that is cracked from the free edge.
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criterion can be used for crack initiation. One can say that the energy based criterion offers a reliable indicator for when the
energy in the system is sufficient to let a crack propagate away from the free edge.

5. Global algorithm

Box 1.

Global algorithm for single time step.

1. Compute displacements for known crack front location

- Assemble and solve linear elastic system (Eq. (25))

2. Grow cracks

- Assemble and solve linear system for velocity on the front (Eq. (38))

- Extend normal velocity (fast marching method, Eq. (40))

- Update level set field (Eq. (41))

- Check for initiation and update level set field if necessary

- Reinitialize signed distance function (fast marching method, Eq. (1))

3. Go to next time step

- Apply displacement increment with Eq. (43)

In Box 1, the global algorithm for a single time step is summarized. A staggered solution scheme is proposed. Firstly, the
cracked laminate model with a given crack front location is solved for displacements with the X-FEM and a gap closure tech-
nique from Section 2. Secondly, crack growth is computed according to the relations in Section 3: the normal velocity on the
front is computed, and the new crack front location is determined by updating the level set field. The check for initiation as
described in Section 4 is performed near the end of the time step, before the reinitialization procedure.

It is emphasized that all operations in step 2 are relatively cheap in terms of computational effort. The linear system that
is solved is of Oð

ffiffiffi

n
p
Þwhere n is the number of degrees of freedom in the linear system from step 1. Taken together, the oper-

ations in step 2 do not need the same computation time as the global solve in step 1. Therefore, the algorithm for a single
time step is more efficient than that for cohesive methods, where the global solve is repeated several times per time step in
an iterative algorithm. This gain in efficiency comes on top of the primary gain due to the possible increase in element size.

6. Numerical examples

6.1. Plate with circular hole: gap closure methods

To investigate the different techniques from Section 2 for closing the gap in the cracked laminate model, a convergence
analysis is performed on a [0/90]-laminate with a hole. Geometry and material parameters are taken from an analysis by
Yang and Cox [5], which will be treated in more detail in Section 6.3. The thickness of the plies is 0.2 mm and elastic param-
eters are: E1 = 140 � 103 Nmm�2, E2 = 10 � 103 N mm�2, G12 = 5 � 103 Nmm�2 and m12 = 0.21. A quarter of the plate is mod-
eled, and a uniform displacement is applied on the right boundary (see Fig. 8). A circular delamination of width 0.5 mm is
placed around the front by setting the level set field to:

/ðx; yÞ ¼ 13:2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

ð46Þ

The analysis is performed with different mesh densities around the delamination front; each time the error in G is inte-
grated numerically over the front with:

� ¼
R

C
jG� Gref j ds
R

C
jGref j ds

ð47Þ

For the reference solution Gref results are taken from a fine mesh analysis in which the mesh is aligned with the front and the
gap is closed with Lagrange multipliers. The integral in Eq. (47) is evaluated with the integration scheme on the non-aligned
mesh, where the values of Gref are obtained through linear interpolation between values at the element mid-nodes, which are
super-convergent points for the 6-node triangles that are used. In Fig. 9 convergence plots are shown. The fact that the con-
vergence is not completely regular is related to the fact that the quality of the solution does not only depend on the element
size, but also on how the elements are aligned with respect to the front. Nevertheless, clear trends can be observed.

Both Nitsche’s method and the method of equilibrating traction outperform the Lagrange multiplier when the penalty
parameter is chosen sufficiently high. Remarkably, the h-value for which the equilibrating traction gives a more accurate
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G than the Lagrange multiplier is two orders of magnitude higher than the value for which Nitsche’s method is more accurate
than the Lagrange multiplier.

When chosen sufficiently high, the penalty in the augmented Lagrangian method also improves the accuracy. For low
values the influence of the penalty vanishes, which means that the results with standard Lagrange multipliers are obtained
(it can be observed that the error from the augmented Lagrangian method with h = 104 is practically equal to the error with
the standard Lagrangian method, which basically has h = 0).

For the following examples in this section, the traction method will be applied with h = 107.

6.2. Cracked shear lap

Next, a cracked shear lap is analyzed (see Fig. 10). A 0�-UD specimen with initial delamination is axially loaded, where the
load is applied on only one of the two plies on the cracked side, such that the crack grows in mode II as a splitting phenom-
enon. With the assumption of neglecting out-of-plane deformations, the test is similar to the modified cracked shear lap test
by Guimard et al. [48]. This is a relatively simple case with extensive delamination for which an exact solution exists. For the
exact solution, the Poisson effect is neglected which makes the problem a 1D problem. The cracked parts and uncracked part
are treated as trusses, with e� ¼ F=ðE1wtÞ; eþtop ¼ F=ð2E1wtÞ and eþbot ¼ 0. The displacement at the loaded end for given load F

and crack length a is:

u ¼ ðlþ aÞ F

E1wt
ð48Þ

The potential energy of the system is:

P ¼ 1
2

Z

X

er dX� Fu ¼ �ðlþ aÞ F2

2E1wt
ð49Þ

The variation in potential energy upon crack growth is:

dP ¼ � F2

2E1wt
da ð50Þ

Now, equating the loss in potential energy to the energy required to let the crack grow, yields the load for which the crack
will grow:

F2

2E1wt
da ¼ Gcwda ) F ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GcE1t
p

ð51Þ

This case is analyzed numerically with the level set model. The same elastic parameters as in the previous example are used.
The nonzero Poisson’s ratio does not have a significant influence on the global energy in the system. A combination between
a relatively low value of l and a relatively low displacement rate is used: l = 0.01 s mm�1 and _u ¼ 0:005 mm s�1, such that
the quasi-static solution with G 6 Gc is approached. Furthermore, we use a value of j = 0.1 s mm�1. In this way, the results
can be compared with the 1D solution from Eq. (51) and with computational results obtained in a quasi-static framework
with interface elements in which the cohesive zone is modeled.

The initial front is straight and located at 4 mm of the loaded edge. The evolution of the front is visualized in Fig. 11. It can
be observed that the front does not remain straight, which is due to the nonzero Poisson’s ratio. The movement of the front

50.8mm

50.8mm

12.7mm

Delamination front

Fig. 8. Geometry of plate with circular hole and initial delamination front.
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through the domain is stable, even though a rather coarse mesh is used. In Fig. 12, the obtained load displacement data are
compared with results from the quasi-static analysis with interface elements and a simple cohesive damage law as described
in [8]. The results from the two analyses are very similar, and they are also in agreement with the theoretical finding that
crack growth occurs at a constant load level. In the cohesive element analysis, a much finer discretization is required to
get convergence of the nonlinear solver, even though the robust dissipation-based arc-length method with adaptive time
stepping by Verhoosel et al. [49] is employed. Furthermore, the time steps are necessarily small. The difference in time step
size between the two analyses can be observed in the right diagram of Fig. 12. Furthermore, the level set model requires only
one linear solve for the elasticity problem per time step, while the computation with interface elements needs about four
iterations in a successful time step and many more in time steps where convergence is not directly found and the step size
has to be reduced. The total number of system solves in the iterative computation was 3871, versus a number of time steps in
the level set computation of only 142.

The shape and location of the delamination front in the two analyses are also compared. Cohesive damage in the interface
elements and the front location from the new approach are plotted for the same value of prescribed displacement in Fig. 13.
The front in the level set analysis, falls within the cohesive zone from the nonlinear analysis. The discretization that is shown
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Fig. 9. Error in G evaluated over the crack front for different crack closure methods (h is not from Eq. (6) but from the input file for the mesh generator [47]).
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in this figure is the one that was used for the cohesive analysis, which was found to be the coarsest allowable mesh
(h 	 1 mm). The efficiency gain of the level set method is clear when this mesh is compared with the one used for the level
set analysis in Fig. 11, although the contrast is amplified by the fact that linear elements were used in the cohesive analysis,
versus quadratic elements in the level set analysis. The number of nodes in the cohesive analysis was 11,736, while for the
level set analysis it grew from an initial number of 2775 to a final 5038. More important than the quantitative gain in this
particular case is, however, that the required element size scales with the in-plane dimensions for the level set method,
while it is constant for the cohesive approach. In other words, upon in-plane scaling with a factor n, the number of nodes
required for the cohesive analysis scales with a factor n2 while for the level set analysis, the number of nodes that is required
remains the same. So if the specimen dimensions would be scaled up, the gain in efficiency would become larger and larger.

6.3. Plate with circular hole: initiation and non-self-similar crack growth

Now a more challenging example is treated, with delamination growth that is not self-similar. The circular plate from
Section 6.1 is analyzed without initial delamination. The same parameters are used as in the previous example. Again,

l = 100 mm
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t = 0.4 mm
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Fig. 10. Geometry of cracked shear lap.

Fig. 11. Delamination growth in level set analysis of cracked shear lap; the front moves from right to left, it is depicted for intervals of 5 time steps.
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Fig. 12. Load-displacement results for 2D cracked shear lap with cohesive interface elements and the proposed level set method.
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the analysis is performed with cohesive elements as well as with the proposed level set model, where the cohesive zone
analysis is the same as that in Yang and Cox [5] except that we use a cohesive law with linear softening, and that our analysis
is performed in 2D. There is no initial delamination, so this is also a test for the initiation model introduced in Section 4.

In Fig. 14 the crack growth for the two models is compared. Again, it can be observed that the front location predicted by
the level set model falls within the cohesive zone as predicted by the interface elements. Initiation is predicted at the correct
location. Moreover, the crack front is introduced timely: where it is inserted it starts growing straight away.

Furthermore, this example shows that the proposed energy release rate criterion is directly applicable to orthotropic
materials. Although orthotropy is not explicitly present in Eq. (29), it is introduced via the dependence of the Eshelby tensor
on the stress. With an isotropic material, there would be no delamination in this case.

7. Through thickness variations

The main point of this paper is to use level sets to describe the delamination front. In this way, the cohesive zone does not
need to be resolved, but this requires a formulation for the configurational force to compute the energy release upon crack
growth. In Section 3 it has been proposed to use the jump in Eshelby tensor in order to compute the energy release for move-
ment of the crack front. One may wonder whether and how this concept can be generalized to full three dimensional mod-
eling where stress and strain quantities may vary through the thickness of the laminate. To illustrate the potential of the
configurational force for three dimensional analysis the configurational force concept is tested on several simple beam exam-
ples in this section. These analyses are again performed in 2D, but now in the (x,z)-plane. In this case there is no need for a
level set field. The crack front becomes a crack tip, which can be located with its x-coordinate.

7.1. 2D model in the (x, z)-plane

The element which contains the tip consists of a triplet of overlapping elements, each of which is only partially active. In
the (x,y)-model, it was implicit that the weak discontinuity in the displacement field was applied through the thickness of

0 1

Cohesive damage Level set front

Fig. 13. Delamination damage in cohesive zone analysis for u = 0.75 mm with, superposed, delamination front location in level set analysis at the same
displacement level.

0 1

Cohesive damage Level set front

Fig. 14. Evolution of damage in cohesive zone analysis and evolution of front in level set analysis of plate with circular hole without initial delamination.
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the laminate at the location of the front. Here the through-thickness nature of the weak discontinuity becomes explicit. In
Fig. 15 a possible deformation of the tip element is illustrated as being composed of the deformation of three elements all of
which are partially active. There is a strong discontinuity between the two parts on the cracked side and a weak disconti-
nuity over the entire height of the element. In this image, inspired by the double cantilever beam test, the two elements that
correspond with the cracked part display a bending deformation, while the element corresponding with the uncracked part
is not deforming.

The integral over the thickness in Eq. (33) is now evaluated with two gauss points for the top part and two gauss points
for the bottom part (see Fig. 16). Standard quadrilateral solid elements are used, with a selective reduced integration scheme
to avoid shear locking. That is, the shear strain is evaluated at the element center, or, in the case of partially active elements,
at the center of the active part. This element still displays Poisson thickness locking [50]. For three-dimensional modeling, a
more suitable shell element will have to be used, but for the simple tests performed here, locking can be avoided without
severe loss of accuracy by setting the Poisson’s ratio in the solid element to zero.

Again Hansbo’s method used to model the strong discontinuity and the weak discontinuities and Lagrange multipliers are
used to close the gap on C. Four kx degrees of freedom are defined through the thickness (two per sublaminate) as well as
two kz degrees of freedom (one per sublaminate).

7.2. Numerical examples in the (x, z)-plane

As a first numerical example, a double cantilever beam is analyzed. Results are compared with the analytical solution de-
rived from simple beam relations. The beam solution is given by:

Fig. 15. Illustration of possible deformation of tip element as three partially active overlapping elements; on the left the outline of the three deformed
elements, filled where they are active; on the right the composed deformation of the three active parts.
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Fig. 16. Integration scheme for triplet of overlapping elements.
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Fig. 17. Load-displacement diagram from double cantilever beam in comparison with analytical solution; the final deformation is also shown.
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where u is the end displacement of a single arm, t is the height of the beam, w is the unit depth, a is the length of the crack, E
is the Young’s modulus and G13 is the shear modulus. In Eq. (52) a value of 1.0 is used for the Timoshenko shear correction
factor, as it effectively is in the finite element. Furthermore, terms that can be added for deformation of the uncracked part
(see Reeder and Crews [51]) are neglected, which is safe for a thin isotropic beam.

An isotropic material is used with E = 100 � 103 Nmm�2 and G13 = E/2. The beam with a length of 100 mm and a height of
3 mm is discretized with elements that are 10 mm long. An initial notch with a length of 25 mm is placed at the mid-height of
the beam. Furthermore,weuseGc = 1 N mm�1,l = 0.1 s mm�1 and _u ¼ 0:02 mm s�1. In Fig. 17 the obtained load–displacement
curve is presented in comparisonwith the analytical beam solution. The final deformation is also visualized. It can be observed
that although the discretization is extremely coarse, the numerical solution is close to the analytical solution.

It is emphasized that with the proposed method a smooth response is obtained for this case irrespective of the brittleness
of the system or the size of the elements. Although this is a relatively simple case, cohesive analysis demands a fine mesh to
obtain a load–displacement relation without spurious snap-backs. Smooth results have not been presented before with an
element size comparable to that in Fig. 17. The advantage of the present method in comparison with existing enrichment
schemes is that here the cohesive zone is eliminated altogether. The downside of eliminating the cohesive zone is that this
does not lead to reasonable results in cases with ductile failure, i.e. in cases where the cohesive zone length is of the same
order as the length of the specimen. For delamination in composite laminates, however, the length of the cohesive zone is
typically very small with respect to in-plane dimensions of the laminate.

To show the generic validity of the configurational force, the test is repeated with a shear deformable beam where G13 is
set to 5 � 103 Nmm�2. The initial notch length is set to 11 mm, such that the initial part of the response is strongly shear
dominated. Here the assumption that the uncracked part does not deform is not justified, but the same kinematic constraint
is applied in the numerical model as in the beam model, so the comparison between beam solution and numerical results
remains meaningful. Results are presented in Fig. 18. In the beginning the solution is close to the pure shear solution with
constant load,1 but as the crack grows the bending part becomes increasingly significant. The analytical solution is once again
very accurately captured.

It is noted that in the analytical solution shear deformation of the uncracked part is not taken into account. This defor-
mation is also prevented in the numerical model. Therefore, both solutions deviate equally from the more realistic full con-
tinuum solution. Notwithstanding this inaccuracy, the match between the two solutions shows that the jump in Eshelby
tensor gives robust and sensible results for different cases in which a crack tip advances through very large elements.

Finally, the mode II case of end-notched flexure is analyzed. The same beam (with restored shear stiffness) is subjected to
three-point bending. The initial notch length is set to 32 mm and the loading rate reduced to _u ¼ 0:003 mm s� 1. The ana-
lytical solution is found with

u ¼ Fðl3 þ 12a3Þ
4Ewt3

þ Fl

4G13wt
ð54Þ

and
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Fig. 18. Load-displacement diagram from shear deformable double cantilever beam in comparison with analytical solution; the final deformation is also
shown.

1 The pure shear case with G13
 E is mathematically equivalent to the 1D model of the cracked shear lap from Section 6.2.
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where l is half of the length of the beam. In Fig. 19 it can be observed that the initial part of the beam solution with unstable
crack growth cannot be represented, which is due to the explicit crack growth law. But eventually the simulation results
grow very close to the analytical solution, until the assumptions of the analytical solution lose their validity when the crack
tip passes the half-span of the beam.

For these examples, the post peak response is governed by the fracture toughness. The agreement with analytical results
therefore confirms that the local configurational force with the jump in Eshelby tensor is a correct measure for the energy
release upon crack growth. The analyses are performed with extremely large elements, which confirms the potential of the
proposed method for efficient simulations with large scale delamination.

8. Conclusions

In this paper a new approach to the computational modeling of delamination has been presented. The first main feature of
the model is a new enrichment scheme for the displacement field of a partially cracked laminate. Weak discontinuities are
inserted at the location of the crack front, where the level set method is employed to describe the front location such that it
can intersect the elements at arbitrary locations. As a result, the kinematics are such that the laminate has a single displace-
ment field on the uncracked side, and two independent displacement fields on the cracked side, while the interface between
the cracked and uncracked subdomains is not necessarily aligned with the mesh. A smooth progression of the front through
the finite elements is possible, which is crucial for the modeling of crack growth with large elements.

In order to achieve the weak discontinuity between two independent displacement fields on the cracked side and another
displacement field on the uncracked side, a formulation for strong discontinuities is used in combination with a gap closure
technique. Three different techniques to close the gap are investigated, Lagrange multipliers, Nitsche’s method and an equil-
ibrating traction. Concerning these, a small survey has shown that the third leads most easily to accurate results.

The second main feature of the model is a new way to compute the energy release for a delamination crack. The weak
discontinuity in the displacement field results in a jump in strain (and stress) over the surface through the thickness of
the laminate at the location of the crack front. It is this jump in strain that can then be used as configurational force after
it is transformed into a jump in Eshelby tensor. The fact is used that the jump in Eshelby tensor over an interface (in this
case the interface between uncracked and cracked parts) gives information on the energy that is released when this interface
is moved (in this case, the energy release upon crack growth). The thus computed energy release is used to compute the
crack velocity in an explicit crack growth law. This velocity is then used to update the level set field, and hence the crack
location.

The assumptions of shell theory remove the stress singularity from the linear elastic displacement field around the crack
front. Higher order variations in the stress field through the thickness of the laminate are removed and as such the stress
singularity is transformed into a weak discontinuity over a plane through the thickness. Within the context of shell theory
the solution with a weak discontinuity is the exact solution and therefore it converges to a unique solution without singu-
larity upon in-plane refinement. Obviously, through-thickness refinement does not make sense within the context of plate
mechanics and therefore the proposed method is only valid for thin structures where elimination of higher order variations
through the thickness is admissible.

In several numerical examples it has been shown that the thus predicted delamination cracks are equal in shape and size
to those computed with the well-established approach of using interface elements with a cohesive zone. This confirms the
theory that the jump in Eshelby tensor in the proposed model is equal to the energy release for crack growth. While results
are similar to those obtained in classical cohesive zone analysis, a threefold gain in efficiency is made: the elements can be
larger, the time steps can be larger, and the number of system solves per time step is limited to one for the global system plus
one for a smaller system.
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Fig. 19. Load-displacement diagram from end notched flexure test in comparison with analytical solution; the final deformation is also shown.
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A third issue that has been addressed in this publication is the initiation of new cracks. Generally, fracture mechanics
models are not applicable without the presence of initial cracks. In this case, however, the energy based criterion can be used
for prediction of crack initiation along the free edge. The energy release can be found for crack growth from the free edge,
because stress and strain near the free edge after cracking can be computed from the strain of the uncracked body. The fact
that the energy release is finite is a consequence of the assumptions of shell theory. The crack is initiated if the elastic energy
near the free edge is sufficient to drive crack growth away from the free edge. For cases where delamination cracks eventu-
ally grow very large this is an adequate initiation criterion.

Several challenges remain open for future development of this method, the most obvious being the extension to three
dimensional modeling with shell elements and large deformations. Furthermore, it is important to find a formulation for im-
plicit update of the crack front and to be able to extract the pure mode contributions from the energy release rate, GI, GII and
GIII, in order to relate the fracture toughness Gc to the ratio between those. Nevertheless, this paper already shows a more
extensive capability of the current method than of existing enrichment schemes for using larger elements in delamination
analysis. The fact that the cohesive zone is eliminated altogether opens the door to significant upscaling of model dimensions
without excessive increase in computational cost.
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