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A first-order energy-dissipative momentum-conserving scheme for
elasto-plasticity using the variational updates formulation
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formula-
tion
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updates,
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Engrg.

 

65

 

(2006)

 

904–942]

 

the

 

authors

 

demonstrated

 

the

 

efficiency

 

of

 

the

 

variational

 
formulation

 

of

 

elasto-plastic

 

updates

 

to

 

develop

 

energy–momentum

 

conserving

 

time

 

integration

 

algorithms.

 

Indeed,

 

within

 

such

 

a

 

frame-
work,

 

the

 

stress

 

tensor

 

always

 

derives

 

from

 

an

 

incremental

 

potential,

 

even

 

when

 

plastic

 

behavior

 

is

 

considered.

 

Therefore

 

the

 

verification

 
of

 

the

 

conservation

 

of

 

energy

 

in

 

the

 

non-linear

 

range

 

can

 

easily

 

be

 

demonstrated:

 

the

 

sum

 

of

 

the

 

reversible

 

stored

 

energy

 

and

 

irreversible

 
dissipated

 

energy

 

exactly

 

corresponds

 

to

 

the

 

work

 

of

 

the

 

external

 

forces

 

applied

 

to

 

the

 

structure.

 

Although

 

this

 

formulation

 

was

 

shown

 

to

 
be

 

accurate

 

and

 

robust,

 

the

 

introduction

 

of

 

numerical

 

dissipation

 

for

 

high-frequency

 

numerical

 

modes

 

can

 

be

 

necessary

 

to

 

simulate

 

com-
plex

 

phenomena.

 

In

 

this

 

work,

 

we

 

propose

 

a

 

modification

 

of

 

the

 

variational

 

updates

 

framework

 

to

 

introduce

 

this

 

numerical

 

property,

 
leading

 

to

 

a

 

new

 

energy-dissipative

 

momentum-conserving

 

time-integration

 

algorithm

 

for

 

elasto-plasticity.
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1. Introduction

The time-integration of a finite-element space-discretiza-
tion is commonly achieved by considering one-step finite
difference schemes. These finite difference schemes can be
solved explicitly or implicitly. Both families generally
derive from the Newmark algorithm [1]. The stability of
the Newmark algorithm can be demonstrated for linear
models, while for non-linear models Belytschko and Scho-
eberle [2] proved that the discrete energy, computed from
the work of internal forces and kinetic energy, is bounded

if it remains positive. Nevertheless, in the non-linear range,
the Newmark algorithm leads to a work of internal forces
that is different from the internal energy variation. In this
context, Hughes et al. [3] have proved that the Newmark
algorithm remains physically consistent only for small time
step sizes.

In the past decade, interest in simulating non-linear
dynamics has kept growing, which led to the development
of new time integration algorithms that remain stable in the
non-linear range. Since finite difference schemes are well
suited to integrate finite-element space-discretizations –
they can easily be implemented and are robust - and since
the stability requirement can be achieved only with implicit
algorithms – in the non-linear range even conditional sta-
bility can only be demonstrated for implicit schemes – this
paper focuses on implicit finite difference time integration
algorithms. For completeness, let us note that the proper-
ties of conservation can also be reached by using a Pet-
rov–Galerkin time finite-element [4,5], by using an
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approximation of the time Galerkin method [6,7], by using
a Runge–Kutta method (e.g. [8]) or even by considering an
approximation of the time discontinuous Galerkin method
[7,9]. Historically, the first finite difference algorithm verify-
ing the conserving properties in the non-linear range is the
‘‘Energy Momentum Conserving Algorithm’’ or EMCA
proposed by Simo and Tarnow [10]. It consists of a mid-
point scheme with an adequate evaluation of internal
forces. This adequate evaluation was given for a Saint
Venant–Kirchhoff hyperelastic material. A general formu-
lation in term of the second Piola–Kirchhoff stress tensor
was proposed by Gonzalez [11], and is valid for general
hyperelastic materials. In this last formulation, the stress
tensor is decomposed into two parts: the first one is the
derivative of the free energy evaluated for a mid-configura-
tion strain tensor, and the second is a second-order correc-
tion that enforces the exact variation of energy. This
generalization was allowed by the form of the stress tensor
that derives from an internal energy. Actually, verification
of the conservation of the energy requires such a varia-
tional framework. For example, when considering
energy–momentum conserving algorithms applied to
contact interactions, the creation of a contact energy was
proposed by Armero and Pet}ocz [12,13] to ensure the
stability.

An issue when considering plasticity is the absence of an
energy potential from which to derive the stress tensor.
Energy–momentum conserving algorithms were then devel-
oped by Meng and Laursen [14,15] in such a way that the
work of internal forces is dissipative, consistently with plas-
tic behavior. They were also developed by Noels et al.
[16,17] and Armero [18] in such a way that for respectively
hypoelastic and hyperelastic based elasto-plastic materials,
the work of internal forces corresponds to the change of
reversible energy plus the plastically dissipated energy. In
general, the absence of an energy potential leads to a less
elegant mathematical formulation of the problem and can
lead to more complicated formulations of the internal
forces. This is particularly true when considering energy–
momentum conserving algorithms.

In a recent work, the authors [19] proposed to use the
variational updates framework to develop conserving algo-
rithms for elasto-plasticity. This variational constitutive
updates formulation, initially proposed by Radovitzky
and Ortiz [20] and developed by Ortiz and Stainier [21],
has the interesting property that the stress tensor always
derives from an incremental potential, even for elasto-plas-
tic models or visco-elastic models, see Fancello et al. [22].
This variational framework was further extended to the
general thermo-mechanical case by Yang et al. [23]. There-
fore, in such a framework we can use the formulation based
on the second Piola–Kirchhoff stress tensor as proposed by
Gonzalez [11] in a straightforward way. Moreover, the use
of the variational formulation does not lead to any a priori
restrictions on the material laws or parameters, even if in
this paper we focus on elasto-plasticity with isotropic
hardening.

Although recent developments in energy–momentum
conserving algorithms have demonstrated the accuracy of
the methods for non-linear structural dynamics, even for
elasto-plastic behaviors, the solution obtained can be pol-
luted by high-frequency numerical oscillations. These
non-physical modes are also present when time-integrating
with classical Newmark algorithms, and, in this particular
case, are commonly dissipated by introducing numerical
damping, leading to the generalized-a methods [24]. Never-
theless, the unconditional stability of these methods is
guaranteed only for linear systems or asymptotically for
high frequencies in the non-linear range [25]. It then
appears natural to introduce numerical dissipation in the
energy–momentum conserving algorithms, which were
therefore renamed Energy-Dissipative Momentum-Con-
serving (EDMC) algorithms by Armero and Romero
[26,27] who presented the first formulation of this kind
for hyperelastic materials. In the same way, the authors
[28] introduced dissipation for elasto-plastic hypoelastic-
based materials, which allowed the simulations of complex
phenomena such as blade loss in a turbo-engine. The nat-
ural path is then to introduce numerical dissipation into
the conserving formulation based on the variational consti-
tutive updates. Contrarily to previous work in the area, this
dissipation is introduced by adding a dissipative energy to
the potential resulting from the variational updates frame-
work. Therefore, the modification is not only introduced in
the second-order correction of Gonzalez’ stress formula-
tion, but also in the main part computed for the mid-con-
figuration strain tensor, ensuring that the correction of the
stress tensor remains second-order compared to the main
usual contribution, i.e. the stress tensor is equal to the der-
ivation of the energy (main part) corrected by a tensor
which is second order in the deformation increment.

This paper is organized as follow. In Section 2 the equa-
tions governing the continuum problem are described.
Attention is paid to the definition of an effective potential
when plasticity occurs, and how numerical dissipation
can be introduced in the resulting variational formulation.
These equations are then adapted to a finite-element dis-
cretization and to a finite time step increment in Section
3. It is then shown in Section 4 that the proposed varia-
tional formulation naturally leads to an Energy-Dissipative
Momentum-Conserving time integration, for elasto-plastic
behavior. This scheme is obtained by applying directly the
formulation of Gonzalez. The accuracy, robustness and
first-order property of the scheme are therefore demon-
strated in Section 5 by considering numerical examples.

2. Continuous dynamics

In this section we establish the variational formalism of
continuous dynamics, based on constitutive updates for
elasto-plastic behaviors. Moreover, attention is paid to
the introduction of numerical dissipation in this formula-
tion, conservation laws deduced from the resulting weak
formulation are also recalled.
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2.1. Notations

Let V0 � R3 be the reference configuration (in the
Euclidean space) of the body under study at time t = t0.
Given this convention, the material and spatial configura-
tions of this representation are initially identical. From
now on the subscript 0 will refer to the reference configura-
tion. The deformation of this body in the time interval
T ¼ ½t0; tf � is defined by the mapping ~u : V0 �T!V,
with

~x � ~uð~x0; tÞ; ð1Þ
where ~x and ~x0 are respectively the current and reference
positions. The two-point deformation gradient F : V0�
T! GLþð3;RÞ, associated to the mapping, is restricted
to GLþð3;RÞ the Lie group of invertible, orientation pre-
serving linear transformations in R3 characterized by a po-
sitive determinant, and is defined by

F � o~x
o~x0

¼ ~r0~u; with J � detðFÞ : V0 �T! Rþ ð2Þ

its Jacobian. The Jacobian allows to evaluate the time evo-
lution of the density q : V0 �T! Rþ by the relation

qJ ¼ q0: ð3Þ
The reference boundary oV0 of the body V0 is oriented by
the unit outward normal ~n0 and is decomposed into a
Dirichlet part oDV0 and a Neumann part oNV0 where
respectively the displacement and surface traction are con-

strained to �~x and �~t, with

oNV0 \ oDV0 ¼ ; and oNV0 [ oDV0 ¼ oV0: ð4Þ
Given these definitions, the motion of the body ~uðtÞ is de-
fined by the time evolution of the position ~x : V0�
T! R3 in the admissible manifold

X � f~uðtÞ : V0 �T!Vj½J > 0;~xjoDV
¼ �~x�g: ð5Þ

2.2. Weak formulation

Let r be the Cauchy stress tensor and ~b, �~t respectively
the volume forces and surface tractions applied to the
body. Therefore, the continuum linear momentum equilib-
rium is stated (in the current configuration) by

~r � rþ q~b ¼ q €~u 8~x0 2V0; ð6Þ
r �~n ¼ �~t 8~x0 2 oNV0: ð7Þ

Let us consider the manifold of admissible virtual
displacements

D � fd~uðtÞ : V0 �T! R3j½d~uðtÞjoDV
¼~0 8t 2T

and d~uð~x0; t0Þ ¼ d~uð~x0; tf Þ ¼~0 8~x0 2V0�g; ð8Þ

let us multiply Eq. (6) by such an admissible displacement
and integrate on the body V and the time interval T.
When no confusion is possible, in order to simplify the
notations, ~uðtÞ and d~uðtÞ will be replaced in the equations

by, respectively, ~u and d~u. The weak form of the problem
is then stated as finding ~uðtÞ 2 X such thatZ tf

t0

Z
V

½q €~u� ~r � r� q~b� � d~udV

� �
dt ¼ 0 8d~u 2 D;

8t 2T: ð9Þ

Using Eqs. (2), (3), (5), (7) and (8), integration by parts of
the stress divergence leads to a weak formulation of the
problem stated in the reference configuration, which is
finding ~uðtÞ 2 X such thatZ tf

t0

Z
V0

q0
€~u � d~udV0 þ

Z
V0

½rF�TJ � : ~r0 d~udV0

�
�
Z

oNV0

d~u �~T doV0 �
Z
V0

q0
~b � d~udV0

�
dt ¼ 0

8d~u 2 D; 8t 2T; ð10Þ

where ~T is the surface traction �~t evaluated in the reference
configuration.3

Since we are now referring to the reference configura-
tion, it is natural to use the symmetric second Piola–Kirch-
hoff stress tensor

S � JF�1rF�T: ð11Þ
Therefore, owing to the arbitrary nature of d~u, the weak
form (10) reduces to finding ~uðtÞ 2 X such thatZ

V0

q0
€~u � d~udV0 þ

Z
V0

½FS� : ~r0d~udV0

¼
Z

oNV0

d~u �~T doV0 þ
Z
V0

q0
~b � d~udV0 8d~u 2 D;

8t 2T: ð12Þ

This weak form will be useful to define the finite-elements
formulation. But before proceeding the constitutive behav-
ior linking the deformation gradient to the stress tensor
needs to be defined in order to complete the formalism.

2.3. Variational formulation of the constitutive behavior

In order to relate the stress tensor to a functional, we use
the variational framework of constitutive updates detailed
in [20,21] particularized to elasto-plastic constitutive mod-
els. Toward this end, the strain tensor (2) is multiplicatively
decomposed into a plastic part Fpl 2 SLð3;RÞ and into an
elastic part Fel 2 GLþð3;RÞ as

F ¼ FelFpl; ð13Þ
with SLð3;RÞ � fFpl 2 GLð3;RÞj½detðFplÞ ¼ 1�g. The plas-
tic deformation gradient can be coupled to internal vari-
ables by defining a flow rule. In the particular case of a
von Mises flow rule, one has

_Fpl ¼ _epNFpl; ð14Þ

3 One has �~t doV ¼ ~T doV0, while Eq. (7) becomes ½rF�TJ � �~n0 ¼ ~T ,
using Nanson’s formula ~ndoV ¼ JF�T~n0 doV0.
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where _ep 2 Rþ is the equivalent plastic strain rate, and
where N 2N is the flow direction, with N � fN 2
Symð3;RÞj½trðNÞ ¼ 0 and N : N ¼ 3=2�g.

It is also assumed that the Helmholtz free energy func-
tion A : GLþð3;RÞ � Rþ �N! Rþ can be additively
decomposed into

AðF; ep;NÞ � UelðFFpl�1ðep;NÞÞ þ UplðFplðep;NÞ; epÞ; ð15Þ

where Uel : GLþð3;RÞ ! R is the elastic potential and
Upl : SLð3;RÞ � Rþ ! Rþ is the plastic potential. This
additive decomposition translates the observation that, in
most metals, the plastic work hardening does not influence
the elastic (reversible) properties. In a general way, the
stress tensor S : GLþð3;RÞ � Rþ �N! Sym2ð3;RÞ, the
thermodynamic forces T : GLþð3;RÞ � Rþ �N! GLð3;
RÞ and Y : GLþð3;RÞ � Rþ �N! R explicitly derive
from this energy, with respectively

S ¼ 2
oA
oC

; T ¼ � oA

oFpl
and Y ¼ � oA

oep
; ð16Þ

where the explicit dependency of A on the right Cauchy
strain tensor C = FTF leads to the frame indifference. A
dissipative pseudo-potential W : Rþ ! Rþ can be associ-
ated to _ep such that

_ep ¼ oWðY Þ
oY

; ð17Þ

while its dual part W� : Rþ ! Rþ is obtained by the Legen-
dre–Fenchel transform

W�ð _epÞ ¼ sup
Y
ðY _ep �WðY ÞÞ with Y ¼ oW�ð _epÞ

o _ep
: ð18Þ

Convexity of W (or W*) ensures the positiveness of the dis-
sipation. The physical interpretation of T and Y is given as
follows. Combining Eqs. (13)–(16) leads to

S ¼ 2
oA
oC
¼ 2Fpl�1 oUelðCelÞ

oCel
Fpl�T

; ð19Þ

T ¼ FelT FS� oUplðFpl; epÞ
oFpl

¼ FelT FS� Tc and ð20Þ

Y ¼ � oA

oFpl
:
oFpl

oep
� oUplðepÞ

oep
¼ T : ½NFpl� � Upl

;ep ; ð21Þ

where Tc is a back-stress tensor and where Upl
;ep depends on

the plastic potential.
From these general definitions, Ortiz and Stainier [21]

proposed the new three-field functional _D : GLþð3;RÞ�
Rþ �N! R defined by

_Dð _F; _ep;NÞ � oA
oF

: _F� Y _ep þW�ð _epÞ ¼ _AþW�ð _epÞ: ð22Þ

The minimization of the power _D with respect to _ep gives
back (18), while minimizing with respect to N corresponds
to constrain N in the direction of the deviatoric stress TFplT

(this corresponds to the principle of maximum plastic dis-
sipation [29]). Moreover, the variation with respect to _F
leads to

o _Dð _F; _ep;NÞ
o _F

¼ oA
oF
¼ FS: ð23Þ

Since these variations of _D do respect the prescribed condi-
tions of the constitutive material, a one field functional can
be defined by

_Deffð~x0; _FÞ ¼ min
_ep;N

_Dð _F; _ep;NÞ; with S ¼ F�1 o _Deffð _FÞ
o _F

:

ð24Þ

The effective rate potential _Deff – it has the dimension of a
power – corresponds to the stationary point of the func-
tional _D with respect to the internal variables.

The main idea of the present work is to add to this
power a term that will introduce numerical dissipation dur-
ing the time integration. In a general way, we define the
numerical dissipative power Wd : GLþð3;RÞ ! Rþ as

Wd � Wdð _CelÞ; ð25Þ

which depends on the rate of the elastic deformations. The
plastic deformation used to compute this power is obtained
by the minimization of _D. Indeed the minimization process
yields the solution to the constitutive elasto-plastic prob-
lem, and the numerical dissipation should not modify this
solution. This is the reason why the numerical dissipation
is added to the functional after the minimization process
instead of being added to the function to be minimized.
Since the numerical dissipative power depends on the sym-
metric tensor Cel, the second Piola–Kirchhoff stress tensor
remains symmetric. So Eq. (24) is rewritten

_Deffð~x0; _FÞ ¼ min
_ep;N
½ _Dð _F; _ep;NÞ� þWdð _CelÞ; with ð26Þ

S ¼ F�1 o _Deffð _FÞ
o _F

: ð27Þ

These expressions define a stress tensor from a functional
form. This resulting stress tensor can be seen as a combina-
tion of two terms: the first term is the derivation of the
functional minimum and verifies the consistency with the
original underlying elasto-dynamics problem (e.g. normal-
ity of the plastic flow, isotropy for isotropic laws, . . .),
while the second term is an artificial stress which purpose
is to introduce numerical dissipation during the time incre-
ment scheme. The elastic tensor needed to compute this
second term is obtained from the plastic flow determined
during the minimization process. Consistency of the time
stepping scheme will be ensured providing the form of this
dissipation potential is chosen such that limDt!0þ

oWd

o _F
¼ 0,

i.e. the dissipation term should vanish for decreasing time
steps. A specific expression of Wd, verifying this condition,
will be given below.

2.4. Laws of conservation

As it is shown in the forthcoming lines, assuming pure
Neumann boundary conditions, the weak formulation
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(12) verifies the conservation of the linear momentum
defined by

~L �
Z
V0

q0
_~udV0 : T! R3; ð28Þ

of the angular momentum defined by

~J �
Z
V0

q0~u ^ _~udV0 : T! R3; ð29Þ

and of the total energy defined by

E � K þ U el : T! Rþ; ð30Þ
with respectively

K �
Z
V0

1

2
q0

_~u2 dV0; and ð31Þ

U el �
Z
V0

Uel dV0; ð32Þ

the kinetic and the reversible stored energy. Indeed, taking
d~u ¼~c 2 D, where ~c is an arbitrary constant, in Eq. (12)
leads to

_~L ¼
Z
V0

q0
~bdV0 þ

Z
oNV0

~T doV0 8t 2T; ð33Þ

which is the linear momentum conservation law. Similarly,
the choice d~u ¼~c ^~u 2 D, leads to

_~J ¼
Z
V0

q0~u ^~bdV0 þ
Z

oNV0

~u ^~T doV0 8t 2T; ð34Þ

since S is symmetric, which is the angular momentum con-
servation law. Eventually, the choice d~u ¼ _~u 2 D leads to

_K þ
Z
V0

_Deff dV0 ¼
Z
V0

q0
_~u �~bdV0 þ

Z
oNV0

_~u �~T doV0

¼ _W ext 8t 2T; ð35Þ
where _W ext is the power of work the external forces applied
to V. Let us note that _Deff is equal to the power of internal
forces (per unit undeformed volume) under the condition
that W* is homogeneous of order one in its arguments,
which is only the case for rate-independent behavior.4 This
power can be decomposed into

_W int ¼
Z
V0

_Deff dV0 ¼ _U el þ _U i þ _W diss 8t 2T; ð36Þ

where

_W diss ¼
Z
V0

Wd dV0 and

_U i ¼
Z
V0

_Deff � _Uel �Wd dV0; ð37Þ

are respectively the numerically dissipated power and the
irreversible power resulting from plastic behavior. Combin-
ing Eqs. (30), (35) and (37) leads to the conservation of
energy

_K þ _U el þ _Ui þ _W diss ¼ _W ext 8t 2T: ð38Þ

3. Finite-elements discretization and time integration

In order to solve the weak formulation (12), a finite-ele-
ment discretization is introduced. In order to perform the
time integration, the constitutive updates formulation is
adapted to the context of time increments, leading to an
incremental functional. In addition we consider a formula-
tion adapted to a quasi-incompressible constitutive behav-
ior. It is then demonstrated that, in combination with the
Energy-Dissipative Momentum-Conserving (EDMC)
scheme, Gonzalez’ expression [11] of the modified second
Piola–Kirchhoff stress tensor S* can be used directly from
this incremental functional in order to verify the conserva-
tion laws. The study of the spectral matrix associated to
this time-integration method is also studied.

3.1. Finite element discretization

The body V is now discretized into finite-elements Ve,
with V ¼ [eV

e, \eV
e ¼ ;. The approximation ~uhðtÞ of

the solution ~uðtÞ is a polynomial approximations Pk on
the sub-domains Ve. The solution is therefore restrained
in the manifold

Xh � f~uhðtÞ 2 Xj½~uhðtÞ 2 C0ðVÞ and ~uh 2 PkðVeÞ�g:
ð39Þ

Commonly, nodes n are associated to the finite elements,
and shape functions N n : V0 ! R are defined with the
usual relations

~uhð~x0; tÞ ¼
X

n

N nð~x0Þ~xnðtÞ and

d~uhð~x0; tÞ ¼
X

n

N nð~x0Þd~xnðtÞ; ð40Þ

with~xn the positions of the approximate solution at node n.
Introducing Eqs. (40) in Eq. (12), leads to the new finite ele-
ments weak form, which is finding~xn such that

Mnl €~xl þ~f n
int ¼ ~f n

ext; 8t 2T; 8n; ð41Þ

with

Mnl ¼
Z
V0

q0N nN l dV0; ð42Þ

~f n
int ¼

X
e

Z
Ve

0

FS~Dn dV0 and ð43Þ

~f n
ext ¼

Z
oNV0

~T N n doV0 þ
Z
V0

q0N n~bdV0; ð44Þ

respectively the mass matrix, the internal forces and the
external forces, where ~Dn ¼ ~r0N n is the derivative of the
shape functions.

While considering finite-elements discretization, locking
in pressure is common, especially for linear elements. This
issue can be solved by the method proposed by Simo and4 Indeed, oW�

o _ep
_ep ¼ W� only if W* is linear with _ep.
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Taylor [30] who considered a constant volume deformation
on each element. So let us introduce the following defini-
tions. Let he 2 Rþ be a constant value on Ve, which allows
to define the distortion gradient bF : V0 �T! SLð3;RÞ
and the modified deformation gradient F : V0 �T�
Rþ ! SLþð3;RÞ respectively as

bF � J�
1
3F and F � he1

3bF ¼ he

J

� �1
3

F; with ð45Þ

bC � bFTbF ¼ 1

J

� �2
3

C and C � FTF ¼ he

J

� �2
3

C: ð46Þ

3.2. Incremental updates of the variational elasto-plastic

model

The time-integration of Eqs. (41) is accomplished via an
incremental solution procedure in which the time interval
of interest T is discretized into nf time steps such that
T ¼

Sn¼nf�1
n¼0 ½tn; tnþ1� and Dt = tn+1 � tn is the time step

size. Therefore, the formulation described in Section 2.3
is modified in order to take into account the finite nature
of the deformation gradients. The purpose is to adapt the
variational power _Deff defined in Eq. (24), leading to an
incremental form DDeffð~x0;Cð~uh; h

eÞÞ.
The incremental form of Eq. (14) is

Fplnþ1 ¼ expð½epnþ1 � epn�NÞFpln ¼ AðDepÞFpln; ð47Þ

where tensor A(Dep) verifies

detðAðDepÞÞ ¼ expðtrðDepNÞÞ ¼ 1 and

Dep ¼
ffiffiffi
2

3

r
k ln AðDepÞk; ð48Þ

with Dep ¼ epnþ1 � epn the increment of equivalent plastic
strain.

In order to use the quasi-incompressible technique
defined in Section 3.3, we assume a split of the elastic
potential Uel into a volume part Uel

vol : Rþ ! Rþ and into
a deviatoric part Uel

dev : SLð3;RÞ ! Rþ. Therefore the free
Helmholtz energy (15) is rewritten

AðFð~uh; h
eÞ; ep;NÞ ¼ Uel

volðh
eÞ þ Uel

devðbCelÞ
þ UplðFplðep;NÞ; epÞ; ð49Þ

where it has been taken into account that the plastic defor-
mation gradient Fpl is deviatoric, i.e. det(Fpl) = 1. There-
fore, DD : GLþð3;RÞ � Rþ �N the incremental form of
Eq. (22) is stated as

DDðFð~unþ1
h ; henþ1Þ; epnþ1;NÞ

� Uel
volðh

enþ1Þ � Uel
volðh

enÞ þ DDdevðbF; ep;NÞ; with ð50Þ

DDdevðbF; ep;NÞ ¼ Uel
devðbCelnþ1ðbFnþ1; epnþ1;NÞÞ

� Uel
devðbCelnÞ

þ UplðFplnþ1ðepnþ1;NÞ; epnþ1Þ

� UplðFpln; epnÞ þ DtW�
Dep

Dt

� �
: ð51Þ

Similarly to what has been done in Section 2.3, since min-
imization of DD with respect to epn+1 leads to verify (18),
and since minimization with respect to N leads to a radial
return mapping scheme [19,21], the effective incremental
potential DDeff : V0 �GLþð3;RÞ ! Rþ can be defined as
the discrete form of Eq. (26), leading to

DDeffð~x0;Fð~unþ1
h ; henþ1ÞÞ ¼ min

epnþ1N
½DD� þ DtWd

volðDhe;DtÞ

þ DtWd
devðDbCel;DtÞ: ð52Þ

Consistently with the continuous case (see Section 2.3), the
numerical dissipation Wd is added after minimization of the
energy functional increment DD, in order to preserve
the elasto-plastic solution of the constitutive problem.
Once the plastic flow properties have been determined by
the minimization process, the elastic tensor is known and
the numerical dissipation can be evaluated directly. Never-
theless, when defining the explicit form of the dissipation,
consistency of the method requires that limDt!0þ

oDtWd

oF
¼ 0.

For convenience, the numerical dissipation Wd has also
been split into a volume part Wd

vol : Rþ ! Rþ and into a
deviatoric part Wd

dev : SLð3;RÞ ! Rþ. The dependence of
the new terms being only to scalar and to symmetric ten-
sors, the second Piola–Kirchhoff stress tensor remains sym-
metric. Since the minimization process is independent on
he, this effective incremental potential can be split into
the volume part DDeff

vol : Rþ ! Rþ and into the deviatoric
part DDeff

dev : SLð3;RÞ ! Rþ, such that

DDeffð~x0;Fð~unþ1
h ; henþ1ÞÞ ¼ DDeff

volðh
enþ1Þ þ DDeff

devðbFnþ1Þ;
ð53Þ

with

DDeff
volðh

enþ1Þ ¼ Uel
volðh

enþ1Þ � Uel
volðh

enÞ
þ DtWd

volðDhe;DtÞ; and ð54Þ

DDeff
devðbFnþ1Þ ¼ min

epnþ1N
½DDdevðbF; ep;NÞ�

þ DtWd
devðDbCel;DtÞ: ð55Þ

3.3. Quasi-incompressible form of the the weak formulation

Now that an effective internal energy increment has
been defined, the volume deformation and the pressure
can be computed as Simo and Taylor [30] did for an
elastic material. A new three-field internal energy
W e

int : Xh � Rþ � Rþ ! R is defined on the time step, such
that
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W e
intð~uh; h

e; peÞ �
Z
Ve
fDDeff~x0;Cð~uh; h

eÞ þ pe½J � he�gdV;

ð56Þ

where pe is the constant thermodynamic force associated to
he. It will be shown that this force is actually the constant
pressure. Let us assume that d~uhðtnÞ ¼ d~uhðtnþ1Þ. Since we
are considering a Galerkin method, the same restrictions
than for the displacements set (39) apply to the virtual dis-
placement, with

Dh � fd~uh 2 Dj½d~uh 2 C0ðVÞ; d~uh 2 PkðVeÞ;
and d~uhðtnÞ ¼ d~uhðtnþ1Þ ¼ 0�g: ð57Þ

Therefore, the discretized form of the weak formulation
(10) is the stationary point of the functional
I : Xh �

Q
eRþ �

Q
eRþ ! R such that

Ið~uh; ðh1; . . .Þ; ðp1; . . .ÞÞ

¼
Z tnþ1

tn

(X
e

Z
Ve

0

½DDeffð~x0;Cð~uh; h
eÞÞ

þ pe½J � he��dV0 �
Z
V0

1

2
q0

_~u2
h þ q0

~b �~uh

� �
dV0

þ
Z

oNV

~T �~uh doV

)
dt: ð58Þ

Since neither K, nor Wext depend on pe, the variational
principle leads to

he ¼ 1

jVe
0j

Z
Ve

0

J dV0 and to ð59Þ

pe ¼ 1

jVe
0j

Z
Ve

0

oDeffð~x0;Fð~u; heÞÞ
ohe dV0; ð60Þ

which gives an explicit dependency on ~u for he and for pe,
where jVej is the volume measure of Ve. The last varia-
tional principle leads to the new weak formulation by using
the relationsZ tnþ1

tn

Z
V0

q0
€~uh � d~uh dV0 dt

¼
Z
V0

q0
_~uh � d~uh dV0

� �tnþ1

tn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

� d
Z tnþ1

tn

Z
V0

1

2
q0

_~u2
h dV0 dt; and ð61Þ

Z tnþ1

tn

Z
V0

½FS� : ~rd~uh dV0 dt

¼
Z tnþ1

tn

Z
V0

oDDeff

oF
: dFdV0 dt

¼ d
Z tnþ1

tn

Z
V0

DDeff dV0 dt: ð62Þ

Indeed, since Gâteau derivatives lead to

oJ
o~u

d~u ¼ J trð ~rd~uÞ and to

oC

o~u
� d~u ¼ 2FT ~rd~uTF� 2

3
C trð ~rd~uÞ; ð63Þ

the new weak formulation resulting from Eq. (58) now
states as finding ~uh 2 Xh such thatX

e

Z
Ve

0

F 2J�
2
3DEV

oDDeff

obC
� �

þ peJC�1

� �
: ~r0d~uhdV0

þ
Z
V0

q0
€~uh � d~uh dV0

¼
Z

oNV0

d~uh �~T doV0 þ
Z
V0

q0
~b � d~uh dV0

8d~uh 2 Dh; 8t 2 ½tn; tnþ1�; ð64Þ

where DEVð	Þ ¼ 	 � 1
3
	 : CC�1 is the deviatoric part of a

tensor and where pe appears clearly as the pressure field.
From these definitions, the stress tensor used to compute

the internal forces (43) can be computed as

Snþ1 ¼ Snþ1
dev þ penþ1J nþ1Cnþ1�1

with ð65Þ

pe ¼ oDDeff
vol

oh
; and ð66Þ

Sdev ¼ 2J�
2
3DEV Fpl�1 oUel

dev

obCel
þ Dt

oWd
dev

obCel

� �
Fpl�T

� �
; ð67Þ

where it has been taken into account that, after the minimi-
zation process, the only explicit dependency on F for DDeff

dev

is due to Uel
dev and to Wd

dev.

3.4. Form of the potentials

Apart from convexity requirement, there is no a priori

restriction on the potentials expressions. Nevertheless, in
this work bi-logarithmic expressions are considered for
the elastic energies, leading to

Uel
volðh

eÞ ¼ K0

2
ln2ðheÞ and to Uel

devðbCelÞ ¼ G0

4
k lnðbCelÞk2

:

ð68Þ

In these expressions, K0 and G0 are respectively the initial
bulk and shear modulus. The bi-logarithmic form of the
potentials is particularly well suited to get a closed form
of the minimization process [19,21]. This formalism is com-
pleted by defining the form of the power-law dissipation
and isotropic plastic-hardening, which are respectively

W� ¼
mY �

0
_ep

0

mþ1

_ep

_ep
0

h imþ1
m

if _ep P 0

1 if _ep < 0

8<: and

Upl ¼ rvm
0 ep þ nY 0e

p
0

nþ 1

ep

ep
0

� �nþ1
n

; ð69Þ

where Y �0, Y0, _ep
0, ep

0, m and n are constants and where rvm
0

is the initial yield stress.
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Finally the expressions of the numerical dissipations
considered are

Wd
volðDhe;DtÞ ¼ v

2Dt
o2Uel

volðh
enÞ

ohe2
½henþ1 � hen�2; and ð70Þ

Wd
devðDbCel;DtÞ ¼ v

2Dt
½bCelnþ1 � bCeln � : o

2Uel
devðbCelnÞ

obCelobCel

: ½bCelnþ1 � bCeln �: ð71Þ

The proposed numerical scheme is thus similar in form to
the addition of an artificial viscosity proportional to Dt

(or inversely proportional to the frequency x in a continu-
ous setting). These specific expressions will ensure verifica-
tion of consistency conditions.

The choice of evaluating the second derivatives in the
previous configuration simplifies the computation of the
analytical stiffness matrix.

This particular choice will lead to a first-order time-inte-
gration scheme, as it will be shown. Parameter v is a user
parameter that controls the numerical dissipation. Simi-
larly, a second-order time integration scheme can be
obtained by evaluating the numerical dissipation at an
intermediate configuration ~u� ¼ ~un

h þ vDtð _~u� � _~un
hÞ. In a

way similar to the one Armero and Romero [26,27] have
proposed for elasto-dynamics, in this formalism, both ~u�

and _~u� constitute new unknowns solved for each elements
in order to enforce second-order accuracy. These develop-
ments are beyond the scope of this work and will be per-
sued in future work.

4. Time integration scheme

The finite-elements discretization combined with the
variational updates formulation presented in Section 3 is
now integrated in time with the EDMC algorithm. It is
demonstrated that, in combination with the EDMC
scheme, the Gonzalez’ expression [11] of the modified sec-
ond Piola–Kirchhoff stress tensor can be used directly from
this incremental functional in order to verify the conserva-
tion laws. The study of the spectral matrix associated to
this time-integration method is also considered.

4.1. The EDMC algorithm

When introducing numerical dissipation in the EMCA,
Armero and Romero [26,27] have avoided bifurcation in
the spectral analysis of the amplification matrix, by consid-
ering velocities dissipation ~vdiss. Therefore, the relations
between positions and velocities and accelerations are given
by a mid-point approximation with

~xnnþ1 ¼~xnn þ Dt
_~xnnþ1 þ _~xnn

2
þ~vnnþ1

2
diss

" #
; and ð72Þ

_~xnnþ1 ¼ _~xnn þ Dt
€~xnnþ1 þ €~xnn

2
: ð73Þ

This relation is a second-order approximation in Dt if
~vdiss ¼ OðDt2Þ and is a first-order approximation if
~vdiss ¼ OðDtÞ. In this work, we use the first-order dissipation
velocities used in [28], which are

~vnnþ1
2

diss ¼ v
k _~xnnþ1k � k _~xlnk
k _~xlnþ1k þ k _~xnnk

_~xnnþ1 þ _~xnn

2
; ð74Þ

where v is a user chosen control parameter. Its interval
range is determined later owing a spectral analysis.

Balance Eq. (41) is discretized in time by

Mnl
€~xln þ €~xlnþ1

2
¼ ~f nnþ1

2

ext �~f
nnþ1

2

int ; ð75Þ

where~f nnþ1
2

ext and~f nnþ1
2

int are approximations of respectively the
external and internal forces designed in a suitable way to
respect the conservation laws. The set of Eqs. (72)–(75) is
solved by a predictor–corrector algorithm, enhanced with
a line-search method, see [28] for details.

The external forces formulation depends on the applied
loads and is beyond the scope of this paper. In the context
of Energy–Momentum Conserving Algorithm, Gonzalez
[11] proposed a new expression of the internal forces.
Given the incremental updates variational formulation
developed in the previous section, Gonzalez expression
can be directly applied, leading to

~f
nnþ1

2
int ¼

Z
V0

Fnþ1 þ Fn

2
½S�nþ

1
2

dev þ 2p�nþ
1
2dG�~Dn

� �
dV0; ð76Þ

where S�dev is the consistent deviatoric stress tensor, p* is the
consistent pressure and dG is the modified differentiation of
J by C. This last term is defined by

dG ¼ oJ nþ1
2

oC
þ

J nþ1 � J n � oJnþ1
2

oC
: DC

kDCk2

24 35DC with ð77Þ

oJ nþ1
2

oC
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

Cnþ1 þ Cn

2

� �s
Cnþ1 þ Cn

2

� ��1

; and ð78Þ

DC ¼ Cnþ1 � Cn: ð79Þ

Instead of using directly Eq. (66), the modified pressure is
computed as

p�
nþ1

2 ¼ oDDeff
vol

ohe

� �nþ1
2

þ
DDeff

volðh
enþ1

; henÞ � oDDeff
vol

ohe

h inþ1
2

Dhe

Dhe2 Dhe; with ð80Þ

oDDeff
vol

ohe

� �nþ1
2

¼ oUel
vol

ohe
henþ1 þ hen

2

 !
þ Dt

oWd
vol

oDhe
Dhe

2
;Dt

� �
;

and ð81Þ

Dhe ¼ henþ1 � hen
: ð82Þ

Similarly, Eq. (67) becomes
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S�
nþ1

2

dev ¼ 2
oDDeff

dev

oC

� �nþ1
2

þ 2
DDeff

devðbCnþ1; bCnÞ � oDDeff
dev

oC

h inþ1
2

: DC

kDCk2
DC; with

ð83Þ

oDDeff
dev

oC

� �nþ1
2

¼ ðJ nþ1
2Þ�

2
3DEV ðFplnþ1

2Þ�1 oUel
dev

obCel
ðbCel

nþ1
2Þ

��
þ Dt

oWd
dev

obCel
ðbCel

nþ1
2 � bCeln ;DtÞ

�
ðFplnþ1

2Þ�T

�
;

ð84Þ

and DC ¼ Cnþ1 � Cn: ð85Þ
In relation (84), J nþ1

2 ¼ detðCnþ1þCn

2
Þ, while terms Fplnþ1

2, andbCel
nþ1

2 result from the minimization of DD, Eq. (50), with
the input tensor Cnþ1þCn

2
.

Let us note that since the numerical dissipation is intro-
duced into the effective potential, the approximations

p� ’ ½oDDeff
vol

ohe �nþ
1
2 and S�dev ’ ½

oDDeff
dev

oC
�nþ

1
2 are exact to the first-

order as it was demonstrated by Gonzalez [11]. This would
not be the case if the numerical dissipation was intro-
duced only in the correcting terms. In such a case the
correcting terms would be of the same order as the main
terms.

Moreover, this formulation respects the conservation
laws established in Section 2.4. Indeed, since

P
n
~Dn ¼ 0,

applying a summation on the nodes in Eq. (75), and using
Eq. (73) leads toX

n

Mnl _~xlnþ1 �
X

n

Mnl _~xln ¼ Dt
X

n

~f nnþ1
2

ext ; ð86Þ

which is the discrete expression of the law (33).
Using Eqs. (72)–(74), the vector product of Eq. (75) with

~xnnþ1
2 ¼ ~xnnþ1þ~xnn

2
leads to

Mnl~xnnþ1 ^ _~xlnþ1 �Mnl~xnn ^ _~xln

¼ Dt~xnnþ1
2 ^ ½~f nnþ1

2

ext �~f
nnþ1

2

int �: ð87Þ

But if e is the permutation tensor, and since dG and Sdev are
symmetric, one has

~xnnþ1
2 ^~f nnþ1

2

int ¼
Z
V0

(
e :

Fnþ1 þ Fn

2
½S�

nþ1
2

dev

�

þ 2p�
nþ1

2 dG�F
nþ1T þ FnT

2

#)
dV0 ¼~0; ð88Þ

and Eq. (87) can be rewritten

Mnl~xnnþ1 ^ _~xlnþ1 �Mnl~xnn ^ _~xln ¼ Dt~xnnþ1
2 ^~f nnþ1

2

ext ; ð89Þ
which is the discrete expression of the law (34). Similarly,
using Eqs. (72) and (73), the scalar product of Eq. (75) with
~xnnþ1 �~xnn

leads to

1

2
Mnl _~xnnþ1 � _~xlnþ1 � 1

2
Mnl _~xnn � _~xln þMnl½~xlnþ1 �~xln � �~vnnþ1

2

diss

¼ ½~f nnþ1
2

ext �~f
nnþ1

2

int � � ½~xnnþ1 �~xnn �: ð90Þ

Regarding the dissipation velocities, Eq. (74) leads to

Mnl½~xlnþ1 �~xln � �~vnnþ1
2

diss ’
v
2

mn½k _~xnnþ1k � k _~xnnk�2

¼ DW K
diss; ð91Þ

where we have assumed a lumped mass matrix
Mnl = mndnl (no sum on n), and where DW K

diss P 0 is the
part of the numerical dissipation Wdiss coming from the
dissipation velocities.

On the other hand, combination of Eqs. (76)–(85) gives

~f nnþ1
2

int � ½~xnnþ1 �~xnn � ¼
Z
V0

½S�
nþ1

2

dev þ 2p�nþ1
2dG� : DC

2

� �
dV0

¼
Z
V0

fDDeff
devðbCnþ1; bCnÞ

þ p�nþ1
2½J nþ1 � J n�gdV0: ð92Þ

Introducing the definition (59) in these latest results and
remembering that p* is constant on Ve allows to rewrite
this last equation as

W nþ1
int � W n

int ¼
Z
V0

DDeff
devðbCnþ1; bCnÞdV0

þ
X

e

p�nþ1
2

Z
Ve

0

½J nþ1 � J n�dV0

¼
Z
V0

fDDeff
devðbCnþ1; bCnÞ

þ DDeff
volðh

enþ1; henÞgdV0: ð93Þ

Time discretization of Eqs. (32), (36) and (37) reads

Unþ1
el � U n

el ¼
Z
V0

fUel
volðh

enþ1Þ þ Uel
devðbCelnþ1Þ

� Uel
volðh

enÞ � Uel
devðbCelnÞgdV0; ð94Þ

W W nþ1

diss � W W n

diss ¼ Dt
Z
V0

fWd
volðh

enþ1 � hen;DtÞ

þWd
devðbCelnþ1 � bCeln ;DtÞgdV0; and

ð95Þ

Unþ1
i � U n

i ¼
Z
V0

UplðFplnþ1
; epnþ1Þ � UplðFpln; e pnÞ

�
þ DtW�

Dep

Dt

� ��
dV0: ð96Þ

Using these last relations and Eqs. (53)–(55), the work
increment of the internal forces (93) can be rewritten

W nþ1
int � W n

int ¼ U nþ1
el � U n

el þ W W nþ1

diss � W W n

diss þ U nþ1
i � Un

i;

ð97Þ
and, therefore, Eq. (90) becomes

DK þ DU el ¼ DW ext � DU i � DW diss; ð98Þ
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where W diss ¼ W K
diss þ W W

diss is the numerical dissipation and

where K ¼ 1
2
Mnl _~xn � _~xl is the discretized kinetic energy.

Relation (98) is the discrete form of the energy conserva-
tion (38), which demonstrates the consistency of the pro-
posed formulation.

Let us notice that the irreversible energy (96) dissipated
during the time step does not exactly correspond to the
work accomplished by the irreversible part of the stress ten-
sor. Indeed, the Perzyna dissipation W* (69) leads toZ tnþ1

tn

oW�ð _e pÞ
oep

dt 6¼ DtW�
Dep

Dt

� �
; ð99Þ

unless m!1, see Eq. (96). Moreover, the correcting term
of S�dev (83) is no longer second order compared to the main
derivation ½oDD eff

oC
�nþ

1
2. Nevertheless, since this dissipation of

energy is positive, the G-stability of the method is still en-
sured (the energy of the system K + Uel is either constant or
decreasing). In the present work we will assume that there
is no viscous dissipation, and since the numerical dissipa-
tion Wd does not suffer from this behavior, the formulation
remains consistent and the correcting term is still second
order compared to the main derivation.

To solve efficiently a time increment with the predictor–
corrector scheme developed for EDMC algorithms [28], the
consistent stiffness matrix associated to the internal forces
formulation (76) has to be defined in a closed form. This
is done in Appendix A.

4.2. Numerical properties

In this section we demonstrate the first-order conver-
gence of the time integration. Toward this end, the tensile
test of elongation x of an elastic beam (length l, area A,
Young’s modulus E and Poisson ratio m) is considered.
The deformation gradient associated to this test is

F ¼
1þ x

l 0 0

0 1� m x
l 0

0 0 1� m x
l

0B@
1CA: ð100Þ

As it is shown in Appendix B, the internal forces (76) cor-
responding to a deformation from xn to xn+1 reads

~f nnþ1
2

int ¼
EA
l

1þ v xnþ1�xn

xnþ1þxn

h i
xnþxnþ1

2

0

0

0BB@
1CCA: ð101Þ

Assuming that the velocity keeps the same direction during
a time step, the dissipation velocity (74) is rewritten

v
nþ1

2
diss ¼ v

_xnþ1 � _xn

_xnþ1 þ _xn

_xnþ1 þ _xn

2
: ð102Þ

If the mass associated to the degree of freedom is m ¼ qAl
2

the frequency of the system is x2 ¼ 2E
qAl2 and the set of

Eqs. (72)–(75) are rewritten

xnþ1 ¼ xn þ Dt
2

1þ v
_xnþ1 � _xn

_xnþ1 þ _xn

� �
½ _xnþ1 þ _xn�; ð103Þ

_xnþ1 ¼ _xn þ Dt
2
½€xnþ1 þ €xn�; ð104Þ

€xnþ1 ¼ �€xn � x2 1þ v
xnþ1 � xn

xnþ1 þ xn

� �
½xnþ1 þ xn�: ð105Þ

This system of equations is equivalent to the one obtained
by Armero and Romero [26] for a spring model and leads
to an error Xd on the adimensional frequency X = xDt and
to an error nd on the damping ratio, that are respectively

Xd ¼ X� 1

4
v2 þ 1

3

� �
X3 þ OðX4Þ; and ð106Þ

nd ¼
v
2
Xþ OðX2Þ: ð107Þ

Due to the presence of the dissipation parameter v, the
scheme is first-order accurate. Moreover the spectral radius
qd of the amplification matrix associated to this scheme is

qdðXÞ ¼
1

1þ X2

4
½1þ v�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

4
½1� v2�

� �2

þ X2

s
: ð108Þ

If 0 6 v 6 1 the spectral radius is always lower than unity
and is decreasing with X, demonstrating the absence of
bifurcation. It is close to unity for the low frequencies
and tends to its minimal value q1 ¼ 1�v

1þv for the high
frequencies.

5. Numerical examples

The accuracy of the developed scheme is demonstrated
by considering several examples involving highly non-lin-
ear behavior. These non-linearities are either geometrical,
or material due to the large deformation or the elasto-plas-
tic behavior.

5.1. Tumbling L-shaped block

This example is particularly well suited to verify the con-
servation of the angular momentum and energy. It consists
into an elasto-plastic L-shaped block subjected to an initial
loading. Its geometry is described in Fig. 1 and the material
properties are reported in Table 1. On face ‘a’, the forces,
depending on time t, applied at every nodes, are

~f a
extðtÞ ¼

4

8

12

0B@
1CAN s�1 �

t 0 6 t 6 2:5 s

ð5� tÞ 2:5 < t 6 5 s

�
; ð109Þ

while the opposite forces are applied on face ‘b’ ð~f b
extðtÞ ¼

�~f a
extðtÞÞ. After 5 s, the forces are relaxed and the block

starts tumbling.
Let us solve this problem with the developed EDMC

algorithm. A spectral radius q1 = 0.7 (leading to
v ’ 0.17) is considered, while a first simulation with a time
step Dt = 0.25 s is performed. Fig. 2 shows some snapshots
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of the simulation. It can be seen that the block is plastically
and elastically deformed under the initial loads, and that it
enters into rotation. Particularly, the plastic deformations

do not increase indefinitely with time, as it would be the
case if instabilities occured. Time evolution of the angular
momenta is illustrated in Fig. 3a and it appears that they
are preserved after the initial loads are released, in accor-
dance with the theory. In the same way, the energy conser-
vation is illustrated in Fig. 3b. It can be seen that the total
energy of the system (K + Uel + Ui) decreases from the ini-
tial energy introduced in the system by the external forces,
to a constant corresponding to the sum of the kinetic

3
6

7

3

10

x

y

z

Face a

Face

Fig. 1. Geometry of the L-shaped block (m).

Table 1
Material properties for the tumbling of a L-shaped block

Property Value

Density q = 100 kg m�3

Bulk modulus K0 = 5000 N m�2

Shear modulus G0 = 1000 N m�2

Yield stress rvm
0 ¼ 300 N m�2

Hardening exponent n = 1
Linear hardening h ¼ Y 0=e

p
0 ¼ 400 N m�2

Perzyna exponent m =1
Perzyna hardening Y �0 ¼ 0

Fig. 2. Snapshots of deformed geometry and equivalent plastic strain for the tumbling L-shaped block.
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energy of the rigid rotation with the energy plastically dis-
sipated. Similarly, time evolution of the kinetic energy K

and of the elastic energy Uel exhibit a decrease towards
the rigid motion energy and towards zero respectively.
The annihilation of the oscillations with time is clearly
illustrated in this picture. Influence of the time step size is
shown in Fig. 4. The time step considered increased from
0.25 s to 1 s. For this last case, the Newmark time-integra-
tion scheme leading to the same spectral radius q1 is also
considered. Regarding the EDMC algorithm, if the time
step size increases, the elastic energy of the system is dissi-
pated faster (Fig. 4a), and the total energy of the system
tends toward the same rigid body motion energy. This
behavior is in accordance with the theory, since a larger
time step size correspond to a larger adimensional fre-
quency X and therefore to a larger damping ratio (107).
The asymptotic behavior of the Newmark simulation is
not the rigid rotation of the system but corresponds to a
total dissipation of the energy. Moreover, this dissipation
is much more important than the dissipation of the EDMC
algorithm. The resulting error in the plastically dissipated
energy (Fig. 4b) is therefore more important for the New-
mark algorithm (>400%) than for the EDMC scheme
(25%), when a time step size of 1 s instead of 0.25 s is
considered.
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Fig. 3. Verification of the conservation laws for the tumbling of a L-shaped block.
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Fig. 4. Influence of the time step size on the energy of the system for the tumbling of a L-shaped block.
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5.2. Taylor’s bar impact

This test has for purpose to demonstrate the accuracy of
the scheme when large plastic deformations are involved.

The bar described in Fig. 5 impacts a rigid wall with an ini-
tial velocity of 227 m s�1. Material properties are reported
in Table 2.

First, this simulation is solved with a time step
Dt = 0.4 ls, and solutions obtained with the EDMC algo-
rithm for different values of the spectral radius are com-
pared to the solutions obtained with the Newmark [1]
and the Chung–Hulbert [24] time integration algorithms.
The importance of considering the elastic deformation
when computing the dissipation potential Wd

dev (71) is also
illustrated by solving this test while considering W d

dev ¼
v

2Dt D
bC :

o2Uel
dev

obCelobCel
: DbC . This last case is referenced to as mod-

ified EDMC. Final deformations are illustrated in Fig. 6,
and final geometries are reported in Table 3. All the simu-
lations give the same solution within 5% error, except the

Table 2
Material properties for the Taylor’s impact test

Property Value

Density q = 8930 kg m�3

Bulk modulus K0 = 130,000 N mm�2

Shear modulus G0 = 43,333 N mm�2

Yield stress rvm
0 ¼ 400 N mm�2

Hardening exponent n = 1
Hardening h ¼ Y 0=e

p
0 ¼ 100 N mm�2

Perzyna exponent m =1
Perzyna hardening Y �0 ¼ 0

Fig. 6. Comparison of the final equivalent plastic strain (t = 80 ls, Dt = 0.4 ls) for Taylor’s bar impact using: (a)–(c) EDMC scheme with a spectral radius
evolving from q1 = 0.9 to q1 = 0.65; (d) EDMC scheme but with the numerical dissipation Wd

dev considering the total deformations instead of the elastic
ones as in Eq. (71); (e) second-order Chung–Hulbert time integration scheme; (f) first-order Newmark time-integration scheme.
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modified EDMC one, which leads to a different solution.
This demonstrates the accuracy of the EDMC algorithms
when the dissipation potential (71) is considered.

The order of convergence is studied by considering the
plastically dissipated energy Ui at the end of simulation,
for different time step sizes. These energies are reported
in Fig. 7a, showing that almost the whole initial kinetic
energy has been dissipated by plasticity. All the schemes
lead to a similar solution, whatever the time step size.
The corresponding errors are reported in Fig. 7b. All the

schemes are first-order accurate. This is in accordance with
the theory for the EDMC and for the Newmark algo-
rithms, but in contradiction to the theory for the Chung–
Hulbert scheme. This contradiction is justified by the fact
that the theoretical analysis was assuming a linear behav-
ior, which is not the case in the present simulation.

5.3. Lateral impact of a square tube

The purpose of this example is to emphasize the robust-
ness of the scheme by considering a more elaborated
benchmark. It consists of the side impact of the square tube
illustrated in Fig. 8, on a rigid cylindrical punch. Taking
advantage of the symmetry of the problem, only one fourth
of the structure is simulated, with appropriate boundary
conditions on the symmetry sides. The tube is discretized
with 30 elements on its half length, with a non-uniform dis-
tribution (elements close to the punch are three times smal-
ler than elements on the other extremity), with 15 elements
on its height (out of the curved corners) and with 5
elements on each corner curves. The tube is made of
Aluminum (properties reported in Table 4), modeled by a

Table 3
Final configuration (t = 80 ls, Dt = 0.4 ls) for the Taylor’s impact test

Scheme Max
ep

Radius
(mm)

Length
(mm)

EDMC; Dt = 0.4; q1 = 0.9 2.69 6.87 21.46
EDMC; Dt = 0.4; q1 = 0.7 2.76 6.91 21.50
EDMC; Dt = 0.4; q1 = 0.65 2.77 6.91 21.51
Modified EDMC; Dt = 0.4;

q1 = 0.7
1.63 5.78 31.45

CH; Dt = 0.4; q1 = 0.7 2.79 6.91 21.51
Newmark; Dt = 0.4; q1 = 0.7 2.79 6.85 21.56
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Fig. 7. Plastically dissipated energy for the Taylor’s impact test.

Fig. 8. Geometry of the square tube lateral impact test (mm).
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saturated isotropic hardening law, rvm ¼ rvm
0 þ ½r1 � rvm

0 �
½1� exp�heep � þ hep, which corresponds to the plastic dissi-
pation potential

Upl ¼ rvm
0 ep þ ½r1 � rvm

0 � ep þ exp�heep

he

� �
þ h

2
ep2: ð110Þ

The mass of the tube can be increased by adding point
masses at each extremity in order to represent the inertia

of the whole structure (vehicle, e.g.). Two cases are consid-
ered, without this addition of mass and with an addition of
0.02 kg at each extremity of the complete tube. The tube
and the masses have an initial velocity of 50 m s�1. The
EDMC algorithm developed is used with the parameter
q1 = 0.8 while contact interactions are treated using the
method proposed by Armero and Pet}ocz [12], see also
[31] for numerical implementation. Time step size is
automatically computed using the method proposed in
[32,33].

Snapshots of these simulations at time t = 1 ms can be
found in Fig. 9. When additional mass is considered, the
initial kinetic energy is multiplied by two and the resulting
deformations are more important. In particular the two
sides of the tube collapse and enter into contact together,
contrarily to the case without additional mass.

Let us now detail the simulation without additional
mass. At time t = 0.5 ms the tube is completely crushed
against the punch, and the remaining kinetic energy K is
close to zero, see Fig. 10a. Between time t = 0.5 ms and
time t = 1 ms the tube rebounds. This rebound occurs since

Table 4
Material properties for the square-tube lateral impact test

Property Value

Density q = 2700 kg m�3

Bulk modulus K0 = 59167 N mm�2

Shear modulus G0 = 27308 N mm�2

Yield stress rvm
0 ¼ 200 N mm�2

Saturated yield stress r1 = 211.64 N mm�2

Exponential hardening parameter he = 100
Linear hardening parameter h = 209
Perzyna exponent m =1
Perzyna hardening Y �0 ¼ 0

Fig. 9. Snapshots of deformed geometry and equivalent plastic strain for the side impact of square tube simulation at time t = 1 ms: (a) when no
additional masses are considered and (b) with an additional mass of 0.02 kg added on each extremity (of the full square tube).
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the reversible stored energy Uel can be transformed into
kinetic energy K. This transfer can be observed in
Fig. 10a. It is also obvious that the numerical oscillations
are annihilated by the numerical dissipation, which allows
the simulation to simulate the rebound. The contact
energy, which is defined by the work of the contact forces,
remains negative during the simulation (Fig. 10b). This
ensures the stability of the time integration since no addi-
tional energy is introduced in the system. Since this contact
energy remains negligible compared to the initial kinetic
energy (less than 1%), accuracy is guaranteed.

Regarding the case where additional masses are consid-
ered, the time evolutions of these energies are represented
in Fig. 11. It can be seen that after 1 ms the remaining
kinetic energy K of the system is equal to about 15% of
the initial kinetic energy. The tube is wrapped around the
punch in such a way that the central part has already
rebound while the extremity is still moving forward. Con-
trarily to the previous case, the tube continues deforming

after 1 ms. Snapshots of this simulation at time t = 2 ms,
when the tube has rebounded are reported in Fig. 12.

6. Conclusions

In this paper a new Energy-Dissipative Momentum-
Conserving time integration algorithm is proposed for
non-linear elasto-plastic dynamics.

This algorithm is based on an incremental variational
updates formulation of the elasto-plastic behavior. Owing
to this formulation, an effective stress potential can always
be defined, even when irreversible deformations occur. The
main originality of this paper is to add a dissipative func-
tion to this incremental potential, which leads to a new def-
inition of a potential for the system.

From this potential, the internal forces expression
developed by Gonzalez [11] to integrate in time the lin-
ear momentum equations, in such a way that the energy
of the system is preserved, can directly be applied. The
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Fig. 11. Time evolution of the energies in play when additional masses are considered.

Fig. 12. Snapshots and equivalent plastic strain for the side impact of square tube simulation at time t = 2 ms with an additional mass of 0.02 kg added on
each extremity (of the full square tube): (a) 1/4 of the tube is represented and (b) full view of the tube is represented.
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introduction of the dissipative function in this potential
does not only lead to a conserving algorithm for elasto-
plastic behavior, but also introduce numerical dissipation,
leading to an Energy-Dissipative Momentum-Conserving
algorithm. As proposed by Armero and Romero [26,27],
a dissipation velocity is also introduced to avoid bifurca-
tion in the spectral properties. The resulting algorithm is
first-order accurate, verifies the conservation of linear and
angular momentum and ensures that the numerical dissipa-
tion is always positive.

All these properties are verified on numerical examples.
The dynamics of a tumbling block is studied, and it is
shown that the angular momenta are conserved, contrarily
to Newmark-based time integration algorithms, leading to
a better accuracy on the evaluation of the plastic deforma-
tion. An impact test also demonstrates the accuracy and
robustness of the algorithm when large plastic deforma-
tions occur.

Appendix A. Stiffness matrix

Let the consistent tangent stiffness matrix K associated
to the internal forces (76) be decomposed in the following
way

Knl � o~f n
int

o~xl
¼ Knl

geo þ Knl
vol þ Knl

dev; ðA:1Þ

with respectively

Knl
geo ¼

Z
V0

1

2

oFnþ1

o~xl
½S�dev þ 2p�dG�~Dn

� �
dV0; ðA:2Þ

Knl
dev ¼

Z
V0

Fnþ1 þ Fn

2

oS�dev

o~xl
~Dn

� �
dV0; ðA:3Þ

Knl
vol ¼

Z
V0

½Fnþ1 þ Fn� op�dG

o~xl
~Dn

� �
dV0; ðA:4Þ

the geometrical part, the deviatoric part and the volume
part. In these expressions the derivation is with respect to
~xnþ1 but the superscript n + 1 has been omitted for clarity
purpose.

The following straightforward results will be used to
establish the stiffness component:

oFij

o~xl
k

¼ ~Dl
j dik;

oCij

o~xl
k

¼ ½dliFkj þ Fkidlj�~Dl
l

okDCk2

oC
¼ 2DC

and
o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p
oC

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p
C�T: ðA:5Þ

A.1. Geometrical part

Using relations (A.5), the geometrical part (A.2) can be
computed as

Knl
geo ¼

Z
V0

I

2
~Dl � ½S�dev þ 2p�dG� � ~Dn

� �
dV0; ðA:6Þ

with I the unity tensor.

A.2. Volume part

The volume part is decomposed into two terms: the first
one [Kvol]

1 results from the differentiation of the constant
pressure (over the element), and the second one [Kvol]

2

results from the differentiation of dG.
Using (59), the first contribution states

½Knl
vol�

1
ik ¼

Z
V0

Fnþ1 þ Fn

2
dG

� �
ij

~Dn
j

o2p�

ohe
ohe

o~xl
k

( )
dV0

¼
Z
V0

~Dn
j

Fnþ1 þ Fn

2
dG

� �
ij

(

� dkl
o2p�

ohe
1

Ve
0

Z
Ve

0

fJFnþ1�T~Dlgl dV0

)
dV0;

ðA:7Þ

with, using Eq. (80),

o2p�

ohe ¼

o2½Uel
vol
þDtWd

vol
�

ohe2
henþ1þhen

2


 �
if Dhe ! 0

2
Dhe

o½Uel
vol
þDtWd

vol
�

ohe ðhenþ1Þ�
2

Dhe
Uel

vol
ðhenþ1Þ�Uel

vol
ðhenÞ�DtWd

vol
ðDheÞ

Dhe if Dhe 6¼ 0:

8>>>><>>>>:
ðA:8Þ

Using Eq. (A.5), the second contribution is

½Knl
vol�

2
ik ¼

Z
V0

Fnþ1
ir þ Fn

ir

2
2p�

odGrj

o~xl
k

~Dn
j

� �
dV0

¼
Z
V0

f~Dn
j ½H vol�ijkl

~Dl
l gdV0; ðA:9Þ

with the fourth order tensor term

½Hvol�ijkl ¼ 4p�
Fnþ1

ir þ Fn
ir

2

odGrj

oCml
Fnþ1

km : ðA:10Þ

The missing term can be computed by using Eqs. (A.5) and
(77). Indeed, one has

odG

oC
¼ 1

2
I� DC
 DC

kDCk2

" #
:
o

2J nþ1
2

oC2

þ J nþ1

2

DC
 Cnþ1�1

kDCk2
�

DC
 oJnþ1
2

oC

kDCk2

þ
DJ � oJnþ1

2

oC
: DC

kDCk2

24 35 I� 2
DC
 DC

kDCk2

" #
; ðA:11Þ

with

o2J nþ1
2

oC2
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCnþ1

2Þ
q

1

2
Cnþ1

2
�1

 Cnþ1

2
�1
�I

C
nþ1

2
�1

� �
:

ðA:12Þ
In this last expression Cnþ1

2 ¼ Cnþ1þCn

2
and ½IA�ijkl ¼

1
2
AikAjl þ 1

2
AilAjk.
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A.3. Deviatoric part

Owing to Eq. (A.5), the deviatoric term becomes

½Knl
dev�

1
ik ¼

Z
V0

Fnþ1
ir þ Fn

ir

2

oS�devrj

o~xl
k

~Dn
j

� �
dV0

¼
Z
V0

f~Dn
j ½Hdev�ijkl

~Dl
l gdV0; ðA:13Þ

with

½Hdev�ijkl ¼
Fnþ1

ir þ Fn
ir

2
2
oS�devrj

Cml
Fnþ1

km : ðA:14Þ

Using relations (83), the derivation of the consistent devia-
toric stress can be evaluated as

2
oS�dev

oC
¼ 1

2
I� DC
 DC

kDCk2

" #
: 4

d

dCnþ1
2

oDDeff
dev

oC

� �nþ1
2

þ DC

kDCk2

 4

dDDeff
devðbCnþ1; bCnÞ

dCnþ1

� DC

kDCk2

 4

oDDeff
dev

oC

� �nþ1
2

þ 4
DDeff

devðbCnþ1; bCnÞ � oDDeff
dev

oC

h inþ1
2

: DC

kDCk2

264
375

� I� 2
DC
 DC

kDCk2

" #
: ðA:15Þ

In this expression, differentiation with symbol d is used in-
stead of o because the minimum value of DD depends on C.
Moreover, exponent nþ 1

2
refers to values computed for

Cnþ1þCn

2
. Material tensor M ¼ 4 d

dC
nþ1

2
½oDD eff

dev

oC
�nþ

1
2 can be

decomposed into

M ¼ detðCnþ1
2Þ�

2
3 Cnþ1

2 þ 4

3
IbC�1

� 1

3
bC�1 
 bC�1

� �nþ1
2

"

� Fpl�1 o½Uel
dev þ DtWd

dev�
obCel

Fpl�T
: bC� �nþ1

2

� 4

3
bC�1 
 oDDeff

dev

oC

� �nþ1
2

þ oDDeff
dev

oC

� �nþ1
2


 bC�1

" #nþ1
2
35;

ðA:16Þ

with

C ¼ do4DDeff
dev

dbCobC � 1

3
bC�1 
 bC :

do4DDeff
dev

d bCobC
� �

� 1

3

do4DDeff
dev

dbCobC : bC� �

 bC�1

þ 1

9
bC :

do4DDeff
dev

dbCobC : bC� �bC�1 
 bC�1: ðA:17Þ

The first total derivative 4
dDDeff

dev
ðbCnþ1;bCnÞ

dCnþ1 is given by

dDDeff
devðbCnþ1; bCnÞ

dCnþ1
¼ J nþ1�2

3DEV
dDDeff

devðbCnþ1; bCnÞ
dbC

!
;

ðA:18Þ
with

dDDeff
dev

dbC ¼ oDDdev

obC þ oDD dev

oep

oep

obC
þ oDDdev

oN
:
oN

obC þ oDtWd
dev

obCel
:

dbCel

dbC : ðA:19Þ

Some terms of this relation depend on the choice of the
potentials and will be given in the logarithm case. Never-
theless, in the general case, one has

dbCel

dbC ¼ dFpl�T

dbC bCFpl�1 þI
Fpl�T þ Fpl�T bC dFpl�1

dbC ; with

ðA:20Þ

dFpl�1

ij

dbCkl

¼
oFpl�1

ij

oep

oep

obCkl

þ
oFpl�1

ij

oNmn

oNmn

obCkl

¼ �Fpl�1

im Nmj
oep

obCkl

� Fpl�1

ip Dexp
pqmn½F

plnFpl�1�qj

oNmn

obCkl

;

ðA:21Þ

where Eq. (47) has been used, and where Dexp ¼
o expðDepNÞ=oN is computed using the spectral decomposi-
tion. Therefore Eq. (A.19) is rewritten

dDDeff
dev

dbC ¼ Fpl�1 oUel
dev

obCel
Fpl�T

þ oDD dev

oN
:
oN

obC þ oDtWd
dev

obCel
:

dbCel

dbC ; ðA:22Þ

oDDdev

oN
¼ � Fpl�1 oUel

dev

obCel
Fpl�T

� �
: ½FplT bCelDexpFpln

T

�

� Fpl�1 oU el
dev

obCel
Fpl�T

� �
: ½FplT bCelDexpFpln

T

�T;

ðA:23Þ

since oDDdev

oep ¼ 0 (due to the minimization process, but
oDDdev

oN
6¼ 0, since there are constrains on N).

The second total derivative
do4DDeff

dev

dbCobC is obtained by using
the same method, leading to

doDDeff
dev

dbCobC ¼ o2Uel
dev

obCobC þ 1

2

o2Uel
dev

oepobC 
 oep

obC þ 1

2

oep

obC 
 o2Uel
dev

oepobC
þ 1

2

o
2Uel

dev

oNobC :
oN

obC þ 1

2

oN

obC
� �TT

:
o

2Uel
dev

oNobC
� �TT

þ Fpl�1
Dt

o2Wd
dev

obCelobCel
Fpl�T

:
obCel

obC
þ Dt

oFpl�1

obC oWd
dev

obCel
Fpl�T þ DtFpl�1 oWd

dev

obCel

oFpl�T

obC ;

ðA:24Þ
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where HTT
ijkl ¼Hklij, and where Eqs. (A.20) and (A.21) de-

fine the derivation of elastic and plastic tensors. The expli-
cit derivations of the elastic potential can be evaluated
using (47), as being

o2Uel
dev

obCobC ¼ Fpl�1
Fpl�1 o2Uel

dev

obCelobCel
Fpl�1

Fpl�1
; ðA:25Þ

o2Uel
dev

oe pobC ¼ �Fpl�1
N

oUel
dev

obCel
Fpl�T � Fpl�1 oUel

dev

obCel
NFpl�T

� o2Uel
dev

obCobC : ½FplT bCelNFpl þ FplTNbCelFpl�; ðA:26Þ

o
2Uel

dev

oNobC ¼ �Fpl�1
DexpFpln

T

Fpl�1 oUel
dev

obCel
Fpl�T

� Fpl�1 oU el
dev

obCel
Fpl�T½Fpl�1

DexpFpln
T

�T

� o
2Uel

dev

obCobC : ½FplT bCelDexpFpln
T

þ ½FplT bCelDexpFpln
T

�T�:

ðA:27Þ

At this point, the general form of the stiffness matrix is de-

fined. The missing terms (
oUel

vol

ohe ,
o2Uel

vol

ohe2 , Dt
oWd

vol

ohe , Dt
o2Wd

vol

ohe2 for the

volume part and
oUel

dev

obCel
,

o2Uel
dev

obCelobCel
, Dt

oW d
dev

obCel
, Dt

o2Wd
dev

obCelobCel
, oe p

obC and oN

obC
for the deviatoric part) depend on the choice of the
potential.

A.4. Bi-logarithmic potential

In this particular case, the derivation of the elastic
potential are directly deduced from Eq. (68), with

oUel
vol

ohe ¼ K0

lnðheÞ
he ; ðA:28Þ

o2Uel
vol

ohe2
¼ K0

1� lnðheÞ
he2

ðA:29Þ

and
oUel

dev

obCel
,

o2Uel
dev

obCelobCel
are computed using the spectral

decomposition.

Terms resulting from the numerical dissipation are com-
puted from (70), leading to

Dt
oWd

vol

ohe ¼v
o2Uel

volðh
enÞ

ohe2
Dhe; ðA:30Þ

Dt
o

2Wd
vol

ohe2
¼v

o
2Uel

volðh
enÞ

ohe2
; ðA:31Þ

Dt
oWd

dev

obCel
¼v

o2Uel
devðbCelnÞ

obCelobCel
: DbCel; and to ðA:32Þ

Dt
o2Wd

dev

obCelobCel
¼v

o2Uel
devðbCelnÞ

obCelobCel
: ðA:33Þ

Using developments done in [19], the last remaining terms
can be evaluated in the closed-form

oep

obC ¼ 3

2

G0

ð3G0 þ hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln bCpr : ln bCpr

p ln bCpr : Dln ;pr : I
Fpln

�T ;

ðA:34Þ

oN

obC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2 ln bCpr : ln bCpr

s
Dln ;pr : I

Fpln
�T

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2 ln bCpr : ln bCpr

s
ln bCpr 
 ln bCpr : Dln ;pr : I

Fpln
�T ;

ðA:35Þ
where h is the hardening value, bCpr is the elastic predictor

[19], and where Dln; pr ¼ o lnbCpr

obCpr
is computed using the spec-

tral decomposition.

Appendix B. Linearization

Considering the deformation gradient (100), a lineariza-
tion leads to the following deformations,

C ¼ 2F� Iþ O
x2

l2

� �

¼
1þ 2 x

l 0 0
0 1� 2m x

l 0
0 0 1� 2m x

l

0@ 1Aþ O
x2

l2

� �
; ðB:1Þ

J ¼ 1þ x
l
ð1� 2mÞ þ O

x2

l2

� �
; and ðB:2Þ

bC ¼ 1þ 4x
3l ð1þ mÞ 0 0

0 1� 2x
3l ð1þ mÞ 0

0 0 1� 2x
3l ð1þ mÞ

0@ 1A
þ O

x2

l2

� �
:

ðB:3Þ
The modified pressure (80) of the internal forces is there-
fore rewritten

Dhe ¼ ð1� 2mÞ x
nþ1 � xn

l
þ O

x2

l2

� �
; ðB:4Þ

DDeff
vol ¼

K0ð1� 2mÞ2Dx
2l

xnþ1 þ xn

l
þ v

Dx
l

� �
þ O

x3

l3

� �
;

ðB:5Þ

p� ¼ K0ð1� 2mÞ
2

xnþ1 þ xn

l
þ v

Dx
l

� �
þ O

x2

l2

� �
; ðB:6Þ

while the pressure base (77) is rewritten

DC ¼ 2Dx
l

1 0 0

0 �m 0

0 0 �m

0B@
1CAþ O

x2

l2

� �
; ðB:7Þ

oJ nþ1
2

oC
¼ 1

2

1� xnþ1þxn

l
1
2
þ m

� 

0 0

0 1þ xnþ1þxn

2l 0

0 0 1þ xnþ1þxn

2l

0BB@
1CCA

þ O
x2

l2

� �
; ðB:8Þ
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dG ¼ 1

2
Iþ O

x
l


 �
; ðB:9Þ

since
DJ�oJ

nþ1
2

oC
:DC

DC:DC
DC ¼ OðxlÞ.

Concerning the deviatoric part (83), it comes

DDeff
dev ¼

2G0ð1þ mÞ2

3

xnþ12 � xn2

l2
þ v
ðxnþ1 � xnÞ2

l2

!

þ O
x3

l3

� �
;

ðB:10Þ

oDDeff
nþ1

2

dev

obC ¼ G0ð1þ mÞ
3

xnþ1 þ xn

l
þ v

xnþ1 � xn

l

� �

�
1 0 0

0 � 1
2

0

0 0 � 1
2

0B@
1CAþ O

x2

l2

� �
; ðB:11Þ

oDDeff
nþ1

2

dev

oC
¼ G0ð1þ mÞ

3

xnþ1 þ xn

l
þ v

xnþ1 � xn

l

� �

�
1 0 0

0 � 1
2

0

0 0 � 1
2

0B@
1CAþ O

x2

l2

� �
; ðB:12Þ

S�dev ¼
G0ð1þ mÞ

3

xnþ1 þ xn

l
þ v

xnþ1 � xn

l

� � 1 0 0
0 � 1

2
0

0 0 � 1
2

0@ 1A
þ O

x2

l2

� �
;

ðB:13Þ
since

DDeff
dev
�

oDDeff
nþ1

2
dev
oC

:DC

DC:DC
DC ¼ Oðx2

l2Þ.
Using the relations G0 ¼ E

2þ2m and K0 ¼ E
3�6m, and combin-

ing Eqs. (B.6), (B.9) and (B.13) leads to

Fnþ1 þ Fn

2
ðS�dev þ 2p�dGÞ ¼ xnþ1 þ xn

l
þ v

xnþ1 � xn

l

� � E
2

0

0

0B@
1CA

ðB:14Þ
which allows to evaluate the internal forces (101).
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