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A first-order energy-dissipative momentum-conserving scheme for
elasto-plasticity using the variational updates formulation

L. Noels !, L. Stainier?, J.-P. Ponthot

University of Liege, Continuum Mechanics & Thermomechanics, Chemin des Chevreuils 1, B-4000 Liege, Belgium

In a previous paper [L. Noels, L. Stainier, J.-P. Ponthot, An energy momentum conserving algorithm using the variational formula-
tion of visco-plastic updates, Int. J. Numer. Methods Engrg. 65 (2006) 904-942] the authors demonstrated the efficiency of the variational
formulation of elasto-plastic updates to develop energy—momentum conserving time integration algorithms. Indeed, within such a frame-
work, the stress tensor always derives from an incremental potential, even when plastic behavior is considered. Therefore the verification
of the conservation of energy in the non-linear range can easily be demonstrated: the sum of the reversible stored energy and irreversible
dissipated energy exactly corresponds to the work of the external forces applied to the structure. Although this formulation was shown to
be accurate and robust, the introduction of numerical dissipation for high-frequency numerical modes can be necessary to simulate com-
plex phenomena. In this work, we propose a modification of the variational updates framework to introduce this numerical property,
leading to a new energy-dissipative momentum-conserving time-integration algorithm for elasto-plasticity.
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1. Introduction

The time-integration of a finite-element space-discretiza-
tion is commonly achieved by considering one-step finite
difference schemes. These finite difference schemes can be
solved explicitly or implicitly. Both families generally
derive from the Newmark algorithm [1]. The stability of
the Newmark algorithm can be demonstrated for linear
models, while for non-linear models Belytschko and Scho-
eberle [2] proved that the discrete energy, computed from
the work of internal forces and kinetic energy, is bounded

if it remains positive. Nevertheless, in the non-linear range,
the Newmark algorithm leads to a work of internal forces
that is different from the internal energy variation. In this
context, Hughes et al. [3] have proved that the Newmark
algorithm remains physically consistent only for small time
step sizes.

In the past decade, interest in simulating non-linear
dynamics has kept growing, which led to the development
of new time integration algorithms that remain stable in the
non-linear range. Since finite difference schemes are well
suited to integrate finite-element space-discretizations —
they can easily be implemented and are robust - and since
the stability requirement can be achieved only with implicit
algorithms — in the non-linear range even conditional sta-
bility can only be demonstrated for implicit schemes — this
paper focuses on implicit finite difference time integration
algorithms. For completeness, let us note that the proper-
ties of conservation can also be reached by using a Pet-
rov—Galerkin time finite-element [4,5], by wusing an



approximation of the time Galerkin method [6,7], by using
a Runge—Kutta method (e.g. [8]) or even by considering an
approximation of the time discontinuous Galerkin method
[7,9]. Historically, the first finite difference algorithm verify-
ing the conserving properties in the non-linear range is the
“Energy Momentum Conserving Algorithm” or EMCA
proposed by Simo and Tarnow [10]. It consists of a mid-
point scheme with an adequate evaluation of internal
forces. This adequate evaluation was given for a Saint
Venant-Kirchhoff hyperelastic material. A general formu-
lation in term of the second Piola—Kirchhoff stress tensor
was proposed by Gonzalez [11], and is valid for general
hyperelastic materials. In this last formulation, the stress
tensor is decomposed into two parts: the first one is the
derivative of the free energy evaluated for a mid-configura-
tion strain tensor, and the second is a second-order correc-
tion that enforces the exact variation of energy. This
generalization was allowed by the form of the stress tensor
that derives from an internal energy. Actually, verification
of the conservation of the energy requires such a varia-
tional framework. For example, when considering
energy-momentum conserving algorithms applied to
contact interactions, the creation of a contact energy was
proposed by Armero and Petécz [12,13] to ensure the
stability.

An issue when considering plasticity is the absence of an
energy potential from which to derive the stress tensor.
Energy-momentum conserving algorithms were then devel-
oped by Meng and Laursen [14,15] in such a way that the
work of internal forces is dissipative, consistently with plas-
tic behavior. They were also developed by Noels et al.
[16,17] and Armero [18] in such a way that for respectively
hypoelastic and hyperelastic based elasto-plastic materials,
the work of internal forces corresponds to the change of
reversible energy plus the plastically dissipated energy. In
general, the absence of an energy potential leads to a less
elegant mathematical formulation of the problem and can
lead to more complicated formulations of the internal
forces. This is particularly true when considering energy—
momentum conserving algorithms.

In a recent work, the authors [19] proposed to use the
variational updates framework to develop conserving algo-
rithms for elasto-plasticity. This variational constitutive
updates formulation, initially proposed by Radovitzky
and Ortiz [20] and developed by Ortiz and Stainier [21],
has the interesting property that the stress tensor always
derives from an incremental potential, even for elasto-plas-
tic models or visco-elastic models, see Fancello et al. [22].
This variational framework was further extended to the
general thermo-mechanical case by Yang et al. [23]. There-
fore, in such a framework we can use the formulation based
on the second Piola—Kirchhoff stress tensor as proposed by
Gonzalez [11]in a straightforward way. Moreover, the use
of the variational formulation does not lead to any a priori
restrictions on the material laws or parameters, even if in
this paper we focus on elasto-plasticity with isotropic
hardening.

Although recent developments in energy-momentum
conserving algorithms have demonstrated the accuracy of
the methods for non-linear structural dynamics, even for
elasto-plastic behaviors, the solution obtained can be pol-
luted by high-frequency numerical oscillations. These
non-physical modes are also present when time-integrating
with classical Newmark algorithms, and, in this particular
case, are commonly dissipated by introducing numerical
damping, leading to the generalized-o methods [24]. Never-
theless, the unconditional stability of these methods is
guaranteed only for linear systems or asymptotically for
high frequencies in the non-linear range [25]. It then
appears natural to introduce numerical dissipation in the
energy-momentum conserving algorithms, which were
therefore renamed Energy-Dissipative Momentum-Con-
serving (EDMC) algorithms by Armero and Romero
[26,27] who presented the first formulation of this kind
for hyperelastic materials. In the same way, the authors
[28] introduced dissipation for elasto-plastic hypoelastic-
based materials, which allowed the simulations of complex
phenomena such as blade loss in a turbo-engine. The nat-
ural path is then to introduce numerical dissipation into
the conserving formulation based on the variational consti-
tutive updates. Contrarily to previous work in the area, this
dissipation is introduced by adding a dissipative energy to
the potential resulting from the variational updates frame-
work. Therefore, the modification is not only introduced in
the second-order correction of Gonzalez™ stress formula-
tion, but also in the main part computed for the mid-con-
figuration strain tensor, ensuring that the correction of the
stress tensor remains second-order compared to the main
usual contribution, i.e. the stress tensor is equal to the der-
ivation of the energy (main part) corrected by a tensor
which is second order in the deformation increment.

This paper is organized as follow. In Section 2 the equa-
tions governing the continuum problem are described.
Attention is paid to the definition of an effective potential
when plasticity occurs, and how numerical dissipation
can be introduced in the resulting variational formulation.
These equations are then adapted to a finite-element dis-
cretization and to a finite time step increment in Section
3. It is then shown in Section 4 that the proposed varia-
tional formulation naturally leads to an Energy-Dissipative
Momentum-Conserving time integration, for elasto-plastic
behavior. This scheme is obtained by applying directly the
formulation of Gonzalez. The accuracy, robustness and
first-order property of the scheme are therefore demon-
strated in Section 5 by considering numerical examples.

2. Continuous dynamics

In this section we establish the variational formalism of
continuous dynamics, based on constitutive updates for
elasto-plastic behaviors. Moreover, attention is paid to
the introduction of numerical dissipation in this formula-
tion, conservation laws deduced from the resulting weak
formulation are also recalled.



2.1. Notations

Let 7o C R* be the reference configuration (in the
Euclidean space) of the body under study at time ¢ = ¢,.
Given this convention, the material and spatial configura-
tions of this representation are initially identical. From
now on the subscript 0 will refer to the reference configura-
tion. The deformation of this body in the time interval
T = [ty,ty] is defined by the mapping ¢ : 7o x T — ¥,

fE(ﬁ(-i)?ﬁ) (1)

where ¥ and X, are respectively the current and reference
positions. The two-point deformation gradient F: 77y x
7 — GL.(3,R), associated to the mapping, is restricted
to GL, (3,R) the Lie group of invertible, orientation pre-
serving linear transformations in R® characterized by a po-
sitive determinant, and is defined by

&
_6x0

its Jacobian. The Jacobian allows to evaluate the time evo-
lution of the density p : ¥"y x Z — R" by the relation

pJ = pq. (3)

The reference boundary 077 of the body ¥" is oriented by
the unit outward normal 7, and is decomposed into a
Dirichlet part 0p7"y and a Neumann part Oy7 y where
respectively the displacement and surface traction are con-

F = V@, withJ =det(F):7)x 7 — R (2)

strained to ¥ and 7, with
GN“VO N 6,3%0 = [Z) and aN"V() U GDVO = 6“/0 (4)

Given these definitions, the motion of the body $(¢) is de-
fined by the time evolution of the position X: 77 x

g
B

7 — R® in the admissible manifold
X={¢(): 7o x T —1|J > 0%, =} (5)

2.2. Weak formulation

Let ¢ be the Cauchy stress tensor and 5, 7 respectively
the volume forces and surface tractions applied to the
body. Therefore, the continuum linear momentum equilib-
rium is stated (in the current configuration) by

ﬁ p pq_é VX, € Y0, (6)
=7 V¥ €oy7 . (7)

Let us consider the manifold of admissible virtual
displacements

9 ={8p(t): Vo x T — R|[33(1)],,, =0 Vie T
and 8¢ (Xo, 1) = 8p(%0,t,) =0 VZy € ¥}, (8)

let us multiply Eq. (6) by such an admissible displacement
and integrate on the body 7~ and the time interval 7.
When no confusion is possible, in order to simplify the
notations, @(¢) and 8(¢) will be replaced in the equations

by, respectively, ¢ and 8. The weak form of the problem
is then stated as finding @(¢) € Z such that

i . N N
/ {/[p@—v.a—pb].sadw}dt—o V8 € 7,
ty Ve
Vie T. 9)

Using Egs. (2), (3), (5), (7) and (8), integration by parts of
the stress divergence leads to a weak formulation of the
problem stated in the reference configuration, which is
finding @(¢) € Z such that

i . .
/ { / po - 53dY o + / 6F ] : V,56d7
1 70 )

_/ 56 - Tdov o — /pOE-S('p’dV/O}dtzo
o770 7o

Vg €D, Ve, (10)

where T is the surface traction 7 evaluated in the reference
configuration.®

Since we are now referring to the reference configura-
tion, it is natural to use the symmetric second Piola—Kirch-
hoff stress tensor

S=JF'¢F ". (11)

Therefore, owing to the arbitrary nature of 8¢, the weak
form (10) reduces to finding @(¢) € 2" such that

/ Po® - 8PV o + / [FS] : Vod@d7
4 4

"o )

:/ 5<7).?da%)+/ pob - 83d7y Vo € I,
W7o a0
Vte T . (12)

This weak form will be useful to define the finite-elements
formulation. But before proceeding the constitutive behav-
ior linking the deformation gradient to the stress tensor
needs to be defined in order to complete the formalism.

2.3. Variational formulation of the constitutive behavior

In order to relate the stress tensor to a functional, we use
the variational framework of constitutive updates detailed
in [20,21] particularized to elasto-plastic constitutive mod-
els. Toward this end, the strain tensor (2) is multiplicatively
decomposed into a plastic part F* € SL(3,R) and into an
elastic part F € GL. (3, R) as

F = FIF", (13)

with SL(3,R) = {F" € GL(3, R)|[det(F") = 1]}. The plas-
tic deformation gradient can be coupled to internal vari-
ables by defining a flow rule. In the particular case of a
von Mises flow rule, one has

PP — NFP, (14)

3 One has 7do7 :?d@%"o, while Eq. (7) becomes [o'F’TJ] - iy :?,
using Nanson’s formula 7#d07" = JF T, doy .



where ¢ € R, is the equivalent plastic strain rate, and
where N e 4" is the flow direction, with 4" ={N¢€
Sym(3, R)|[tr(N) =0 and N : N = 3/2]}.

It is also assumed that the Helmholtz free energy func-
tion 4:GL,(3,R) xR, x /" — R, can be additively
decomposed into

A(F, ¢, N) = qse'(FFpl’l(sp,N)) + OP(FP' (P, N), eP),  (15)

where ¢ : GL,(3,R) — R is the elastic potential and
o :SL(3,R) x R, — R, is the plastic potential. This
additive decomposition translates the observation that, in
most metals, the plastic work hardening does not influence
the elastic (reversible) properties. In a general way, the
stress tensor S : GL,(3,R) x R, x /" — Sym?(3,R), the
thermodynamic forces T : GL, (3, R) x R, x 4" — GL(3,
R) and Y:GL,(3,R) x Ry x 4/~ — R explicitly derive
from this energy, with respectively
04 04 04

SZZE’ T:_ﬁ and Y:—@, (16)
where the explicit dependency of A on the right Cauchy
strain tensor C = F'F leads to the frame indifference. A
dissipative pseudo-potential ¥ : R, — R, can be associ-
ated to &P such that

o OY()
oy

while its dual part ¥* : R, — R, is obtained by the Legen-
dre-Fenchel transform

(17)

oW (eP)
deP

P*(eP) = sup(YeP — P(Y)) with ¥ = (18)
Y

Convexity of ¥ (or ¥") ensures the positiveness of the dis-

sipation. The physical interpretation of T and Y is given as

follows. Combining Egs. (13)—(16) leads to

o4 _ a¢el el B
S =27 =2F '%FPI . (19)
pl(fpl op
T = F"FS — % —F'FS—T. and (20)
pl pl(cp
Y__@_A ai—w:T:[NFpl]—d)ilp, (21)

oF™ e Oep

where T, is a back-stress tensor and where @ﬂlp depends on
the plastic potential. '

From these general definitions, Ortiz and Stainier [21]
proposed the new three-field functional D : GL,(3,R) x
R, x A" — R defined by

D(F, &, N) = 2—;{ (F— Vb 4+ P (60) = A4 + V' (eP). (22)

The minimization of the power D with respect to & gives
back (18), while minimizing with respect to N corresponds
to constrain N in the direction of the deviatoric stress TF?"
(this corresponds to the principle of maximum plastic dis-
sipation [29]). Moreover, the variation with respect to F
leads to

OD(F, & N) 04
oF  OF
Since these variations of D do respect the prescribed condi-

tions of the constitutive material, a one field functional can
be defined by

FS. (23)

: : o . D (F
D (%), F) = min D(F,&?,N), with S =F! .( ) .
& N oF

(24)

The effective rate potential D" — it has the dimension of a
power — corresponds to the stationary point of the func-
tional D with respect to the internal variables.

The main idea of the present work is to add to this
power a term that will introduce numerical dissipation dur-
ing the time integration. In a general way, we define the
numerical dissipative power ¥ : GL, (3,R) — R, as

pd = pd(C), (25)

which depends on the rate of the elastic deformations. The
plastic deformation used to compute this power is obtained
by the minimization of D. Indeed the minimization process
yields the solution to the constitutive elasto-plastic prob-
lem, and the numerical dissipation should not modify this
solution. This is the reason why the numerical dissipation
is added to the functional after the minimization process
instead of being added to the function to be minimized.
Since the numerical dissipative power depends on the sym-
metric tensor C%, the second Piola-Kirchhoff stress tensor
remains symmetric. So Eq. (24) is rewritten

D™ (%, F) = min[D(F, ¢, N)] + ¥4(C*), with (26)
&P N
off (T
S=F" M. (27)
oF

These expressions define a stress tensor from a functional
form. This resulting stress tensor can be seen as a combina-
tion of two terms: the first term is the derivation of the
functional minimum and verifies the consistency with the
original underlying elasto-dynamics problem (e.g. normal-
ity of the plastic flow, isotropy for isotropic laws, ...),
while the second term is an artificial stress which purpose
is to introduce numerical dissipation during the time incre-
ment scheme. The elastic tensor needed to compute this
second term is obtained from the plastic flow determined
during the minimization process. Consistency of the time
stepping scheme will be ensured providing the form of this
dissipation potential is chosen such that limy,_ o+ % =0,
i.e. the dissipation term should vanish for decreasing time
steps. A specific expression of P9, verifying this condition,
will be given below.

2.4. Laws of conservation

As it is shown in the forthcoming lines, assuming pure
Neumann boundary conditions, the weak formulation



(12) verifies the conservation of the linear momentum
defined by

L= [ pidra: 7~ R (28)
Yo
of the angular momentum defined by

JE/ P A GdY

70

7 — R, (29)

and of the total energy defined by

E=K+Uy:7 —R,, (30)
with respectively
1 .
K;[ S d7, and (31)
70
Ug = / o dy, (32)
70

the kinetic and the reversible stored energy. Indeed, taking
8¢ = ¢ € 9, where ¢ is an arbitrary constant, in Eq. (12)
leads to

If:/ pOBdV0+/ Tdov, Ve, (33)
70 [V

which is the linear momentum conservation law. Similarly,
the choice 8¢ = ¢ A § € &, leads to

—

J:/ po(;j/\Bd%OJr/ @A?dam Vie 7, (34)
70 N o

since S is symmetric, which is the angular momentum con-
servation law. Eventually, the choice 6 = ¢ € Z leads to

1'<+/ Deffdm:/ poaz?dm+/ G- Tdov,
70 70 N0

Vte T, (35)

where W,y is the power of work the external forces applied
to 7. Let us note that D is equal to the power of internal
forces (per unit undeformed volume) under the condition
that ¥" is homogeneous of order one in its arguments,
which is only the case for rate-independent behavior.* This
power can be decomposed into

= Wext

Wi = / DAV = Ug+ Ui+ Wa Vi€, (36)
7
where

WdiSS :/ Wd d’VO al’ld
7o
U, = / DT ¥ iy, (37)
7o

are respectively the numerically dissipated power and the
irreversible power resulting from plastic behavior. Combin-
ing Eqgs. (30), (35) and (37) leads to the conservation of
energy

K+Ug+U + Wy =Wey VEET. (38)

4 Indeed, alsp = ¥* only if ¥" is linear with .

3. Finite-elements discretization and time integration

In order to solve the weak formulation (12), a finite-ele-
ment discretization is introduced. In order to perform the
time integration, the constitutive updates formulation is
adapted to the context of time increments, leading to an
incremental functional. In addition we consider a formula-
tion adapted to a quasi-incompressible constitutive behav-
ior. It is then demonstrated that, in combination with the
Energy-Dissipative ~ Momentum-Conserving (EDMC)
scheme, Gonzalez’ expression [11] of the modified second
Piola—Kirchhoff stress tensor S™ can be used directly from
this incremental functional in order to verify the conserva-
tion laws. The study of the spectral matrix associated to
this time-integration method is also studied.

3.1. Finite element discretization

The body 7" is now discretized into finite-elements 77,
with ¥ = U, 7", N,¥"° = (). The approximation @,() of
the solution @(¢) is a polynomial approximations P* on
the sub-domains 7. The solution is therefore restrained
in the manifold

Ly ={¢i(t) € Z1[@s(r) € C°(¥") and G € P(¥)]}.

(39)
Commonly, nodes & are associated to the finite elements,

and shape functions N¢: 7 — R are defined with the
usual relations

(X0, 1) Z N (%)X and
Z NE(X, (40)

with ¥¢ the positions of the approximate solution at node &.
Introducing Eqgs. (40) in Eq. (12), leads to the new finite ele-
ments weak form, which is finding ¥ such that

6@11 X(),

MR —l—flm = qfxt, Vie T, V&, (41)
with
M = / PN N"d v, (42)
ot Z/ FSD°d7", and (43)
_’Sxt:/ai T éda/Voﬁ-/ poNBd Y, (44)
o o

respectively the mass matrix, the internal forces and the
external forces, where D¢ = V}N ¢ is the derivative of the
shape functions.

While considering finite-elements discretization, locking
in pressure is common, especially for linear elements. This
issue can be solved by the method proposed by Simo and



Taylor [30] who considered a constant volume deformation
on each element. So let us introduce the following defini-
tions. Let 0° € R, be a constant value on 7", which allows
to define the distortion gradient F: 7"y x 7 — SL(3,R)
and the modified deformation gradient F: 77y x .7 x
R, — SL. (3, R) respectively as

13
F=J7F and F=0F m F, with (45)
; "t
C=F"F { } C and C=FTF= M C (46)

3.2. Incremental updates of the variational elasto-plastic
model

The time-integration of Egs. (41) is accomplished via an
incremental solution procedure in which the time interval
of interest 7 is discretized into »/ time steps such that
7 == 871[1” 1] and Ar=¢""" — " is the time step
size. Therefore, the formulation described in Section 2.3
is modified in order to take into account the finite nature
of the deformation gradients. The purpose is to adapt the
variational power D! defined in Eq. (24), leading to an
incremental form ADT (%, C(&y, 0°)).

The incremental form of Eq. (14) is
P = exp([e!

— "INV = A(A) PP (47)

where tensor A(AeP) verifies

det(A(AeP)) = exp(tr(Ae’N)) =1 and
AeP = \/»|| In A(AeP)| (48)

with AeP = "1 — ¢»" the increment of equivalent plastic
strain.

In order to use the quasi-incompressible technique
defined in Section 3.3, we assume a split of the elastic
potential &' into a volume part o2 'R, — R, and into
a deviatoric part @2 :SL(3,R) — R,. Therefore the free

dev *
Helmholtz energy (15) is rewritten

A(F (G, 0°), 6" N) = &2 (6°) + @6, (C)
+ qsp'(Fp‘(sp, N), &P), (49)

where it has been taken into account that the plastic defor-
mation gradient F”' is deviatoric, i.e. det(FP)= 1. There-
fore, AD : GL,(3,R) x R, x 4" the incremental form of
Eq. (22) is stated as

AD(F((—p»ZJrl 0en+l) Spn+l,N)
— Qjel (Oen-H) ¢el (Oen) +ADdcv(ﬁ,8p,N),

vol vol

with  (50)

ADyo(F, ", N) = &5 (C"" (F™+!, " N))

— ,,(C)
+ @pI(Fpl”+1( pn+l N)’8p71+1)

n A p
— PV (FY ) + AL (A—i) (51)

Similarly to what has been done in Section 2.3, since min-
imization of AD with respect to ¢! leads to verify (18),
and since minimization with respect to N leads to a radial
return mapping scheme [19,21], the effective incremental
potential AD® : ¥y x GL,(3,R) — R, can be defined as
the discrete form of Eq. (26), leading to

AD™ (%o, F(31,0°"")) = min [AD] + ArP?

Pt N

(AG°, At)

vol

+ AW (AC, Ar). (52)

Consistently with the continuous case (see Section 2.3), the
numerical dissipation ¥ is added after minimization of the
energy functional increment AD, in order to preserve
the elasto-plastic solution of the constitutive problem.
Once the plastic flow properties have been determined by
the minimization process, the elastic tensor is known and
the numerical dissipation can be evaluated directly. Never-
theless, when defining the explicit form of the dissipation,
consistency of the method requires that lim,, - aAgg’ =0,
For convenience, the numerical dissipation ¥¢ has also
been split into a volume part 'onl R, — R, and into a
deviatoric part ¥§, : SL(3,R) — R,. The dependence of
the new terms being only to scalar and to symmetric ten-
sors, the second Piola—Kirchhoff stress tensor remains sym-
metric. Since the minimization process is independent on
0°, this effective incremental potential can be split into

the volume part AD‘v’f)f1 : R, — R, and into the deviatoric

part ADST . SL(3,R) — R,, such that
AD (5, By, 07*1)) = ADE (0" + DS, (F1),
(53)

with
ADZG(0) = @5 (071) — @3, (0°")

+ AP (AO°,Ar), and (54)
AD(eiifv(F’H—l) = mlll’l [ADdeV(ﬁv 8p7N)}

PN

+ At (AC Ar). (55)

3.3. Quasi-incompressible form of the the weak formulation

Now that an effective internal energy increment has
been defined, the volume deformation and the pressure
can be computed as Simo and Taylor [30] did for an
elastic material. A new three-field internal energy
: X x Ry x Ry — R is defined on the time step, such

mt

that



" fnt(afh Hevpe) / {ADefff()v C(éhﬂ He) pe [J - Hc]} dn/f»
ye
(56)

where p° is the constant thermodynamic force associated to
0°. Tt will be shown that this force is actually the constant
pressure. Let us assume that 8¢, (") = 8, (¢"*!). Since we
are considering a Galerkin method, the same restrictions
than for the displacements set (39) apply to the virtual dis-
placement, with

9, = {5@;, S @HS(T?;, € CO(%),S(ﬁh S Pk(“Ve),
and  8¢,(t") = 8@, (¢"*') = 0]} (57)

Therefore, the discretized form of the weak formulation
(10) is the stationary point of the functional
I:%, xR x [[,R: — R such that

(B, (0',..), ("))

. | > .
s olara- [ |adienda)ar
.

+ / T3 dav/}dt. (58)
N7’

Since neither K, nor W, depend on p°, the variational

principle leads to

0 =

/ Jd?", and to (59)

1775
aDeft Xo,

v I“/‘I/ o0

which gives an explicit dependency on @ for 6¢ and for p°,
where |77°| is the volume measure of #™*. The last varia-
tional principle leads to the new weak formulation by using
the relations

/

(¢,0°))

dv, (60)

e
/ ,DOQB;, . 5@;, dv o dt
7o

ias!

= [/ P 3P d“Vo]
Vo ”
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Ml

-3 / / ! po@>d7 odt, and (61)
" a0 2
[n}l .
o Q)
tn+l ff
OAD*
_/ / sp OFdYode
tn+1
=3 / / AD* dy "y dt. (62)

Indeed, since Gateau derivatives lead to

oJ =

@S(p Jtr(Vép) and to
%‘j 85 = JFTVGTF %6tr(ﬁ5<ﬁ)a (63)
@

the new weak formulation resulting from Eq. (58) now
states as finding @, € %, such that

5 aADelT .
Z / F[QJEDEV( e >+ peJCl] : Vod@ud? o

—I—/ PoPn - 83, d7
Vo

:/ W TdOY +/ pob - 83,47,
A 70
Yop, € Dy, Ve[t M, (64)

where DEV(e) = o —le: CC! is the deviatoric part of a
tensor and where p° appears clearly as the pressure field.

From these definitions, the stress tensor used to compute
the internal forces (43) can be computed as

Sn+l SZ:VI _’_perH»lJnJrlanrl*] Wlth (65)
o _ OAD(
P=—2" and (66)
1 d
Suey = 27 DBV F | Wae | g, Wt | T (67)
v aCel aCel ’

where it has been taken into account that, after the minimi-
zation process, the only explicit dependency on F for ADSL
is due to @, and to VP,

3.4. Form of the potentials

Apart from convexity requirement, there is no a priori
restriction on the potentials expressions. Nevertheless, in
this work bi-logarithmic expressions are considered for
the elastic energies, leading to

In(C|1%.
(68)

and to &%

€ € K e € G
P (0°) = = In*(6) (€ =

In these expressions, Ky and Gy are respectively the initial
bulk and shear modulus. The bi-logarithmic form of the
potentials is particularly well suited to get a closed form
of the minimization process [19,21]. This formalism is com-
pleted by defining the form of the power-law dissipation
and isotropic plastic-hardening, which are respectively

m+l1

mYZ;sbo i m . o
P — m+1 |:.€1’o:| if & >0 and
00 if <0
n+l
Yoe, |€P| "
e BT ®
n+1 g

where Y§, Y, &P, ¢y, m and n are constants and where a}™
is the initial yield stress.



Finally the expressions of the numerical dissipations
considered are

L achfllol(een) [genJrl _ Gen]Z,

AO°, At) = 0
VO]( ) A7 6082 and (7 )
Nelt el az¢el (CEIM)
ACel A Cel b Cel dev
W (A, Ar) = 2K | | e
L[C — . (71)

The proposed numerical scheme is thus similar in form to
the addition of an artificial viscosity proportional to At
(or inversely proportional to the frequency w in a continu-
ous setting). These specific expressions will ensure verifica-
tion of consistency conditions.

The choice of evaluating the second derivatives in the
previous configuration simplifies the computation of the
analytical stiffness matrix.

This particular choice will lead to a first-order time-inte-
gration scheme, as it will be shown. Parameter y is a user
parameter that controls the numerical dissipation. Simi-
larly, a second-order time integration scheme can be
obtained by evaluating the numerical dissipation at an
intermediate configuration ¢* = @} + yAt(¢* — @}). In a
way similar to the one Armero and Romero [26,27] have
proposed for elasto-dynamics, in this formalism, both ¢~
and @* constitute new unknowns solved for each elements
in order to enforce second-order accuracy. These develop-
ments are beyond the scope of this work and will be per-
sued in future work.

4. Time integration scheme

The finite-elements discretization combined with the
variational updates formulation presented in Section 3 is
now integrated in time with the EDMC algorithm. It is
demonstrated that, in combination with the EDMC
scheme, the Gonzalez’ expression [11] of the modified sec-
ond Piola—Kirchhoff stress tensor can be used directly from
this incremental functional in order to verify the conserva-
tion laws. The study of the spectral matrix associated to
this time-integration method is also considered.

4.1. The EDMC algorithm

When introducing numerical dissipation in the EMCA,
Armero and Romero [26,27] have avoided bifurcation in
the spectral analysis of the amplification matrix, by consid-
ering velocities dissipation #y. Therefore, the relations
between positions and velocities and accelerations are given
by a mid-point approximation with

. . -i}én+l -i',én ‘o |
A V) K AR i | FRY. (72)
o gn+l —’—_)_C'C-Vn
FF A (73)

This relation is a second-order approximation in At if
Ugiss = O(A?) and is a first-order approximation if
U4iss = O(At). In this work, we use the first-order dissipation
velocities used in [28], which are
il X;inﬂ F )é«:n+] +5C,én
7= I (74)

diss ||)_C'.H,,+1 2 ’

where y is a user chosen control parameter. Its interval
range is determined later owing a spectral analysis.

Balance Eq. (41) is discretized in time by
A T b il
% exl —f fnt 27 (75)
where f ¢ and f it * are approximations of respectively the
external and internal forces designed in a suitable way to
respect the conservation laws. The set of Eqgs. (72)—(795) is
solved by a predictor—corrector algorithm, enhanced with
a line-search method, see [28] for details.

The external forces formulation depends on the applied
loads and is beyond the scope of this paper. In the context
of Energy—Momentum Conserving Algorithm, Gonzalez
[11] proposed a new expression of the internal forces.
Given the incremental updates variational formulation
developed in the previous section, Gonzalez expression
can be directly applied, leading to

gl Fn+1 F el o
Falt= / {; S’ +2p*"+%dG]D‘}dV 0. (76)
7o

M+

where S}, is the consistent deviatoric stress tensor, p" is the
consistent pressure and dG is the modified differentiation of
J by C. This last term is defined by

a - e AC AC with  (77)
oC IAC|®

aJnJr% 1 Cn+l+Cn Cn+1_|_Cn -1

2o (VT e o

AC=C"' — ", (79)

Instead of using directly Eq. (66), the modified pressure is
computed as

! off 77113
ot FADV()I}

p ae(_
i+ n © n+
ADs (00 - [S] Ao
. A6°, with  (80)
N
OADY™ aa (07 + 0" oWl (A6
vo. — Vo A vol [ =¥ A

[ o0 ] o0 SR TN ( 2 )
and (81)
AO° =0 — 0 (82)

Similarly, Eq. (67) becomes
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(84)
and AC = C"™' — C". (85)

In relation (84), J" = det(€5CY), while terms pr%’ and
C"” result from the minimization of AD, Eq. (50), with
the input tensor €5+,

Let us note that smce the numerical dissipation is intro-
duced into the effective potential the approximations

eff
P [GAD\M}HZ and Sj,, ~ [aAade }”*2 are exact to the first-

order as it was demonstrated by Gonzalez [11]. This would
not be the case if the numerical dissipation was intro-
duced only in the correcting terms. In such a case the
correcting terms would be of the same order as the main
terms.

Moreover, this formulation respects the conservation
laws established in Section 2.4. Indeed, since Zéﬁé =0,
applying a summation on the nodes in Eq. (75), and using
Eq. (73) leads to

> MR N e

¢ ¢

=AY (86)
4

which is the discrete expression of the law (33).
Usmg Eqs (72)—(74), the vector product of Eq. (75) with

¥ = # 4 {eads to
MERETE A T il A
_'En+§ o n+
=AF AL ) (87)

But if ¢ is the permutation tensor, and since dG and Sy, are
symmetric, one has

il Lol Fn+| +Fn _
=82 2 . *
X OANf = / &: [2 [Sdev

7o

- Fn+1T FnT
+op 2dG]+

}d«/o =0, (88)

and Eq. (87) can be rewritten

n+1

_,n+1 o 7 n+
MézE CMEEE AR = AR AT (89)

which is the discrete expression of the law (34). Similarly,
using Eqgs. (72) and (73), the scalar product of Eq. (75) with
¥~ leads to

1 £ n+1 eS| 1 n v 1 2hts

il V190 ST Cug” | " g™t " e 2

2M X 2M + MH[x il T
.t otk +1 p

_[£E€2 &2 - 2£"

— Voext _fint } ! [x -X ] (90)

Regarding the dissipation velocities, Eq. (74) leads to

S| oyt s+ L g oentl e 112
MR =2 By = Sm [ — 5]
- AW{d(lss’ (91)
where we have assumed a lumped mass matrix

M+ = méSE” (no sum on ¢), and where AW{fISS > 0 is the
part of the numerical dissipation Wy, coming from the
dissipation velocities.

On the other hand, combination of Egs. (76)—(85) gives

- vn+%

g+ £n C
ot [ st ariac A ary

~ [ qaog e
Vo
+pwt-%—%[‘]rwl _ Jn]}dﬂyo (92)

Introducing the definition (59) in these latest results and
remembering that p is constant on 7™ allows to rewrite
this last equation as

M)eff

dev
Vo

+Zp*n+2/ J}H»l Jn]d"/()

{ADeff
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(Cn+l Cn)
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Time discretization of Egs. (32), (36) and (37) reads
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Using these last relations and Egs. (53)—(55), the work
increment of the internal forces (93) can be rewritten

W:'ntl anl - Un+1 U:l + Wg;:sl erljss + U:'1+1 - Uni’
97)

and, therefore, Eq. (90) becomes

AK + AUel = AWext - AUz - AVVdissa (98)



_ K
where Wgiss = W g

where K =1M .3 is the discretized kinetic energy.
Relation (98) is the discrete form of the energy conserva-
tion (38), which demonstrates the consistency of the pro-
posed formulation.

Let us notice that the irreversible energy (96) dissipated
during the time step does not exactly correspond to the
work accomplished by the irreversible part of the stress ten-
sor. Indeed, the Perzyna dissipation ¥" (69) leads to

+ W, is the numerical dissipation and

1

oP*(e'p) . [AeP

unless m — oo, see Eq. (96). Moreover, the correcting term

of S., (83) is noﬁlonlger second order compared to the main
derivation [%]H? Nevertheless, since this dissipation of

energy is positive, the G-stability of the method is still en-
sured (the energy of the system K + U, is either constant or
decreasing). In the present work we will assume that there
is no viscous dissipation, and since the numerical dissipa-
tion P9 does not suffer from this behavior, the formulation
remains consistent and the correcting term is still second
order compared to the main derivation.

To solve efficiently a time increment with the predictor—
corrector scheme developed for EDMC algorithms [28], the
consistent stiffness matrix associated to the internal forces
formulation (76) has to be defined in a closed form. This
is done in Appendix A.

4.2. Numerical properties

In this section we demonstrate the first-order conver-
gence of the time integration. Toward this end, the tensile
test of elongation x of an elastic beam (length /, areca A4,
Young’s modulus £ and Poisson ratio v) is considered.
The deformation gradient associated to this test is

L+ 0 0
F=| 0 1-v 0 (100)
0 0 1—y:

As it is shown in Appendix B, the internal forces (76) cor-
n+1

responding to a deformation from x” to x""" reads
1 xn+l_xni| Pyt
—»Ew% EA |: + Xxn+l+xn 2
it T 0 (101)
0

Assuming that the velocity keeps the same direction during
a time step, the dissipation velocity (74) is rewritten

n+% xn+l _)'Cn )'Cn+l +x;1
Udiss - X)'CnJrl + ).C” 2

(102)
If the mass associated to the degree of freedom is m = 24

the frequency of the system is w?’ :pi_EF and the set of
Eqgs. (72)—(75) are rewritten

10

At o — i
n+l _ _n N on+1 on
X =x +7[1+’{x'7n+l+jcn] X"+ 17, (103)
At
xn-%—l = x" + 5 [x'n-%—l _'_)-én]’ (104)
wnt+l n 2 1 xn+1 —x" n+1 n 105
X = —X — O + Xm [)C + X ] ( )

This system of equations is equivalent to the one obtained
by Armero and Romero [26] for a spring model and leads
to an error Q, on the adimensional frequency Q2 = wAt and
to an error ¢, on the damping ratio, that are respectively

Q=0 f% {xz +ﬂ Q4+ 0(QY), and (106)
¢, ng—l—@(Qz). (107)

Due to the presence of the dissipation parameter y, the
scheme is first-order accurate. Moreover the spectral radius
pq of the amplification matrix associated to this scheme is

1 @ A
Pd(Q)H_QTZ[HX]Z\/{l—Al[I—Xq + Q. (108)

If 0 < y < 1 the spectral radius is always lower than unity
and is decreasing with Q, demonstrating the absence of
bifurcation. It is close to unity for the low frequencies
and tends to its minimal value p_ :}f; for the high
frequencies.

5. Numerical examples

The accuracy of the developed scheme is demonstrated
by considering several examples involving highly non-lin-
ear behavior. These non-linearities are either geometrical,
or material due to the large deformation or the elasto-plas-
tic behavior.

5.1. Tumbling L-shaped block

This example is particularly well suited to verify the con-
servation of the angular momentum and energy. It consists
into an elasto-plastic L-shaped block subjected to an initial
loading. Its geometry is described in Fig. 1 and the material
properties are reported in Table 1. On face ‘a’, the forces,
depending on time ¢, applied at every nodes, are

4
8 [Ns™! x{
12

t 0<tr<25s

Za £ = , 109
Sex(t) (5-1) 25<t<5s (109)

while the opposite forces are applied on face b’ (f OES
—72 (1)). After 5s, the forces are relaxed and the block
starts tumbling.

Let us solve this problem with the developed EDMC
algorithm. A spectral radius p,, =0.7 (leading to
z =~ 0.17) is considered, while a first simulation with a time

step At = 0.25 s is performed. Fig. 2 shows some snapshots



of the simulation. It can be seen that the block is plastically =~ do not increase indefinitely with time, as it would be the
and elastically deformed under the initial loads, and that it case if instabilities occured. Time evolution of the angular
enters into rotation. Particularly, the plastic deformations =~ momenta is illustrated in Fig. 3a and it appears that they
are preserved after the initial loads are released, in accor-
dance with the theory. In the same way, the energy conser-
vation is illustrated in Fig. 3b. It can be seen that the total
energy of the system (K + U, + U,) decreases from the ini-
tial energy introduced in the system by the external forces,
to a constant corresponding to the sum of the kinetic

Table 1
Material properties for the tumbling of a L-shaped block
Property Value
Density p=100kgm™
Bulk modulus Ky =5000 Nm?
Shear modulus Gy=1000Nm *
Yield stress og™ =300 Nm~2
Hardening exponent n=1
Linear hardening h=Y/ef =400 Nm~2
Perzyna exponent m= oo
Perzyna hardening Ys=0
Equivalent plastic strain Equivalent plastic strain
0.000 0.0125 0.0250 0.0375 0.0500 0.000 0.0125 0.0250 0.0375 0.0500
- | s
(a) t=80s (b) t =155+
Equivalent plastic strain Equivalent plastic strain
0.000 0.0125 0.0250 0.0375 0.0500 0.000 0.0125 0.0250 0.0375 0.0500
s
(c) t =230s (d) t=305s

Fig. 2. Snapshots of deformed geometry and equivalent plastic strain for the tumbling L-shaped block.
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Fig. 3. Verification of the conservation laws for the tumbling of a L-shaped block.
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40
— EDMC; A t=0.25s

--- EDMC;A t=0.5s
30 ---- EDMC;A t=1s
““““ Newmark; A t=1s

0 100 200 300
Time [s]
(b) Plastically dissipated energy

Fig. 4. Influence of the time step size on the energy of the system for the tumbling of a L-shaped block.

energy of the rigid rotation with the energy plastically dis-
sipated. Similarly, time evolution of the kinetic energy K
and of the elastic energy U, exhibit a decrease towards
the rigid motion energy and towards zero respectively.
The annihilation of the oscillations with time is clearly
illustrated in this picture. Influence of the time step size is
shown in Fig. 4. The time step considered increased from
0.25 s to 1 s. For this last case, the Newmark time-integra-
tion scheme leading to the same spectral radius p is also
considered. Regarding the EDMC algorithm, if the time
step size increases, the elastic energy of the system is dissi-
pated faster (Fig. 4a), and the total energy of the system
tends toward the same rigid body motion energy. This
behavior is in accordance with the theory, since a larger
time step size correspond to a larger adimensional fre-
quency Q and therefore to a larger damping ratio (107).
The asymptotic behavior of the Newmark simulation is
not the rigid rotation of the system but corresponds to a
total dissipation of the energy. Moreover, this dissipation
is much more important than the dissipation of the EDMC
algorithm. The resulting error in the plastically dissipated
energy (Fig. 4b) is therefore more important for the New-
mark algorithm (>400%) than for the EDMC scheme
(25%), when a time step size of 1s instead of 0.25s is
considered.

12

il

32.4
7
z, 5,
y X
= 24

Fig. 5. Geometry of the bar for the Taylor’s impact test (mm).



Table 2 _ _ The bar described in Fig. 5 impacts a rigid wall with an ini-
Material properties for the Taylor’s impact test tial velocity of 227 m s~'. Material properties are reported
Property Value in Table 2.

Density p=28930kgm™> First, this simulation is solved with a time step

Bulk modulus
Shear modulus
Yield stress

Ko = 130,000 N mm
Gy =43,333 N mm™—2
o™ =400 N mm—?2

At = 0.4 ps, and solutions obtained with the EDMC algo-
rithm for different values of the spectral radius are com-
pared to the solutions obtained with the Newmark [1]

Hardening exponent n=1 . . . .

Hardening h=Yo/e = 100 N mm~ and the Chung—Hulbert [24] time integration algorithms.
Perzyna exponent m=oo The importance of considering the elastic deformation
Perzyna hardening Y5=0 when computing the dissipation potential ¥, (71) is also

5.2. Taylor’s bar impact

This test has for purpose to demonstrate the accuracy of
the scheme when large plastic deformations are involved.

Equivalent Equivalent Equivalent
plastic strain plastic strain plastic strain
2.500 2.500 2.500
1.875 1.875 1.875
1.250 1.250 1.250
0.625 0.625 0.625
0.000 0.000 0.000

(a) EDMC, poo = 0.9

(b) EDMC, pos = 0.7

111ustrated by solvmg this test while considering ¥ 3

el

q)dcv
2A[AC acelacel
ified EDMC. Final deformations are illustrated in Fig. 6,

and final geometries are reported in Table 3. All the simu-
lations give the same solution within 5% error, except the

dev —
- AC. This last case is referenced to as mod-

(c) EDMC, pos = 0.65

Equivalent Equivalent Equivalent
plastic strain plastic strain plastic strain

2.500 2.500 2.500

1.875 1.875 1.875

1.250 1.250 1.250

0.625 0.625 0.625

0.000 0.000 0.000

.

(d) modified EDMC, (e) CH, poo = 0.7 (f) Newmark, poo = 0.7
Poo = 0.7

Fig. 6. Comparison of the final equivalent plastic strain (¢ = 80 ps, Az = 0.4 us) for Taylor’s bar 1mpact using: (a)—(c) EDMC scheme with a spectral radius
evolving from p.,, = 0.9 to p, = 0.65; (d) EDMC scheme but with the numerical dissipation 'Pdev considering the total deformations instead of the elastic
ones as in Eq. (71); (e) second-order Chung—Hulbert time integration scheme; (f) first-order Newmark time-integration scheme.
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Table 3

Final configuration (# = 80 us, At = 0.4 ps) for the Taylor’s impact test

Scheme Max Radius Length
P (mm) (mm)

EDMC; At =04; p,, =0.9 2.69 6.87 21.46

EDMC; At=0.4; poo =0.7 2.76 6.91 21.50

EDMC; At = 0.4; p,, = 0.65 2.77 6.91 21.51

Modified EDMC; At = 0.4; 1.63 5.78 31.45

Poo =0.7
CH; At=04; po =0.7 2.79 6.91 21.51
Newmark; At =0.4; p,, =0.7 2.79 6.85 21.56

modified EDMC one, which leads to a different solution.
This demonstrates the accuracy of the EDMC algorithms
when the dissipation potential (71) is considered.

The order of convergence is studied by considering the
plastically dissipated energy U; at the end of simulation,
for different time step sizes. These energies are reported
in Fig. 7a, showing that almost the whole initial kinetic
energy has been dissipated by plasticity. All the schemes
lead to a similar solution, whatever the time step size.
The corresponding errors are reported in Fig. 7b. All the

0.98

<0.96

U/ K

0.94

0.92

0.9 —
10 10 10

A tps]
(a) Dissipated energy

schemes are first-order accurate. This is in accordance with
the theory for the EDMC and for the Newmark algo-
rithms, but in contradiction to the theory for the Chung—
Hulbert scheme. This contradiction is justified by the fact
that the theoretical analysis was assuming a linear behav-
ior, which is not the case in the present simulation.

5.3. Lateral impact of a square tube

The purpose of this example is to emphasize the robust-
ness of the scheme by considering a more elaborated
benchmark. It consists of the side impact of the square tube
illustrated in Fig. 8, on a rigid cylindrical punch. Taking
advantage of the symmetry of the problem, only one fourth
of the structure is simulated, with appropriate boundary
conditions on the symmetry sides. The tube is discretized
with 30 elements on its half length, with a non-uniform dis-
tribution (elements close to the punch are three times smal-
ler than elements on the other extremity), with 15 elements
on its height (out of the curved corners) and with 5
elements on each corner curves. The tube is made of
Aluminum (properties reported in Table 4), modeled by a

10

Erroron U
-
o
%

10 ~
10 10 10
A t[ps]

(b) Error

Fig. 7. Plastically dissipated energy for the Taylor’s impact test.

Fig. 8. Geometry of the square tube lateral impact test (mm).
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Table 4
Material properties for the square-tube lateral impact test

Value

p=2700 kgm™>
Ko=59167 N mm 2
Go = 27308 N mm >
op™ =200 N mm 2
6o =211.64 N mm~?

Property

Density

Bulk modulus

Shear modulus

Yield stress
Saturated yield stress
Exponential hardening parameter h, =100
Linear hardening parameter h =209
Perzyna exponent m =00
Perzyna hardening Y;=0

saturated isotropic hardening law, ¢"™ = g}™ + [0 — g™
[1 —exp™®] + heP, which corresponds to the plastic dissi-
pation potential

ﬂ +é8p2
h, 27

The mass of the tube can be increased by adding point
masses at each extremity in order to represent the inertia

O*' = GeP + [0 — o] {ap + (110)

Equivalent plastic strain
0.25 0.50 0.75 1.00

-
(a) Without additional mass

0.00

of the whole structure (vehicle, e.g.). Two cases are consid-
ered, without this addition of mass and with an addition of
0.02 kg at each extremity of the complete tube. The tube
and the masses have an initial velocity of 50 ms~'. The
EDMC algorithm developed is used with the parameter
Pso = 0.8 while contact interactions are treated using the
method proposed by Armero and Petécz [12], see also
[31] for numerical implementation. Time step size is
automatically computed using the method proposed in
[32,33].

Snapshots of these simulations at time 7 = 1 ms can be
found in Fig. 9. When additional mass is considered, the
initial kinetic energy is multiplied by two and the resulting
deformations are more important. In particular the two
sides of the tube collapse and enter into contact together,
contrarily to the case without additional mass.

Let us now detail the simulation without additional
mass. At time ¢ = 0.5 ms the tube is completely crushed
against the punch, and the remaining kinetic energy K is
close to zero, see Fig. 10a. Between time ¢ = 0.5 ms and
time z = 1 ms the tube rebounds. This rebound occurs since

y
Equivalent plastic strain
0.00 0.25 0.50 0.75 1.00
_ I

(b) With additional mass

Fig. 9. Snapshots of deformed geometry and equivalent plastic strain for the side impact of square tube simulation at time /= 1 ms: (a) when no
additional masses are considered and (b) with an additional mass of 0.02 kg added on each extremity (of the full square tube).
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=
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Fig. 10. Time evolution of the energies in play when no additional masses are considered.
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Fig. 11. Time evolution of the energies in play when additional masses are considered.
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Fig. 12. Snapshots and equivalent plastic strain for the side impact of square tube simulation at time # = 2 ms with an additional mass of 0.02 kg added on
each extremity (of the full square tube): (a) 1/4 of the tube is represented and (b) full view of the tube is represented.

the reversible stored energy U, can be transformed into
kinetic energy K. This transfer can be observed in
Fig. 10a. It is also obvious that the numerical oscillations
are annihilated by the numerical dissipation, which allows
the simulation to simulate the rebound. The contact
energy, which is defined by the work of the contact forces,
remains negative during the simulation (Fig. 10b). This
ensures the stability of the time integration since no addi-
tional energy is introduced in the system. Since this contact
energy remains negligible compared to the initial kinetic
energy (less than 1%), accuracy is guaranteed.

Regarding the case where additional masses are consid-
ered, the time evolutions of these energies are represented
in Fig. 11. It can be seen that after 1 ms the remaining
kinetic energy K of the system is equal to about 15% of
the initial kinetic energy. The tube is wrapped around the
punch in such a way that the central part has already
rebound while the extremity is still moving forward. Con-
trarily to the previous case, the tube continues deforming
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after 1 ms. Snapshots of this simulation at time =2 ms,
when the tube has rebounded are reported in Fig. 12.

6. Conclusions

In this paper a new Energy-Dissipative Momentum-
Conserving time integration algorithm is proposed for
non-linear elasto-plastic dynamics.

This algorithm is based on an incremental variational
updates formulation of the elasto-plastic behavior. Owing
to this formulation, an effective stress potential can always
be defined, even when irreversible deformations occur. The
main originality of this paper is to add a dissipative func-
tion to this incremental potential, which leads to a new def-
inition of a potential for the system.

From this potential, the internal forces expression
developed by Gonzalez [11] to integrate in time the lin-
ear momentum equations, in such a way that the energy
of the system is preserved, can directly be applied. The



introduction of the dissipative function in this potential
does not only lead to a conserving algorithm for elasto-
plastic behavior, but also introduce numerical dissipation,
leading to an Energy-Dissipative Momentum-Conserving
algorithm. As proposed by Armero and Romero [26,27],
a dissipation velocity is also introduced to avoid bifurca-
tion in the spectral properties. The resulting algorithm is
first-order accurate, verifies the conservation of linear and
angular momentum and ensures that the numerical dissipa-
tion is always positive.

All these properties are verified on numerical examples.
The dynamics of a tumbling block is studied, and it is
shown that the angular momenta are conserved, contrarily
to Newmark-based time integration algorithms, leading to
a better accuracy on the evaluation of the plastic deforma-
tion. An impact test also demonstrates the accuracy and
robustness of the algorithm when large plastic deforma-
tions occur.

Appendix A. Stiffness matrix
Let the consistent tangent stiffness matrix K associated

to the internal forces (76) be decomposed in the following
way

ko= Uk kK (A1)
with respectively
1 aFn+1 . '
K = / { 3 e[S+ 2'dGID }d"VO, (A2)
F' + F" 0S;
K& — “Pdev 1 e A.
dev /[/_0 { 2 a—»ﬂ }d 05 ( 3)
k= [ e m2sEsdar, (A4
)

the geometrical part, the deviatoric part and the volume
part. In these expressions the derivation is with respect to
! but the superscript n + 1 has been omitted for clarity
purpose.

The following straightforward results will be used to
establish the stiffness component:

oF; ~,. 0C; _ . 0|AC|?

afg = Dj 5,1“ a_,“ = [51,Fk/ + FA,8[J]D’ 3C =2AC
0,/det(C)

and det \/det oc . (A.5)

A.1. Geometrical part

Using relations (A.5), the geometrical part (A.2) can be
computed as

- I . o
Kééo - /«//- {2 [Sdev + 2[? dG] ,Dc}d\/Oa
"o

with T the unity tensor.

(A.6)

A.2. Volume part

The volume part is decomposed into two terms: the first
one [Kyo]' results from the differentiation of the constant
pressure (over the element), and the second one [Kvo1]2
results from the differentiation of dG.

Using (59), the first contribution states

p Fn+1 +F” azp 698
K = / /‘ {[fdc] D=5 o d7
]

n+1 n
-/ { 5 [udc,}
P e 2 y
0 ij

02, A g
X By 6(1; 7 / (P B dy }WO,
(A7)
with, using Eq. (80),
[@d ]a;eAzl‘P l] <03N+12+0m7) lf Aoe _ O
o2p* 5
= [¢\O+AZW\O en+1
ar a0
| en+1y _ pel eny e
ﬁ @0 (DVLZ((:; ) AP (A0°) if AO° 0.
(A.8)
Using Eq. (A.5), the second contribution is
. F'' +F. . . dG,
[Kf/i)l]zk = /1/,0 { 7 2p a—»ujD_s}dVO
— [ B B (A9)
70
with the fourth order tensor term
(A volliju = 4P f aC. 8 s (A.10)

The missing term can be computed by using Egs. (A.5) and
(77). Indeed, one has

G 1 AC®AC| J"
aCc 2 lac|> | = oC?
n nt+1-1 8 n+
JHTTACR CTT AC® O
2 2
2 A [AC]|
AJ -2 AC AC® A
i B lf _ACEAC (A1)
IIACII IAC]
with
62JVI+% r1+l 1 n-%—l -1 n+l -1
W—z det(C 2)|:§C 2 ®C 2 _]C“é]:|.
(A.12)
In this last expression C'"?=C"2C" and [g Al =

%AikAjl + %Ai]Ajlw
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A.3. Deviatoric part
Owing to Eq. (A.5), the deviatoric term becomes

F'H 4 F 08y, .
Kcu ir ir vry Dg daV
[ dev]zk /Vo { 2 afﬁ j} 0

= /1 AD; A ael D1} A7, (A.13)
0
with
Fn+1 4 F GSZ o
[%dev]iﬂcl ) 2 Cc[ ‘/F +1~ (A14)

Using relations (83), the derivation of the consistent devia-
toric stress can be evaluated as
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In this expression, differentiation with symbol d is used in-
stead of 0 because the minimum value of AD depends on C.
Moreover, exponent n +— refers to values computed for

¢+ Material tensor 4 =4 l_a 9w "3 can be
ac
dc"2

decomposed into
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dADe (Cn+l C")

The first total derivative 4° T is given by
dADzi:fv(C’Hl?Cn) :Jn+]_%DEV dADf‘lfefv(CnJrl Cn)
an+l dC ?
(A.18)
with
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N "53¢ aCe dC

Some terms of this relation depend on the choice of the
potentials and will be given in the logarithm case. Never-
theless, in the general case, one has
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where Eq. (47) has been used, and where %% =
0exp(A&’N) /ON is computed using the spectral decomposi-
tion. Therefore Eq. (A.19) is rewritten

d ADeff
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since %:0 (due to the minimization process, but

% # 0, since there are constrains on N).

.. do4ADST . . .
The second total derivative ——=% is obtained by using
the same method, leading to
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where %3,5 = M ui;, and where Eqgs. (A.20) and (A.21) de-
fine the derivation of elastic and plastic tensors. The expli-
cit derivations of the elastic potential can be evaluated
using (47), as being

2 pel 2 pel
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At this point, the general form of the stiffness matrix is de-
fined. The missing terms ( ép;"‘, a;:;zl‘", Azl aeg“', At 3;52“" for the
@ 2 e 2 yd
volume part and d]e‘, %, At AL la 2 gpd oN

ace  acelace! BCCI aCelace .oc oC
for the deviatoric part) depend on the choice of the

potential.

A.4. Bi-logarithmic potential
In this particular case, the derivation of the elastic
potential are directly deduced from Eq. (68), with

0! In(6°)

—l A.28
agL 0 9(3 ? ( )
o*od 1 —In(6°)

6031_ g (A.29)
ol R .

and —¥, ——4 are computed using the spectral
acd oCelpce

decomposition.

Terms resulting from the numerical dissipation are com-
puted from (70), leading to

opd, e (o)
aiSe = TP g (A30
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Using developments done in [19], the last remaining terms
can be evaluated in the closed-form
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where /i is the hardening value, C"" is the elastic predictor
[19], and where @™ Pr = 2 C” Crr

. oCrr
tral decomposition.

is computed using the spec-

Appendix B. Linearization

Considering the deformation gradient (100), a lineariza-
tion leads to the following deformations,

X2
C:ZF—I+@(12)

1+2¢ 0 0 )
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The modified pressure (80) of the internal forces is there-
fore rewritten
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Concerning the deviatoric part (83), it comes
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Using the relations Gy = 55, and K = and combin-

ing Egs. (B.6), (B.9) and (B.13) leads to

3-6v?

E
Fn+1 F" n+1 n n+l _ .n 2
s a6 = (T ) o
0

(B.14)

which allows to evaluate the internal forces (101).
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