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A FINITE ELEMENT METHOD FOR CRACK
GROWTH WITHOUT REMESHING

NICOLAS MO�ES†, JOHN DOLBOW‡ AND TED BELYTSCHKO∗;§

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road,
Evanston, IL 60208-3111, U.S.A.

SUMMARY

An improvement of a new technique for modelling cracks in the �nite element framework is presented. A
standard displacement-based approximation is enriched near a crack by incorporating both discontinuous �elds
and the near tip asymptotic �elds through a partition of unity method. A methodology that constructs the
enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique
allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to
model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the
proposed technique. 

KEY WORDS: �nite elements; fracture

1. INTRODUCTION

The modelling of moving discontinuities with the �nite element method is cumbersome due to the
need to update the mesh to match the geometry of the discontinuity. Several new �nite element
techniques have been developed to model cracks and crack growth without remeshing. These in-
clude the incorporation of a discontinuous mode on an element level [1], a moving mesh technique
[2], and an enrichment technique for �nite elements based on a partition-of-unity which involves
minimal remeshing [3].
In Belytschko and Black [3], curved cracks were treated by mapping the straight crack enriched

�eld. This is not readily applicable to long cracks or three dimensions. In this paper we improve
the method by incorporating a discontinuous �eld across the crack faces away from the crack
tip. The method incorporates both the discontinuous Haar function and the near-tip asymptotic
functions through a partition of unity method. A crack is grown by rede�ning the tip location and
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and by adding new crack segments. The addition of a discontinuous �eld allows for the entire
crack geometry to be modelled independently of the mesh, and completely avoids the need to
remesh as the crack grows.
The present technique exploits the partition of unity property of �nite elements identi�ed by

Melenk and Babu�ska [4], which allows local enrichment functions to be easily incorporated into a
�nite element approximation. A standard approximation is thus ‘enriched’ in a region of interest by
the local functions in conjunction with additional degrees of freedom. For the purpose of fracture
analysis, the enrichment functions are the near-tip asymptotic �elds and a discontinuous function
to represent the jump in displacement across the crack line.
The method di�ers from the work of Oliver [5], who introduces step functions into the displace-

ment �eld and then treats the e�ects on an element level by a multi�eld approach with an assumed
strain �eld. In the method described in this paper, the displacement �eld is actually global, but the
support of the enrichment functions are local because they are multiplied by nodal shape functions.
This paper is organized as follows. In the next section we present the strong and weak form

for linear elastic fracture mechanics. The discrete equations are given in Section 3, which also
describes the incorporation of enrichment functions to model cracks. Several numerical examples
are given in Section 4. Finally, Section 5 provides a summary and some concluding remarks.

2. PROBLEM FORMULATION

In this section, we brie�y review the governing equations for elasto-statics and give the associated
weak form. Speci�cally, we consider the case when an internal line is present across which the
displacement �eld may be discontinuous.

2.1. Governing equations

Consider the domain � bounded by 	. The boundary 	 is composed of the sets 	u; 	t , and
	c, such that 	=	u ∪	t ∪	c as shown in Figure 1. Prescribed displacements are imposed on 	u,
while tractions are imposed on 	t . The crack surface 	c (lines in 2-D and surfaces in 3-D) is
assumed to be traction-free.
The equilibrium equations and boundary conditions are

∇ · � + b= 0 in � (1a)

� · n= t on 	t (1b)

� · n= 0 on 	c+ (1c)

� · n= 0 on 	c− (1d)

where n is the unit outward normal. In the above, � is the Cauchy stress, and b is the body force
per unit volume.
In the present investigation, we consider small strains and displacements. The kinematics equa-

tions therefore consist of the strain–displacement relation

U= U(u)=∇su (2)

where ∇s is the symmetric part of the gradient operator, and the boundary conditions

u= u on 	u (3)
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Figure 1. Body with internal boundary subjected to loads

The constitutive relation is given by Hooke’s law:

�=C : U (4)

where C is the Hooke tensor.

2.2. Weak form

The space of admissible displacement �elds is de�ned by

U= {v∈V: v= u on 	u v discontinuous on 	c} (5)

where the space V is related to the regularity of the solution. The details on this matter when
the domain contains an internal boundary or re-entrant corner may be found in Babu�ska and
Rosenzweig [6] and Grisvard [7]. We note that the space V allows for discontinuous functions
across the crack line. The test function space is de�ned similiarly as

U0 = {v∈V: v=0 on 	u v discontinuous on 	c} (6)

The weak form of the equilibrium equations is given by∫
�
� : U(v) d�=

∫
�
b · v d� +

∫
	t
t · v d	 ∀v ∈ U0 (7)

Using the constitutive relation and the kinematics constraints in the weak form, the problem is
to �nd u∈U such that∫

�
U(u) :C : U(v) d�=

∫
�
b · v d� +

∫
	t
t · v d	 ∀v ∈ U0 (8)

It is shown in Belytschko and Black [3] that the above is equivalent to the strong form (1),
including the traction-free conditions on the two crack faces. In contrast to boundary element
techniques, this enables the method to be easily extended to non-linear problems.
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Figure 2. Finite element mesh near a crack tip, the circled
numbers are element numbers

Figure 3. Regular mesh without a crack

3. DISCRETIZATION

In this section, we present the construction of approximations which are discontinuous across a
given line or surface and include the asymptotic near-tip �elds. After examining a simple case,
criteria for selecting the enriched nodes for an arbitrary mesh and crack geometry are given. We
also discuss the modi�cations necessary to accurately integrate the weak form, and review the
numerical procedure to calculate the stress intensity factors.

3.1. Crack modelling using discontinuous enrichment

The model consists of a standard �nite element model and a crack representation which is
independent of the elements. In order to introduce the notion of discontinuous enrichment, we �rst
consider a simple case of an edge crack modelled by four elements as shown in Figure 2. For
convenience, the local co-ordinate system is aligned with the crack tip. We wish to illustrate how
an equivalent discrete space can be constructed with the mesh shown in Figure 3 and the addition
of a discontinuous �eld.
The �nite element approximation associated with the mesh in Figure 2 is

uh=
10∑
i=1
ui�i (9)

where ui is the displacement at node i and �i is the bilinear shape function associated with node i.
Each shape function �i has a compact support !i given by the union of the elements connected
to node i.
De�ning a and b as

a=
u9 + u10

2
; b=

u9 − u10
2

(10)

We can express u9 and u10 in terms of a and b

u9 = a + b; u10 = a − b (11)
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Figure 4. Crack not aligned with a mesh, the circled nodes
are enriched with the discontinuous function

Figure 5. Crack not aligned with a mesh, the circled
nodes are enriched with the discontinuous function and
the squared nodes with the tip enrichment functions. En-
richment with only the discontinuous function shortens the

crack to point p

Then replacing u9 and u10 in terms of a and b in (9) yields

uh=
8∑
i=1
ui�i + a(�9 + �10) + b(�9 + �10)H (x) (12)

where H (x) is referred to here as a discontinuous, or ‘jump’ function. This is de�ned in the local
crack co-ordinate system as

H (x; y)=
{

1 for y¿0
−1 for y¡0

(13)

such that H (x)= 1 on element 1 and −1 on element 3, respectively.
If we now consider the mesh in Figure 3, �9 +�10 can be replaced by �11, and a by u11. The

�nite element approximation now reads

uh=
8∑
i=1
ui�i + u11�11 + b�11H (x) (14)

The �rst two terms on the right-hand side represent the classical �nite element approximation,
whereas the last one represents the addition of a discontinuous enrichment. In other words, when
a crack is modeled by a mesh as in Figure 2, we may interpret the �nite element space as the
sum of one which does not model the crack (such as Figure 3) and a discontinuous enrichment.
The previous derivation provides insight into the extension of the technique for the case when

the crack does not align with the mesh. The key issues are the selection of the appropriate nodes
to enrich, and the form of the associated enrichment functions. In terms of enrichment with the
jump function, we adopt the convention that a node is enriched if its support is cut by the crack
into two disjoint pieces. This rule is seen to be consistent with the previous example, in which
only node 11 was enriched. Figure 4 illustrates the application of this rule when the crack is not
aligned with the element edges, in which the circled nodes are enriched with the jump function.
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Figure 6. An arbitrary crack placed on a mesh Figure 7. Local axes for the polar co-ordinates at the two
crack tips

In a more general case such as that shown in Figure 5, the crack tip will not coincide with an
element edge, and in this instance the discontinuity cannot be adequately described using only a
function such as H (x). The jump enrichment of the circled nodes in this case only provides for
the modelling of the discontinuity up until point p. To seamlessly model the entire discontinuity
along the crack, the squared nodes are enriched with the asymptotic crack tip functions with the
technique developed in Belytschko and Black [3]. For example, for the discretization shown in
Figure 5, the approximation takes the form

uh=
∑
i∈I
ui�i +

∑
j∈J
bj�jH (x) +

∑
k∈K

�k

(
4∑
l=1
clkFl(x)

)
(15)

in which J is the set of circled nodes and K the set of squared nodes. The functions Fl(x) are
de�ned as

{Fl(r; �)} ≡
{√

r sin
(
�
2

)
;
√
r cos

(
�
2

)
;
√
r sin

(
�
2

)
sin (�);

√
r cos

(
�
2

)
sin (�)

}
(16)

where (r; �) are the local polar co-ordinates at the crack tip. Note that the �rst function in (16),√
r sin (�=2), is discontinuous across the crack faces whereas the last three functions are continuous.

The function H (x) is given by (13) where the local axes are taken to be aligned with the crack
tip as in Figure 2.
We now generalize to the case of an arbitrary crack, as shown in Figure 6. The approximation

takes the form:

uh =
∑
i∈I
ui�i +

∑
j∈J
bj�jH (x) +

∑
k∈K1

�k

(
4∑
l=1
cl1k F

1
l (x)

)
+

∑
k∈K2

�k

(
4∑
l=1
cl2k F

2
l (x)

)
(17)

where K1 and K2 are the sets of nodes to be enriched for the �rst and second crack tip, respectively.
The precise de�nition of these two sets as well as the set J will be given further. The functions
F1l (x) and F

2
l (x) are identical to the ones given in (16), with (r1; �1) and (r2; �2) being de�ned

in the local crack tip system at tips 1 and 2, respectively as shown in Figure 7.
The jump function H (x) is de�ned as follows. The crack is considered to be a curve parametrized

by the curvilinear co-ordinate s, as in Figure 8. The origin of the curve is taken to coincide with
one of the crack tips. Given a point x in the domain, we denote by x∗ the closest point on the
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Figure 8. Illustration of normal and tangential co-ordinates for a smooth crack: (a) and for a crack with a kink; (b) x∗ is
the closest point to x on the crack. In both of the above cases, the jump function H (x)=−1

crack to x. At x∗, we construct the tangential and normal vector to the curve, es and en, with the
orientation of en taken such that es ∧ en= ez. The sign of the step function H (x) is then given by
the sign of the scalar product (x−x∗) · en. In the case of a kinked crack as shown in Figure 8(b),
where no unique normal but a cone of normals is de�ned at x∗, H (x)= 1 if the vector (x− x∗)
belongs to the cone of normals at x∗ and −1 otherwise.
We now turn to the de�nitions of J , K1 and K2. We shall denote by x1 and x2 the location

of the crack tips 1 and 2, respectively, and by C the geometry of the crack. The sets K1 and
K2 consist of those nodes for which the closure of the nodal support contains crack tip 1 or 2,
respectively. The set J is the set of nodes whose support is intersected by the crack and do not
belong to K1 or K2.

K1 = {k ∈ I : x1 ∈!k} (18)

K2 = {k ∈ I : x2 ∈!k} (19)

J = { j∈ I : !j ∩C 
= ∅; j =∈K1; j =∈K2} (20)

Remarks.

(1) From the de�nition of the sets K1; K2, and J , we see that any node whose support is
intersected by the crack will be enriched by a discontinuous function: of H type for the
nodes in J and of F type for the nodes in K1 and K2. So, the displacement is allowed to
be discontinous along the full extent of the crack.

(2) The treatment of a free edge crack is similar, with either set K1 or K2 being empty.
(3) The set K1 and=or K2 can be enlarged to include all nodes within a characteristic radius

of the associated crack tip, in which region the asymptotic near-tip �elds are assumed to
dominate the solution.

(4) The case of multiple cracks is obtained by considering the proper sets J; K1 and K2 for
each crack.

(5) For the case when multiple crack segments are enriched with the near-tip �elds, a mapping
is used to align the discontinuity with the crack geometry [3].
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Figure 9. Crack on a uniform mesh (left) and on a non-uniform mesh (right). The circled nodes are enriched by the jump
function whereas the squared nodes are enriched by the crack tip functions

Figure 9 illustrates the sets J (circled nodes), K1 (squared nodes near tip 1) and K2 (squared
nodes near tip 2) for a uniform and non uniform mesh.

3.2. Extension to higher-order �nite elements

In the previous section, we have shown how a discontinuity is introduced into a �nite element
approximation with a local enrichment. We considered that the �nite element approximation prior
to the introduction of the discontinuity was of the �rst order, i.e. one with linear displacements
for triangular elements and bilinear for quadrilaterals. The extension to higher-order �nite element
approximations is straightforward.
Consider hierarchical based p-order �nite elements [8]: a �rst-order �nite element approximation

uses the classical nodal shape functions whereas a higher-order approximation introduces additional
edge and element (bubble) shape functions. The enrichment strategy must therefore consider these
additional edge and internal degrees of freedom.
Let D be the set of all the degrees of freedom for a given mesh and order of approximation.

Each degree of freedom ui ; i∈D, is a vector with a x and y displacement components. The �nite
element approximation, prior to the introduction of the discontinuity, is given by

uh=
∑
i∈D
ui�i (21)

where �i is the shape function associated with the ith degree of freedom.
In order to select the degrees of freedom to be enriched by the Haar function, we extend the

rule introduced in the previous section: ‘a node is enriched if its support is cut by the crack’ to
‘a degree of freedom is enriched if it’s support is cut by the crack’. The support of an edge degree
of freedom is made of the element(s) connected to it and the support of an element degree of
freedom is the element itself. More precisely, the subset D′ ⊂D of the degrees of freedom to be
enriched by the Haar function must have their support cut by the crack but must not contain any
of the crack tips. Formally, in the case of a crack with two tips:

D′= {i∈D: !i ∩C 
= ∅; x1 =∈!i; x2 =∈!i} (22)

The �nite element approximation after the introduction of the discontinuity is then

uh =
∑
i∈D
ui�i +

∑
j∈D′

bj�jH (x) +
∑
k∈K1

�k

(
4∑
l=1
cl1k F

1
l (x)

)
+

∑
k∈K2

�k

(
4∑
l=1
cl2k F

2
l (x)

)
(23)
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Figure 10. Generation of subpolygons for the quadrature of the weak form in: (a) those elements cut by a crack. The polygons
(b) formed from the intersection of the crack and the element geometries are triangulated as in (c) to create the element

subdomains

where
K1 = {k ∈ D̃: x1 ∈!k}; K2 = {k ∈ D̃: x2 ∈!k} (24)

and D̃⊂D is the subset of nodal degrees of freedom. We therefore keep a nodal-based enrichment
for the near-tip enrichment. From the expression for approximation (23), we notice that the jump
displacement across the crack is now described by higher-order functions along the crack faces.
In addition, we have not assumed a uniform p order of approximation.

3.3. Numerical integration of the weak form

For elements cut by the crack and enriched with the jump function H (x), we make a modi�cation
to the element quadrature routines in order to accurately assemble the contribution to the weak
form on both sides of the discontinuity. As the crack is allowed to be arbitrarily oriented in an
element, the use of standard Gauss quadrature may not adequately integrate the discontinuous �eld.
If the integration of the the jump enrichment is indistinguishable from that of a constant function,
spurious singular modes can appear in the system of equations. In this section, we present the
modi�cations made to the numerical integration scheme for elements cut by a crack.
The discrete weak form is normally constructed with a loop over all elements, as the domain

is approximated by
�=

∑
e
�e (25)

where �e is the element subdomain. For elements cut by a crack, we de�ne the element subdomain
to be a sum of a set of subpolygons whose boundaries align with the crack geometry

�e=
∑
s
�s (26)

In two dimensions, the triangles shown in Figure 10 work well. Simpler schemes, such as the
trapezoids used by Fish [9] may also perform adequately. It is emphasized that the subpolygons
are only necessary for integration purposes; no additional degrees of freedom are associated with
their construction. In the integration of the weak form, the element loop is replaced by a loop
over the subpolygons for those elements cut by the crack.

3.4. Crack growth and stress intensity factor evaluation

In this section, we brie�y review the criterion used to specify the direction of crack growth. In
addition, we describe the domain form of the interaction integral for the extraction of mixed-mode
stress intensity factors.
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Under general mixed-mode loadings, the asymptotic near-tip circumferential and shear stresses
take the following form:{
���
�r�

}
=

KI√
2�r

1
4

{
3 cos (�=2) + cos (3�=2)
sin (�=2) + sin (3�=2)

}
+

KII√
2�r

1
4

{−3 sin (�=2)− 3 sin (3�=2)
cos (�=2) + 3 cos (3�=2)

}
(27)

Among the criteria for determining the growth direction are: (1) the maximum energy release rate
criterion [10], (2) the maximum circumferential stress criterion or the maximum principal stress
criterion [11] and (3) the minimum strain energy density criterion [12].
In this paper, we use the maximum circumferential stress criterion, which states that the crack

will propagate from its tip in a direction �c so that the circumferential stress ��� is maximum.
The circumferential stress in the direction of crack propagation is a principal stress. Therefore, the
critical angle �c de�ning the radial direction of propagation can be determined by setting the shear
stress in (27) to zero. After a few manipulations, the following expression is obtained:

1√
2�r

cos
(
�
2

)[
1
2
KI sin(�) +

1
2
KII(3 cos(�)− 1)

]
=0 (28)

This leads to the equation de�ning the angle of crack propagation �c in the tip co-ordinate system.

KI sin(�c) + KII(3 cos(�c)− 1)=0 (29)

Solving this equation gives

�c=2 arctan 14 (KI=KII ±
√
(KI=KII)2 + 8) (30)

The stress intensity factors are computed using domain forms of the interaction integrals [13; 14].
For completeness these are discussed here. The coordinates are taken to be the local crack tip
co-ordinates with the x1-axis parallel to the crack faces. For general mixed-mode problems we
have the following relationship between the value of the J -integral and the stress intensity factors

J =
K2I
E∗ +

K2II
E∗ (31)

where E∗ is de�ned in terms of material parameters E (Young’s modulus) and � (poisson’s
ratio) as

E∗=
{
E plane stress
E

1−�2
plane strain (32)

Two states of a cracked body are considered. State 1, (�(1)ij ; �
(1)
ij ; u

(1)
i ), corresponds to the present

state and state 2, (�(2)ij ; �
(2)
ij ; u

(2)
i ), is an auxiliary state which will be chosen as the asymptotic �elds

for Modes I or II. The J -integral for the sum of the two states is

J (1+2) =
∫
	

[
1
2
(�(1)ij + �

(2)
ij )(�

(1)
ij + �

(2)
ij )�1j − (�(1)ij + �(2)ij )

@(u(1)i + u(2)i )
@x1

]
nj d	 (33)

Expanding and rearranging terms gives

J (1+2) = J (1) + J (2) + I (1;2) (34)
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Figure 11. Conventions at crack tip. Domain A is enclosed
by 	, C+, C−, and C0. Unit normal mj = nj on C+, C−,

and C0 and mj = −nj on 	

Figure 12. Elements selected about the crack tip for
calculation of the interaction integral

where I (1;2) is called the interaction integral for states 1 and 2

I (1;2) =
∫
	

[
W (1;2)�1j − �(1)ij

@(u2i )
@x1

− �(2)ij
@(u1i )
@x1

]
nj d	 (35)

where W (1;2) is the interaction strain energy

W (1;2) = �(1)ij �
(2)
ij = �

(2)
ij �

(1)
ij (36)

Writing equation (31) for the combined states gives after rearranging terms

J (1+2) = J (1) + J (2) +
2
E∗ (K

(1)
I K

(2)
I + K (1)II K

(2)
II ) (37)

Equating (34) with (37) leads to the following relationship:

I (1;2) =
2
E∗ (K

(1)
I K

(2)
I + K (1)II K

(2)
II ) (38)

Making the judicious choice of state 2 as the pure Mode I asymptotic �elds with K (2)I = 1 gives
mode I stress intensity factor for state 1 in terms of the interaction integral

K (1)I =
2
E∗ I

(1;Mode I) (39)

Mode II stress intensity factor can be determined in a similiar fashion.
The contour integral (35) is not in a form best suited for �nite element calculations. We therefore

recast the integral into an equivalent domain form by multiplying the integrand by a su�ciently
smooth weighting function q(x) which takes a value of unity on an open set containing the crack
tip and vanishes on an outer prescribed contour C0. Then for each contour 	 as in Figure 11,
assuming the crack faces are traction free and straight in the region A bounded by the contour C0,
the interaction integral may be written as

I (1;2) =
∫
C

[
W (1;2)�1j − �(1)ij

@u2i
@x1

− �(2)ij
@u1i
@x1

]
qmj d	 (40)
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Figure 13. Weight function q on the elements

where the contour C =	+C++C−+C0 and m is the unit outward normal to the contour C. Now
using the divergence theorem and passing to the limit as the contour 	 is shrunk to the crack tip,
gives the following equation for the interaction integral in domain form:

I (1;2) =
∫
A

[
�(1)ij

@u2i
@x1

+ �(2)ij
@u1i
@x1

−W (1;2)�1j

]
@q
@xj

dA (41)

where we have used the relations mj =−nj on 	 and mj = nj on C0, C+ and C−.
For the numerical evaluation of the above integral, the domain A is set from the collection

of elements about the crack tip. In this paper, we �rst determine the characteristic length of an
element touched by the crack tip and designate this quantity as hlocal. For two-dimensional analysis,
this quantity is calculated as the square root of the element area. The domain A is then set to be
all elements which have a node within a ball of radius rd about the crack tip.
Figure 12 shows a typical set of elements for the domain A with the domain radius rd taken

to be twice the length hlocal. Figure 13 shows the contour plot of the weight function q for these
elements. The q function is taken to have a value of unity for all nodes within the ball rd, and
zero on the outer contour. The function is then easily interpolated within the elements using the
nodal shape functions.

4. NUMERICAL EXAMPLES

In this section, we present several numerical examples of cracks and crack growth under the
assumptions of plane strain two-dimensional elasticity. We begin with a simple example of an
edge crack to demonstrate the robustness of the discretization scheme, and then present results for
more complicated geometries.
In all of the following examples, the material properties are assumed to be that of glass with

young’s modulus 100 kpsi, and poisson ratio 0·3. The calculation of the stress intensity factors is
performed with the domain form of the interaction integral as detailed in the previous section.
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Figure 14. The geometry of the edge crack problem for the robustness and shear studies. The parameters are a=W =1=2;
L=W =16=7; W =7

Figure 15. Zoom of the mesh in the vicinity of the crack tip, with: (a) the initial con�guration and �x; �y shown. The en-
richment is also shown for; (b) the �nal con�guration. The circled nodes are enriched with the jump function and the squared

nodes with the near-tip functions

4.1. Robustness analysis

Consider the geometry shown in Figure 14: a plate of width w and height L with an edge crack
of length a. We analyse the in�uence of the location of the crack with respect to the mesh on the
KI stress intensity factor when the position of the crack is perturbed by �x in the X -direction and
�y in the Y -direction. The model is a uniform mesh of 24× 48 4-noded quadrilateral elements.
In this study, several di�erent discretizations are obtained depending on the position of the crack

with respect to the mesh. Two cases are shown in Figure 15. Depending on the location of the
crack tip, the total number of degrees of freedom varies from 2501 to 2541. The purpose of the
study is to compare the accuracy of the solution when the crack is aligned with the mesh to
the case when it is slightly o�set.
The exact solution for this problem is given by [15]

KI =C�
√
a� (42)

where C is a �nite-geometry correction factor:

C =1·12− 0·231
( a
W

)
+ 10·55

( a
W

)2
− 21·72

( a
W

)3
+ 30·39

( a
W

)4
(43)
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Figure 16. Robustness analysis results: normalized KI with respect to the crack translation. The solid lines indicate element
edges

The numerical results normalized by the exact solution are shown in Figure 16. The axes are
normalized by the mesh spacing in the x-direction (hx), and the y-direction (hy). The accuracy of
all results is excellent, and there is less than 1 per cent variation among all con�gurations tested.

4.2. Shear edge crack

In this example, we consider the edge crack geometry of Figure 14 subjected to a shear load.
The plate is clamped at the bottom and a shear of 	=1·0 psi is applied to the top. For this case,
we examine the accuracy of the method for four di�erent discretizations. In addition, for each
discretization we consider several di�erent domain sizes for the interaction integrals described
in Section 3.4. The invariance of the calculated stress intensity factors with domain size is an
indication of the quality of the numerical solution.
Four discretizations with uniform nodes and scattered nodes in an unstructured mesh are studied.

The �rst uniform mesh consists of 13× 25 nodes evenly spaced, while the second (shown in Figure
17(a)) consists of 25× 49 nodes. In the table of results which follows, these meshes are denoted
by struct1 and struct2, respectively. The �rst unstructured mesh consists of a combination of trian-
gular and quadrilateral elements for a total of 503 nodes. The second unstructured mesh (shown in
Figure 17(b)) is more re�ned with a total of 1955 nodes. These meshes are denoted in the table of
results as unstr1 and unstr2, respectively. Figure 18 shows the unstructured mesh around the crack.
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Figure 17. Meshes for edge crack: (a) structured; (b) unstructured

Figure 18. Unstructured mesh near the crack Figure 19. Plate with a centre crack at angle 


Table I. Normalized KI values for various discretizations
and domain sizes

Mesh type Structured Unstructured

rd=hlocal struct1 struct2 unstr1 unstr2
1·5 0·995 1·004 0·975 0·985
2·5 0·986 0·996 0·961 0·970
3·5 0·986 0·996 0·962 0·970

The exact stress intensity factors for this load case are given by [13]

KI = 34·0 psi
√
in; KII = 4·55 psi

√
in (44)
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Table II. Normalized KII values for various discretizations
and domain sizes

Mesh type Structured Unstructured

rd=hlocal struct1 struct2 unstr1 unstr2
1·5 1·016 1·015 0·932 1·025
2·5 1·001 1·000 0·981 0·987
3·5 1·001 0·9998 0·995 0·985

The normalized results for the various discretizations and crack contour domains are given in
Tables I and II. The results are excellent in terms of overall accuracy and domain-independence
for each discretization.

4.3. Plate with angled centre crack

To illustrate the versatility and e�ectiveness of this formulation, stress intensity factors are
calculated for a plate with an angled centre crack shown in Figure 19. The plate is subjected
to a far �eld uniaxial stress as shown. In this example, KI and KII are obtained as a function
of the crack angle 
 for a uniform mesh. It is emphasized that the same mesh is used for all
angles.
In this example, the plate dimensions are taken to be W =10 in with a half crack length of

a=0·5 in. The mesh is a uniform array of 40× 40 rectangular elements. As the plate dimensions
are large in comparison to the crack length, the numerical solution can be compared to the solution
for an in�nite plate. For the load shown, the exact stress intensity factors are given by

KI = �
√
�a cos2(
) (45a)

KII = �
√
�a sin(
)cos(
) (45b)

The results in Figure 20 show excellent agreement with the exact solution for the entire range of 
.

4.4. Crack growth

As a last example, we consider the modelling of crack growth in a plate with cracks emanating
from two holes subjected to a far-�eld tension. Figure 21(a) shows the geometry and loads under
consideration. In the initial con�guration, both cracks have a length of 0·1 in and are oriented at
angles � = 45 and −45 for the left and right holes, respectively.
The initial geometry is discretized with a mesh of 2650 scatterred nodes as shown in Figure

21(b). The mesh is re�ned towards the centre of the plate, where the cracks are expected to
propagate. It is emphasized that the mesh does not conform to the crack geometries, and that the
same mesh is used throughout the simulation. Figure 22 shows a closeup of the mesh near the
hole.
The cracks are driven by a Paris fatigue law with the maximum circumferential stress hypothesis

for the angle of crack propagation. In the initial study, the change in crack length for each iteration
is taken to be a constant 
a=0·1 in, and the cracks are grown for nine steps. The two cracks
grow in a nearly symmetrical pattern, despite the fact that the mesh is not symmetric next to last
con�guration. Table III gives the position and stress intensity factors of the top crack tip at each
stage of the simulation. In this example, the cracks eventually grow into the holes.
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Figure 20. KI and KII vs. 
 for a plate with an angled centre crack

Figure 21. Description and mesh for the crack growth problem. The initial crack lengths are 0·2 in

We next re�ne the mesh in the vicinity of the crack paths, and halve the change in crack length
to 
a=0·05 in. The �ne mesh consists of quadrilateral and triangular elements for a total of 5117
nodes. The cracks are grown for a total of 16 steps, and once again grow towards the holes. The
crack tip position and stress intensity factors for the top crack tip are provided in Table IV. Figure
23 compares the �nal crack paths for both the coarse and �ne mesh, and shows good correlation.
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Figure 22. Mesh and �nal crack con�guration near the right hole

Table III. Position and stress intensity factors for left crack
tip. Coarse mesh results with 
a=0·1 in

Tip position SIFs

Step xc yc KI KII
Initial 2·1488 2·5707 0·78 0·65
1 2·2484 2·5616 1·55 −0·02
2 2·3482 2·5550 1·84 −0·10
3 2·4481 2·5592 2·53 0·00
4 2·5480 2·5634 2·31 0·95
5 2·6312 2·5080 0·92 −0·19
6 2·7289 2·4866 0·48 −0·27
7 2·8153 2·5370 0·56 0·28
8 2·9139 2·5204 0·11 −0·10

5. SUMMARY AND CONCLUDING REMARKS

A method has been developed for modelling crack growth by enrichment that includes the asymp-
totic near tip �eld and a Haar function. The Haar function is used away from the crack tip. Its use
represents the main improvement of this technique over that presented in [3], where a mapping
of the discontinuous near-tip �eld was employed for curved cracks. The Haar function provides
a much more elegant and straightforward procedure, and is readily generalized to other problems
such as those involving nonlinear materials and three dimensions.
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Table IV. Position and stress intensity factors for left crack
tip. Fine mesh results with 
a=0·05 in

Tip position SIFs

Step xc yc KI KII
Initial 2·1488 2·5707 0·79 0·65
1 2·1986 2·5663 1·45 0·03
2 2·2481 2·5595 1·57 −0·07
3 2·2981 2·5575 1·68 −0·01
4 2·3481 2·5581 1·86 0·01
5 2·3981 2·5562 2·09 −0·12
6 2·4480 2·5600 2·56 0·08
7 2·4980 2·5608 3·03 0·41
8 2·5465 2·5488 2·64 0·46
9 2·5886 2·5219 2·63 −0·04
10 2·6321 2·4972 2·68 −0·28
11 2·6820 2·4998 2·73 0·01
12 2·7320 2·5013 0·57 0·02
13 2·7819 2·5037 0·55 −0·05
14 2·8306 2·5151 0·68 0·03
15 2·8802 2·5217 0·64 −0·03

Figure 23. Crack paths for the coarse (dashed line) and �ne (solid line) meshes

We were struck in the study of this technique by how accurately the stress intensity factors can
be computed with relatively coarse meshes. This characteristic makes the method very promising
for fatigue crack growth calculations in complex geometries, such as an engine block, where any
remeshing would be prohibitively burdensome.
The method treats the crack as a completely separate geometric entity and the only interaction

with the mesh occurs in the selection of the enriched nodes and the quadrature of the weak form.
We have reported here quadrature schemes that use a subdivision of the elements cut by the
crack, but reasonable results can be obtained with simpler schemes. The only requirement is that
the quadrature scheme integrate on both sides of the discontinuity for nodes enriched with the
Haar function.
In contrast to the element enrichment schemes of Benzley [16], the accuracy of this enrichment

based on a partition of unity is almost independent of element size for a large range (almost
any size consistent with reasonable practice). In addition, the use of crack tip elements requires
transition elements and the technique tends to deteriorate as the element size near the crack tip
decreases. About the only drawback of the present method is the need for a variable number of
degrees of freedom per node. The partition-of-unity also has the desirable feature that the FEM
equations retain the sparsity properties of the original mesh.
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