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Abstract

Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems
biology. Although several methods have been proposed to infer networks from microarray data, there is a need for
inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a
hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the
advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using
real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian
graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-
transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the
other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods
specifically designed for gene network inference from RNA-seq data.
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Introduction

In recent years, high-throughput sequencing technology has

become an essential tool for genomic studies. In particular, it

allows the transcriptome to be directly sequenced (RNA sequenc-

ing), which provides count-based measures of gene expression.

Typically, the first biological question arising from these data is to

identify genes differently expressed across biological conditions.

Because RNA-seq data are known to exhibit a large amount of

variability among biological replicates, most methods for differ-

ential analysis are based either on overdispersed Poisson [1] or

negative binomial models [2,3].

In order to study the relationships between these large numbers

of genes, several authors have worked on co-expression networks

and used methods based on Pearson correlation [4] or canonical

correlation [5], [6], but no specific models have been designed for

RNA-seq data. A further question is how these genes interact with

each other. Inference of gene networks from transcriptomic data is

indeed a key aspect of systems biology that may help unravel and

better understand the underlying biological regulatory mecha-

nisms. Various models have been proposed for network inference

from microarray data, mainly based on Gaussian graphical models

[7,8]. Until now, very few authors have addressed the question of

network inference from RNA-seq data. Some authors simply use

methods based on a Gaussian assumption for RNA-seq data [9].

We propose in this paper to compare various approaches to tackle

this issue.

The simplest idea is to perform an appropriate transformation

of the data, using for example a Box-Cox transformation [10] and

apply methods that rely on an assumption of normality. Another

possibility is to use models specifically designed for count data with

large variability. Allen and Liu [11] recently proposed a Poisson

log-linear graphical model adapted to count data. This model

requires a power transformation of the data [12] when the inter-

sample variance is greater than the sample mean. We propose in

this paper a hierarchical log-normal Poisson model with a Lasso

penalty, which has the advantage of directly modelling inter-

sample variability and can therefore be readily applied to the raw

data. Performance of these different methods for gene network

inference are compared on data simulated under a multivariate

Poisson distribution [13] with various amounts of additional inter-

sample variability, as well as on publicly available microRNA-seq

data collected on breast invasive carcinoma (BRCA) tumors,

downloaded from The Cancer Genome Atlas (TCGA) Data

Portal.

Materials and Methods

We first define the notation that will be used throughout this

paper. Let Yij be the random variable corresponding to the gene

expression measure for the sample i (i = 1, …, n) for the gene j

(j = 1, …, p), with yij being the corresponding observed value of Yij.

Note that i always indexes samples and j always indexes genes with

n the number of samples and p the number of genes. A network

represents gene interactions. The nodes are random variables

modelling the gene expression levels and the edges indicate the

dependencies between those variables. In this section we provide a

short description of the models that will be compared for gene

network inference from RNA-seq data.
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Gaussian graphical model
The underlying assumption of this model is that the data are

normally distributed. In the case of untransformed RNA-seq data,

this assumption is not valid since data counts cannot take negative

values. We investigated a variety of Box-Cox transformations to

lead to approximately normal data [10], where the d value was

chosen to maximize the log-likelihood of the transformed data:

yij?f (yij)~
yd
ij

{1

d , ifd=0,

log (yij), ifd~0:

0
@

Since gene expression data may contain zero counts, we usually

use (y+1) instead of y in the Box-Cox formula above. Let

zi~(f (yi1),:::,f (yip)) be the transformed vector of expression

values for p genes for the i th biological sample (i = 1, …, n). We

assume that zi*N ( m , S ). The edges of the inferred network

correspond to non-zero partial correlations, i.e. the non-zero

elements of matrix S {1 [7,14].

Let S be the empirical covariance matrix. The log-likelihood of

the model is:

L( S{1 )~ log ( det ( S{1 )){trace( SS{1 ): ð1Þ

A common assumption in the context of gene networks is that

the matrix S{1 is sparse. We add an ‘1 penalty to the log-

likelihood (1) so that some coefficients in the estimated S{1 matrix

are precisely equal to 0:

log ( det ( S{1 )){trace( SS{1 ){lE S{1 E‘1 : ð2Þ

Network inference using a Gaussian graphical model has been

extensively studied and used over the past years. Many methods

exist to compute the penalized maximum likelihood estimate of

the S matrix above. We use the method implemented in the glasso

R package [7] which makes use of a coordinate descent algorithm.

The choice of the regularization parameter l has also been

extensively studied [15]. We choose to perform model selection by

maximizing the Bayesian Information Criterion (BIC) [16] defined

below, where n represents the number of free parameters in the

model:

BIC~L( S{1 ){n
log n

2
: ð3Þ

Note that a single parameter l is chosen for the entire network.

Log-linear Poisson graphical model
A log-linear Poisson graphical model specifically designed for

network inference from count data has been recently proposed

[11]. This model is based on a Poisson distribution which assumes

the mean and variance to be equal. Therefore, the model does not

account for the high dispersion of the data, also called over-

dispersion with respect to the Poisson distribution, when the

sample variance is higher than the sample mean. To apply it to

RNA-seq data, the authors propose to use a power transformation

of the data yij?g(yij)~ya
ij , with a[�0,1� implemented in the R

package PoiClaClu [12]. The coefficient a is chosen to maximize

an adequacy criterion between the transformed data ya and a

Poisson distribution.

Let z j~(g(y1j),:::,g(ynj)) be the transformed vector of

expression values for gene j in the n biological samples. It is

assumed that the conditional distribution of Zij given all the other

genes zi({j)~(zi,1, . . . ,zi(j{1),zi(jz1), . . . ,zip) is a Poisson distribu-

tion P(mj), with log (mj) modelled as a linear regression on all the

other genes:

p(Zij jzi({j))*P(mj)

with

log (mj)~
X
j0=j

bjj0~zzij0 :

The notation ~zz corresponds to a standardization of the log-

transformed data. This standardization is a necessity since we

model the mean of the gene j and not the random variable itself.

An edge is present in the inferred graph if one or both parameters

bjj0 and bj0j are different from zero. The log-likelihood for gene j

can be written in this case as:

L( b )~
Xn

i~1

zij exp (
X
j=j0

bjj0~zzij0 ){
X
j=j0

bjj0~zzij0

2
4

3
5: ð4Þ

Similar to the previous model, we assume that the vector bj is

sparse. We add an ‘1 penalty to the log-likelihood (4) so that some

coefficients in the estimated bj vector are set to 0. Estimation of

parameters bj can be obtained by a coordinate gradient algorithm

as implemented in the R package glmnet [17]. We propose to

perform the model selection with the Stability Approach to

Regularization Selection creterion (StARS), as suggested by [11].

This stability-based method selects the network with the smallest

amout of regularization that simultaneously makes the network

sparse and replicable under random sampling. Note that we select

only one regularization parameter for all the regressions in the

network problem.

Hierarchical log-normal Poisson graphical model
We note that the Poisson model presented above requires a

transformation of the data to account for the high dispersion. Here

we propose to deal with it directly with a hierarchical log-normal

Poisson model. The count expression of gene j for sample

i[1, . . . ,n is modeled as: Yij*P(hij) with

log (hij)~
X
j0=j

bjj0~yyij0zeij

ej ~(e1j ,:::,enj)*N (0,s2
j In )

As before, the notation ~yy corresponds to a standardization of

the log-transformed data. Here, the vector Yj*P( hj ) and hj is

itself a random variable: hj ~mj exp ( e j) with

e j* N n(0,s2
j In) and mj~ exp (

P
j0=j bjj0~yyij0 ). Note that the

A Model for Network Inference from RNA-Seq Data
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variance of the random variable P(hj) is larger than its mean if s2
j

is positive. As previously, an edge is present in the graph between

genes j and j0 if one or both parameters bjj0 and bj0j are different

from zero.

In this model, the likelihood for gene j can be written as:

L( bj ,sj)~

ð
R

P
i~1

n

½exp ({mijzyij log (mij){
�

log (yij !)�
1

(2p)n=2sn
j

exp {
1

2s2
j

jj ej jj22

 !!
d ej :

ð5Þ

Similar to the previous model, we assume that the vector bj is

sparse. We add an ‘1 penalty to a function of the log-likelihood (5)

so that some coefficients in the estimated bj vector are set to 0:

{2L( bj ,sj)zlE bj E‘1 :

Estimation of parameters bj and sj was done using the R

function glmmixedlasso [18], based on a Laplace approximation of

the penalized likelihood and a coordinate descent algorithm.

An important aspect of this method is the choice of the

regularization parameter l. To choose a common l parameter for

all the gene-by-gene regressions, we propose to use a two stage

approach for this parameter. First, for each gene j, a lj parameter

is chosen by maximizing the BIC criterion defined as

BIC~L( bj ,sj){n log (n)=2, where L(bj ,sj) is the unpenalized

log-likelihood and n is the number of free parameters in the model.

Then the mean of the lj parameters is taken as the regularization

parameter and used for all the regressions: l~
Pp

j~1 lj=p. Since

BIC is an asymptotic criterion, taking the average of the

regularization parameters over all the regressions helps to improve

network inference performance.

Results

Simulation study
Multivariate Poisson data simulation. In order to simu-

late multivariate Poisson data, we use a method described by

Karlis [13]. As an illustration, for a two dimensional multivariate

Poisson distribution, we simulate three independent Poisson

variables (X1,X2,X12) and sum them up (Y1~X1zX12 and

Y2~X2zX12) so that the resulting variables are not independent:

cov(Y1,Y2)=0 if E(X12)=0. In the general case, a sample y of

dimension (n|p) where p is the number of nodes in the network, n

the number of samples is obtained by summing samples from

pzp(p{1)=2ð Þ independent Poisson random variables. The

adjacency matrix A [f0,1gp|p
encodes the underlying graph

structure: Aij~0 means that the expression level of genes

i[1, . . . ,p and j[1, . . . ,p are conditionally independent given the

other gene expression levels. In order to sum the pzp(p{1)=2ð Þ
terms accordingly, we fix the matrix B of dimension

(p|(pzp(p{1)=2): B~½Ip; P8(Iptri(A)0)�0 where P is a permu-

tation matrix of dimension (p|(p(p{1)=2)) of vector (1,1,0,…,0),

8 denotes the matrix multiplication element by element and

tri(A) is the vector of dimension (p(p{1)=2)|1 containing the

elements of the upper triangular adjacency matrix. The matrix

product y~B X gives a count data table of size n|p: n samples

from a p-dimensional Poisson random variable whose underlying

dependency structure is encoded in the known A matrix.

RNA-seq data are known to be overdispersed relative to a

Poisson distribution with the sample variance of a gene expression

vector larger than the sample mean. In our simulation study, we

also consider the possibility of inflating the variance of the

independent Poisson random variables used in the X matrix of the

formula above by simulating independent variables according to a

log-normal Poisson model. For gene j and sample i, we sample

Xij*P(mij) with log (mij)~hjzeij , eij*N (0,s2
j ). We use this log-

normal Poisson distribution only for the first p columns of the

matrix, the other columns being sampled from a simple Poisson

distribution.

Simulation settings. The three methods were compared on

two sets of simulations: multivariate Poisson data and over-

dispersed multivariate Poisson. For each type of data, we simulated

50 different adjacency matrices A with a scale-free structure. This

implies that degrees of the edges are assumed to follow a power

law distribution, i.e. few nodes in the network are well connected

and most of the nodes have only one or two neighbours. The

number of nodes p was set to 50. With a scale-free structure, the

maximum degree of a node is kmax~35 and the average degree is

less than 2. To avoid the ultra-high dimensional setting, defined as

k log ( p
k

)=n§
1
2

for Gaussian linear regression [19], we set the

number of biological samples to n = 100. For each of the 50

different adjacency matrices, 1225 samples of size n were simulated

from Poisson random variables (adding extra inter-sample

variance or not) and summed up as explained above to obtain

the final data set of size 100650. We chose to use Poisson

distributions of mean m = 100 to build the X data matrix, resulting

in data counts ranging from around 100 to 2500. In the case of

Poisson data with inflated variance, the parameter sj was set to

0.25, which is slightly smaller than the amount of dispersion

observed in the real data presented below.

To evaluate the different methods, we tried to infer the

adjacency matrix A from the simulated dataset y(100|50) and

compared the inferred matrix Apred with the real adjacency matrix

A used to simulate the data. For each type of data (with and

without extra inter-sample variance) and for each network

inference method (Gaussian, log-linear Poisson, and the proposed

hierarchical log-normal Poisson graphical models), Receiver

Operating Characteristic (ROC) curves were constructed by

varying values of the regularization parameter from an empty

network (sensitivity equal to 0) to a full network (specificity equal to

0). The sensitivity and specificity values were also compared for the

different methods using the chosen regularization parameter (with

the BIC criterion for the Gaussian graphical model, StARS

criterion for the log-linear Poisson graphical model and the mean-

BIC criterion presented above for the hierarchical log-normal

Poisson model). Note that in the case of the Poisson graphical

model, a power transformation is applied only in the simulation

setting inducing inflated variance.

Results. ROC curves, averaged over the 50 simulated

datasets, are presented in Figures 1 for the two simulation settings

(multivariate Poisson data with or without inflated variance). It can

be noticed that in the first setting, with no over-dispersion, the log-

linear Poisson model outperforms the Gaussian graphical model

applied to transformed data. This result was already observed

[11]. As expected, in this case the performance of the log-linear

Poisson model and the proposed hierarchical model are very

similar. When adding extra variability to the data, we are

compelled to use a power-transformation of the data to apply

the log-linear Poisson model [11], since the data no longer respect

the Poisson assumption of equal mean and variance. The

performance of the log-linear Poisson model in this case is

A Model for Network Inference from RNA-Seq Data
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considerably deteriorated, and is now comparable to the poor

performance of the Gaussian graphical model on log-transformed

data. The proposed hierarchical log-normal Poisson model

therefore outperforms the two other methods in this case, keeping

in mind that the data were simulated under a closely related model

that was deemed to be a reasonable choice to approximate the

dynamics of RNA-seq data. It has to be pointed out that for the

over-dispersed data, performances of the three methods are

considerably worse compared to the simple case of multivariate

Poisson data due to the presence of additional variability.

Sensitivity and specificity obtained by each method for the

chosen regularization parameters are represented in diamond-

shape squares on the ROC curves (Figures 1) and are summarized

in Table 1. The regularization parameter chosen with the mean-

BIC criterion for the proposed hierarchical log-normal Poisson

model offers a higher sensitivity than the Poisson or Gaussian

graphical models, even when no over-dispersion was simulated

(0.84 compared to 0.71 and 0.57, respectively), while keeping a

high specificity (0.97 compared to 0.99 and 0.98, respectively).

The number of correctly detected edges is therefore larger for the

proposed model compared to the other two methods, even in the

case of multivariate Poisson data with no over-dispersion. When

adding extra inter-sample variability, the differences between the

three methods are even larger, even if the performances

deteriorate for all methods (sensitivity equal to 0.4 for the

proposed model compared to 0.1 for the Gaussian graphical

model and 0.05 for the Poisson graphical model). These very low

sensitivity values can partly be explained by the fact that scale-free

structures were considered for the simulated graphs, therefore

generating only a small number of edges compared to a random

graph structure that are difficult to correctly detect. This also

explains, on the other hand, the high specificity values. In fact, as

the models infer very few edges for low numbers of biological

replicates, they have less chance to detect incorrect edges. Both the

Figure 1. ROC curves, averaged over 50 simulated data sets on scale-free graphs. Results are presented for the Gaussian graphical model
on log-transformed data (blue), the log-linear Poisson graphical model on power-transformed data (red) and the hierarchical log-normal Poisson
model on raw data (black) on multivariate Poisson data (A) and multivariate Poisson data with inflated variance (B). The dotted black lines represent
the diagonals.
doi:10.1371/journal.pone.0077503.g001

Table 1. Average sensitivity and specificity (standard deviation in parentheses) for the selected network across 50 simulated
networks with scale-free structure.

GGM Log-linear Poisson Hierarchical model

Multivariate Poisson Data Sens. 0.568 (0.069) 0.714 (0.036) 0.838 (0.050)

Spec. 0.984 (0.003) 0.990 (0.003) 0.967 (0.006)

Over-dispersed Poisson Data Sens. 0.107 (0.045) 0.046 (0.033) 0.383 (0.064)

Spec. 0.965 (0.003) 0.991 (0.004) 0.982 (0.027)

Results are averaged over 50 datasets for multivariate Poisson data and overdispersed multivariate Poisson data. GGM: Gaussian graphical model on transformed data
(log(y+1)), Log-linear Poisson: log-linear Poisson graphical model proposed by [11] on power transformed data (ya), Hierarchical model: proposed model as detailed in
the Methods section and applied on the raw data.
doi:10.1371/journal.pone.0077503.t001

A Model for Network Inference from RNA-Seq Data
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ROC curves and the sensitivity/specificity for the chosen

regularization parameter therefore show much better performanc-

es for the proposed hierarchical model than the Gaussian

graphical model on log-transformed data or the Poisson graphical

model on power-transformed data, especially in the case of

overdispersed multivariate Poisson data.

Figures 2 represents the relationships between the degree of the

nodes in the estimated network and in the simulated structure for

both the Poisson graphical model and the proposed hierarchical

model. It can be observed that, as expected, in the case of no over-

dispersion, both methods perform quite similarly, as already seen

in the ROC curves above. In the case of over-dispersion, however,

even if the sensitivity was quite poor for all methods (Table 1), the

structure of the graph was much better preserved with the

proposed model than with the Poisson graphical model on power

transformed data.

To ensure that these results do not depend on the scale-free

structure of the graphs, we have drawn ROC curves and

performed similar model selection on data simulated with an

Erdös-Rényi structure [20] (Figures 3 and Table 2). For Erdös-

Rényi graphs, each pair of nodes are connected with the same

probability, independently of the other pairs of nodes. Although

the differences among the three methods are less pronounced for

Figure 2. Relationship between the degree of the nodes in the estimated network and in the simulated network on scale-free
graphs. Results are presented for the log-linear Poisson graphical model without over-dispersion (A) and with over-dispersion (B), for the proposed
hierarchical log-normal Poisson graphical model without over-dispersion (C) and with over-dispersion (D). Black dotted lines represent the diagonal,
and red lines represent loess curves.
doi:10.1371/journal.pone.0077503.g002

A Model for Network Inference from RNA-Seq Data
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Erdös-Rényi structures than for scale-free structures as previously

observed [11], the same general conclusions hold.

Real data analysis
Data description. The three methods were applied to a

publicly available microRNA-seq data set available at The Cancer

Genome Atlas (TCGA) Data Portal (http://cancergenome.nih.

gov/). We selected 100 samples from breast invasive carcinoma

(BRCA) tumors. To avoid being in an ultra high-dimensionality

setting [19], we reduced the number of microRNAs used for

network inference to 50 (among 863). To do so, we first removed

all microRNAs that had at least one null count. Among the

remaining 207, we selected the microRNAs with the largest inter-

sample variance (as suggested by [11]). These microRNAs are the

most likely to be linked to breast cancer development since they

are selected among the most highly variable microRNAs. Note

that we did not perfom any normalization for differences in library

sizes on this data set, as contrary to differential analyses [2,21],

differences in library sizes have no impact on the network

inference results since we do not compare two different biological

samples, but relate the expression of genes within each biological

sample. Since each miRNA has an equal number of nucleotides,

there is no need for a gene length correction either.

Modelling the data. Shapiro-Wilk tests on miRNA expres-

sion vectors showed that the data, even for highly expressed

miRNAs, could not be directly modelled as a normal distribution

[22]. We therefore used a Box-Cox transformation [10] prior to

applying a Gaussian graphical model to these data. The optimal

Box-Cox parameter to make the data as normally distributed as

possible was found to be close to zero, which corresponds to a log-

transformation of the data (Figure 4).

For these data, the Poisson assumption is not verified either, as

shown in Figure 5, since the sample variance is considerably larger

than the sample mean for all miRNAs. As suggested in [11], we

Figure 3. ROC curves, averaged over 30 simulated data sets on Erdös-Rényi graphs. Results are presented for the Gaussian graphical
model on log-transformed data (blue), the log-linear Poisson graphical model on power-transformed data (red) and the hierarchical log-normal
Poisson model on raw data (black) on multivariate Poisson data (A Erdös-Rényi) and multivariate Poisson data with inflated variance (B Erdös-Rényi).
The dotted black lines represent the diagonals.
doi:10.1371/journal.pone.0077503.g003

Table 2. Average sensitivity and specificity (standard deviation in parentheses) for the selected network across 30 simulated
networks with Erdös-Rényi structure.

GGM Log-linear Poisson Hierarchical model

Multivariate Poisson Data Sens. 0.571 (0.059) 0.691 (0.061) 0.763 (0.093)

Spec. 0.992 (0.003) 0.990 (0.003) 0.975 (0.005)

Over-dispersed Poisson Data Sens. 0.112 (0.065) 0.050 (0.041) 0.198 (0.060)

Spec. 0.971 (0.003) 0.990 (0.003) 0.958 (0.009)

Results are averaged over 30 datasets for multivariate Poisson data and overdispersed multivariate Poisson data. GGM: Gaussian graphical model on transformed data
(log(y+1)), Log-linear Poisson: log-linear Poisson graphical model proposed by [11] on power transformed data (ya), Hierarchical model: proposed model as detailed in
the Methods section and applied on the raw data.
doi:10.1371/journal.pone.0077503.t002

A Model for Network Inference from RNA-Seq Data
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Figure 4. Optimal parameter for the Box-Cox transformation of
data. Curve obtained with the R package MASS.
doi:10.1371/journal.pone.0077503.g004

Figure 5. Sample mean-variance relationship for the 207
microRNAs.
doi:10.1371/journal.pone.0077503.g005

Figure 6. Network inferred with the hierarchical model. The representation was obtained using the software Gephi [25]. The size of nodes
represents the number of edges associated with the corresponding gene in the network.
doi:10.1371/journal.pone.0077503.g006

A Model for Network Inference from RNA-Seq Data
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therefore applied the power-transformation implemented in the

PoiClaClu package prior to applying the log-linear Poisson

graphical model.

The Gaussian graphical model with the BIC criterion detected

48 edges, the log-linear Poisson graphical model with the StARS

criterion [11] detected 74 edges, and the proposed hierarchical

log-normal Poisson graphical model detected 369 edges among the

50 miRNAs considered here. As shown in Figure 5, these data

exhibit significant over-dispersion with respect to the Poisson

assumption. We are therefore close to the second simulation

setting presented above. In this case, the sensitivity of the proposed

hierarchical model is expected to be much higher than for the

other two methods, which explains the much larger number of

detected edges. Figure 6 presents the network inferred by the

hierarchical model. Table 3 presents the biological functions of the

most highly connected nodes found with the proposed hierarchical

model. It can be noticed that a large majority of these miRNAs are

already known to be related to breast cancer. Further biological

validation would be interesting for the remaining ones that could

be new potential therapeutic targets.

Discussion

Network inference from RNA-seq data is an important

methodological challenge. This work is a pioneer study to provide

some guidelines on the best methods to achieve this goal. There

are two main approaches. The first and simplest idea is to perform

a transformation of the data and apply previously proposed

methods for microarray studies based on Gaussian graphical

models, for example using a Box-Cox transformation. Another

possibility is to apply methods specifically developed for the

analysis of count data using Poisson graphical models, either with

a power transformation of the data or by accounting for over-

dispersion directly in the model using for example a hierarchical

log-normal Poisson graphical model as proposed here. We found

in both simulation study and real data application that the power

transformation did not work well to correct for over-dispersion. It

has to be noted that the same a parameter was used here for all the

genes. It might be possible to improve the performance of this

method if a different coefficient was estimated for each gene. This

is, however, not possible with the method proposed by [23], which

finds the optimal value by maximizing the adequacy criterion for a

group of genes. In this work the best suited methodology for

network inference from RNA-seq data currently appears to be the

proposed hierarchical Poisson log-normal model, which seems to

be able to appropriately deal with highly dispersed count data.

However, the implementation of this approach based on the R

package glmmixedlasso [18] is quite slow for a large number of

biological samples and more research is needed to optimize this

function.

It has to be pointed out that in high-dimensional settings

(number of genes much larger than the number of biological

samples), all methods were unsurprisingly found to perform very

poorly, despite the ‘1 regularization. As for microarray studies, the

limited number of biological replicates available in RNA-seq

experiments considerably restrains the number of genes that can

be included in the network. Future research is needed to tackle this

issue. A first possibility may be to try to reduce the number of

parameters to be estimated. In fact, in a first step we aim at finding

the regulatory relationships between genes without necessarily

estimating their strength precisely. Therefore, in the regression

models presented above, instead of trying to estimate one

parameter for each gene we could infer parameters for groups of

genes. Alternatively, to face the problem of small numbers of

biological replicates, instead of inferring regulatory networks

within each experimental condition, it would be interesting to

use joint graphical model approaches [24] to jointly infer a

network in multiple conditions, thus highlighting the common or

differing patterns across conditions.
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