
HAL Id: hal-01004706
https://hal.science/hal-01004706

Submitted on 26 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generalized Distributed Consensus Algorithm for
Monitoring and Decision Making in the IoT

Denis Carvin, Philippe Owezarski, Pascal Berthou

To cite this version:
Denis Carvin, Philippe Owezarski, Pascal Berthou. A Generalized Distributed Consensus Algorithm
for Monitoring and Decision Making in the IoT. The 5th International Conference on Smart Com-
munications in Network Technologies. (SaCoNeT 2014), Jun 2014, Vilanova i la Geltrú, Spain. �hal-
01004706�

https://hal.science/hal-01004706
https://hal.archives-ouvertes.fr

A Generalized Distributed Consensus Algorithm for

Monitoring and Decision Making in the IoT
(Invited Paper)

Denis Carvin1,2a, Philippe Owezarski1,2, Pascal Berthou1,2b

1CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, aINSA, bUPS, F-31400 Toulouse, France

Email: {carvin, owe, berthou}@laas.fr

Abstract—In this paper, we propose a method to distributively
monitor a dynamic mobile network. For this purpose, we take
advantage of the consensus theory to provide each node with
a common view of the network. More specifically, we give a
decentralized algorithm to estimate a time-varying distribution,
where each node has a partial information on this distribution.
Our algorithm allows a trade-off between the precision of its
estimation and its bandwidth consumption. We validate our
approach by simulation under NS3, considering the distribution
of several network metrics. Simulation results demonstrate how
our algorithm can give insights on the network behavior that
could be exploitable in a decision making process.

I. INTRODUCTION

The work presented in this paper considers the most general

case of the IoT. All nodes are objects that can play three roles:

they can produce data and send them to a particular receiver

in the network, they can be the receivers of data produced

by other objects in the network, and they can also serve as

routers by being in charge of forwarding data packets with

the required QoS. If these objects are mobile, with a mobility

model that depends on their specific task, some of them could

adapt their moves in favor of the network quality. Using such

an approach, it could be possible for nodes to act for the

benefit of the whole network in terms of QoS and resilience.

To achieve such a behavior, objects must be able to monitor

the local state of the network, and to infer the global status

of the network by collaborating with their neighbors. For the

seek of coordination, objects need to share the same view of

the state of the network, in others words, they need to reach

a consensus on this value. As it is often done in network

monitoring, we derive the network’s state from metrics that

are measured at the node level. In particular, in this paper,

we define the network’s state as the distribution of metrics

that have been periodically measured on each node. Our main

contribution is to provide a decentralized algorithm to estimate

this time-varying distribution when nodes are mobile.

The following section briefly reviews basic notions of

descriptive statistic and introduces the related work. In Section

III, we describe the consensus framework and present our de-

centralized density estimation method. We apply this method

in the case of a wireless dynamic network of objects in Section

IV, where we present our simulation results. Finally, in Section

V, we discuss possible applications of inter-controlled mobility

and give future directions.

II. THEORETICAL BACKGROUND AND RELATED WORK

This section reviews basic notions of descriptive statistics as

well as related work on the decentralized density estimation,

which will be used throughout the paper.

A. Density Estimation

When measuring a metric in a network, knowing the average

might be useful, but it is often said that the average value of

a population is meaningless without its standard deviation. In

fact, these parameters are only useful for someone who has

prior knowledge on the underlying distribution. For instance,

average and standard deviation fully characterize a normal

distribution, but if the distribution is unknown and appears to

be multi-modal, these parameters might be badly interpreted.

Moreover, if one wants to deal with qualitative data, the

average is not computable and other approaches must be

used. Non-parametric estimation techniques can overcome this

problem. We mostly associate them to bar-chart (qualitative

data) or histogram (continuous data). Kernel Density Esti-

mation (KDE) encompasses those methods which estimate a

probability density function (pdf) without prior knowledge, in

exchange for an additional computational cost.

In the case of continuous data, given a set P ⊂ R
d of P d-

dimensional points, drawn from an unknown pdf, f , the kernel

density estimation f̂ of f can be defined as

f̂(p) =

P
∑

k=1

αkK
′
k(p), (1)

where αk and K ′
k are the weight and the scaled kernel function

associated to the sample (or location) pk, that is, K ′
k(p) =

|Hk|
−1

2 Kk(H
−1

2

k (p − pk)). The scaled kernel function K ′
k

can be seen as the contribution of the sample pk to the

estimation of the density at the location p. This contribution is

defined by a bandwidth Hk which is a d-dimensional matrix

and by a kernel function Kk which is symmetric and that

integrates to one. In many cases, Hi and Kk are the same

for all k. Besides,
∑P

k=1 αk = 1 and in general we have

αk = 1
P . It is important to note that choosing the bandwidth

as well as the Kernel is crucial in the quality of the estimation,

nevertheless, these aspects are beyond the scope of this paper.

For the sake of simplicity, we consider the Gaussian kernel

G(p) = (2π)−d/2e
−p

T
p

2 , and each node locally estimates the

optimal bandwidth using the algorithm given by Scott in [1],

in practice this is an open choice. When data are qualitative

or categorical, sample points pi belong to a discrete and finite

set of labels or categories. In that special case we can use the

following kernel:

K ′
k(p) = Kk(p) =

{

1 if pk = p,

0 otherwise.
(2)

B. Related work

There exist several lines of work that deal with the de-

centralized estimation of a distribution. We can classify them

in two categories: parametric-estimation and non-parametric

estimation. In the first case assumptions are made on the

underlying distribution which can be determined by a set

of parameters. The objective is to determine the parameters’

value that minimize a given criteria, like the Maximum

Likelihood. Specific Algorithms to distributively compute a

Gaussian Mixture Model are given by Nowak in [2] and

Jiang et al. in [3]. Other solutions proposed by Kowalczyk,

Vlassis and Sfakianakis use a gossip protocol framework [4],

[5]. Regarding non-parametric estimation, a distributed kernel

estimation is given by Hu and al. in [6]. This last work also

provides a compression method (with information loss) to

consider nodes with limited resources. Even if these previous

work have proven their efficiency, they are either very specific

to the considered problem, not trivial to implement or make

strong assumption on the network model that might not stick to

the reality of wireless mobile networks. As far as the authors’

knowledge, the problem of a time-varying distribution has not

been treated yet and the adaptation of previous work to this

new assumption could become fairly complex.

We argue that decoupling the diffusion of the information

from the information itself facilitates both the understanding

and the implementation. Consequently, dealing with the time-

varying assumption will become straightforward.

In the next section, we explain how to take advantage of

the average consensus to estimate a time-varying pdf in a

decentralized way.

III. DECENTRALIZED ESTIMATION OF TIME-VARYING

DISTRIBUTIONS

We first introduce the average consensus framework and

establish the notation, then we present our contribution.

A. The Average Consensus Framework

The term distributed consensus is often associated with the

work of Fischer, Lynch and Paterson [7], but the consensus

problem also has a strong background in the field of control

theory [8]. In fact, a consensus usually refers to the reach of an

agreement between several agents that share a protocol. In the

case of the average consensus, the agreement to reach is the

average of nodes’ states. The theoretical framework to study

the consensus problem in a dynamic system of networked

agents has been introduced by Olfati-Saber and Murray in [9].

It is now applied in various domains such as synchronization of

oscillators [10], load balancing [11], and sensor fusion [12]. In

the scope of this paper, we consider network monitoring. The

consensus framework can be used under different assumptions

on the nature of the exchange between agents which can

be either continuous or discrete. In our case, the exchange

between agents is materialized by packets, which are discrete

by nature.

Network Model: We place our work under a synchronous

communication model in which a node iteratively communi-

cates a consensus value at a discrete time index to its neighbors

and updates this value by taking into account the values it has

received. A network is modeled by a graph G = (N , E) for a

set N = [1, n] of n nodes (or agents) and a set E ∈ N 2 of

edges. An edge (i, j) ∈ E materializes the possible reception

by the node j of a monitoring packet from node i. The state

of node i is si ∈ S. We denote by s̄ := 1
n

∑n
i=1 si the

average value of the state over the network. In the case of

dynamic states, the value of si can change over time, thus

si(t) stands for the sample of i at the discrete time index

t ∈ N
0. Similarly, we define s̄(t) := 1

n

∑n
i=1 si(t). In the case

of a dynamic topology, the communication graph evolves with

agents’ mobility. Agents that were able to communicate may

not reach each other, whereas new communication links may

appear. In that case, we consider that the set of edges can

change over time whereas the set of nodes remains the same,

thus, G(t) = (N , E(t)) stands for the graph of the network at

t ∈ {0, 1, . . .} . Note that, even if N is constant, we can still

model the arrival of a node by adding edges to an isolated

node, and the departure of a node by removing its incident

edges.

Linear Averaging Iterations: We now review the known

results concerning linear iteration for the discrete-time average

consensus problem. Existing results differ mainly according

to whether the topology and the states of nodes are static

(constant) or dynamic (time-varying). In the case of a static

topology with static states the authors of [13], [14] rewrite the

distributed linear averaging consensus as a product of matrices.

At each step, nodes iterate their values using the scheme

xi(t+1) =
∑n

j=1 wijxj(t) where wij is the weight given by

the node i to the node j. In the matrix notation the equation

becomes x(t+1) = Wx(t), with x(0) = s. In order to respect

the network topology, the values of the weights are constrained

by G and ∀(i, j) /∈ E we have wij = 0. When the topology

evolves over time, the iteration becomes x(t+1) = W(t)x(t),
where W(t) is constrained by E(t). It is said that the consen-

sus converges if limt→∞ x(t) = s̄ which is equivalent to the

matrix equation limt→∞

∏t
k=0 W(k) = 11

T

n .

In our context, states and topology are both dynamic. This

case is treated in [15]. The authors propose a n-order linear

algorithm but we only consider the First Order Dynamic Av-

erage Consensus (FODAC) algorithm. The FODAC iteration

can be re-written in the following way,

xi(t+ 1) = δsi(t) +

n
∑

j=1

wijxj(t), (3)

where δsi(t) = si(t) − si(t − 1). The authors in [15] derive

an upper bound on the steady state error which is valid under

the following assumptions:

(A.0) the weighting matrix W(t) is doubly stochastic,

(A.1) the first order dynamic of states is relatively bounded,

(A.2) the network has a periodical strong connectivity.

The assumption (A.1) formally means that

∃B ∈ S | ∀t maxi(δsi(t))− mini(δsi(t)) < B.

Regarding the assumption (A.2), a succession of graphs G1,

G2, . . . , Gn with the same set of nodes N , has a periodical

strong connectivity if ∃P ∈ N
∗ | ∀t Gu = (N,∪t+P

i=t Ei)
is strongly connected.

In the remainder of the paper, we use the consistent

metropolis weighting policy from [14], which is an heuristic

that shows better convergence than its concurrents and verifies

assumption (A.0). This policy defines the weights that nodes

give to their neighbors (and consequently the weighting matrix

W(t)) as follows:

wij(t) =











1/(1 + max(di(t), dj(t))) if i ∈ Vj(t),

1−
∑

j 6=i wij(t) if i = j,

0 otherwise,

(4)

where Vi(t) is the neighborhood of node i at step t and di(t)
its associated cardinal (degree of node i). Note that this policy

reasonably assumes that the graph is undirected, which means

that, node i considers the value of node j if and only if it is

reciprocal. The assumption (A.1) is respected since the states

we consider have bounded norms. Finally, the verification of

assumption (A.2) relies on the network under study and will

determine the convergence towards the average of states.

B. Taking advantage of the Consensus Framework

As we just explained, the dynamic average consensus frame-

work allows nodes to track the average of their states while

the communication graph can evolve over time. Note that

Equation (3) only requires states to be part of a vector space.

Our approach is to rewrite the decentralized density estimation

problem in an average consensus problem. To do so, we define

the set of states in such a way that their average is the esti-

mation of the distribution we want to track. It means that we

need to provide the state space with an internal addition and a

scalar multiplication that respect the axioms of a vector space.

The main advantages of this approach are the immediacy

of convergence proofs and, regarding practical aspects, the

triviality of an oriented object implementation. The following

subsection explains the transformation of a density estimation

problem into an average consensus problem.

C. Average Consensus over Kernel Functions

When looking at Equation (1), it is clear that the kernel

density estimation of a pdf is a weighted average of functions.

Furthermore, if we set αi =
1
P , it becomes a simple average.

Thus, if we define the state of an agent with the correct

function, it results that the FODAC algorithm will track the

value f̂ . Hence, it follows that we need to model a function

space, its addition and scalar multiplication.

Dictionary Representation: In our case functions are linear

combinations of scaled kernels fully characterized by a tuple

(Kk,Hk,pk). As a result, we represent a function f with a

dictionary (or associative array), Df : Kf → Vf where keys

c ∈ Kf are tuples characterizing scaled kernels and values

v ∈ Vf ⊂ R
∗ are the corresponding nonzero real coefficients.

In the remainder of the section we consider Df ,Dg, Dh as

the representation of three functions f, g, h. D∅ stands for the

empty dictionary.

Addition: We define the addition between dictionaries as

follows.

h = f + g

⇐⇒

Kh = Kf ∪ Kg − {c ∈ Kf ∩ Kg |Df (c) +Dg(c) = 0},

and ∀c ∈ Kh we have

Dh(c) =











Df (c) if c ∈ Kf ∩ Kg

Dg(c) if c ∈ Kf ∩ Kg

Df (c) +Dg(c) else.
(5)

Dictionaries are merged, and for each common key, values are

summed, if the sum is null, the key is removed.

Scalar Multiplication: We define the scalar multiplication

as follows for γ ∈ R
∗:

h = γf ⇐⇒ Kh = Kf , and ∀c ∈ Kh, Dh(c)= γDf (c),

h = 0f ⇐⇒ Kh = ∅,
(6)

which means that for each key, the value is multiplied by the

scalar, if this scalar is zero, then the dictionary is cleared.

Satisfy Axioms: The way we define addition and scalar

multiplications allows to satisfy axioms of vector spaces. We

will not detail their proof which are trivial.

Initial Value and Convergence: The state of agents are

functions that can vary over time. This variation can be due, for

instance, to the evolution of the observed set of sample points,

their associated kernel or their associated bandwidth. However,

for the seek of clarity, we simplify the notation by using si,
xi, f̂i and f̂ instead of (si(t))(p), (xi(t))(p), (f̂i(t))(p) and

(f̂(t))(p), respectively. Let P be the set of P sample points

partitioned between agents where each of them has a subset

Pi ⊂ P of Pi samples. We denote K ′
i,r the scaled kernel that

agent i associates to its rth sample point and we organize the

scaled kernels in a multiset (K′,m) where K′ =
⋃

i,r{K
′
i,r}

and m is the multiplicity function. Thus, the centralized KDE

of the distribution given the scaled kernel of all the agents

with equal weight is

f̂ =
1

P

N
∑

i=1

Pi
∑

r=1

K ′
i,r =

1

P

∑

K′∈K′

m(K ′)K ′,

where P =
N
∑

i=1

Pi =
∑

K′∈K′

m(K ′).

(7)

We now define the state of agent i by si =
∑Pi

k=1 K
′
i,k. Since

the consensus value xi of node i tracks the value s̄, we have

xi ≈ s̄ =
1

N

N
∑

i=1

si =
1

N

N
∑

i=1

Pi
∑

k=1

K ′
i,k, ∀i. (8)

By identifying f̂ in the right hand side of (8) we obtain

xi ≈ s̄ =
P

N
f̂ =

∑

K′∈K′

m(K ′)

N
K ′. (9)

This last equation states that each node participating to

the FODAC algorithm asymptotically estimates the value of

f̂ with a scaling factor P
N , which is the average number of

sample points per agent. Each (K ′, m(K′)
N) is identifiable to

a (key,value) couple in the dictionary representation of f̂ .

As a result, the sum over the value of this dictionary is
∑

K′∈K′

m(K′)
N = P

N . Hence, each node can compute its own

scaling factor by summing all the values of its dictionary.

2 1 0 1 2
0.5

0.0

0.5

1.0

x
a
(0
)

2 1 0 1 2
0.5

0.0

0.5

1.0

x
b
(0
)

2 1 0 1 2
0.5

0.0

0.5

1.0

x
a
(1
)

2 1 0 1 2
0.5

0.0

0.5

1.0

x
b
(1
)

2 1 0 1 2
0.5

0.0

0.5

1.0

x
a
(2
)

2 1 0 1 2
0.5

0.0

0.5

1.0

x
b
(2
)

2 1 0 1 2
p-values

0.5

0.0

0.5

1.0

x
a
(3
)

2 1 0 1 2
p-values

0.5

0.0

0.5

1.0

x
b
(3
)

Fig. 1. Four First Estimation Step of a 2-Nodes Network

A Trivial Example: To illustrate this framework, we

consider the trivial scenario where two agents a and b are

always connected. In this configuration the weighting matrix

is constant and W(t) = 11
T

2 , agents exchange their value

and compute the average. At a given time t ∈ {1, 2, . . .}, a
and b observe their own unique sample pa(t) and pb(t) in R.

We choose the following values pa(t) = −1,−2,−2,−2, ...
and pb(t) = 1, 1, 1, 1, Figure 1 shows the Gaussian

estimation xa (left) and xb (right) of agents for the first four

steps and the corresponding dictionaries. In the dictionary

representation, a key is illustrated by the position of a row,

whereas its value is represented by its length and direction.

Remarks: One can notice that the consensus algorithm

given by Equation (3) introduces a difference between states

(equivalent to the introduction of negative kernels), δsi. It

results from this difference that xi is not necessarily positive

and consequently is not a pdf (as usually defined). However,

this is not a concern since xi is an estimation of f̂ . This effect

is mainly due to transient nodes’ states, it vanishes with the

stabilization of the set of observations, as illustrated for xa(t),
for t > 1 in Figure 1.

D. The Precision-Resources Trade-off

Besides computational resources, a consensus algorithm

requires memory, and communication bandwidth. The required

memory is directly linked to the size of the representation

of the consensus value. The required communication band-

width is evaluated by multiplying this size with the rate at

which messages are exchanged. We suggest to adjust these

parameters, that, also affect the precision of the estimation.

For instance, the reduction of the exchanges’ rate, save some

communication bandwidth. However, if this rate is too low,

the FODAC algorithm faces an undersampling situation and

the steady state error evaluated using the upper bound in

[15] will be important. Reducing the size of the consensus

representation is another solution to save both communication

and memory resources, this reduction implies information loss

and also degrade the estimation.

The size of the representation of the pdf follows an O(|K′|)
progression. Intuitively, we can say that the kernel set of a

constant distribution is collected in a number of step equal

to the network’s diameter, increasing quickly the size of the

exchanged messages. This is specifically true in the case of

a time-varying distribution where new kernels are regularly

introduced, while older might never disappear. To tackle this

side-effect, Hu and al suggested in [6] the use of compression

algorithm between exchanges. While these methods are appli-

cable for constant distribution, they should be carefully applied

in our case. Using a compression algorithm is equivalent to

changing the vector space addition, and in the meantime losing

its associativity. Consequently, the properties of the FODAC

algorithm are not guaranteed anymore, possibly letting nodes

progressively derive from the average. Actually, an other way

to proceed that conserve the addition’s associativity is to limit

the size of the kernel set. Indeed, the representation of the

consensus only grows with the introduction of a new kernel,

thus, using a finite set of kernels will limit this growth. As

a result, our approach is to bound and discretize the set of

kernel, or equivalently, to use categorical kernels.

IV. MONITORING OF WIRELESS MOBILE NETWORKS

Our method has been designed to monitor wireless network,

thus, we evaluate it through NS-3 simulations. This section

describes the considered scenario. Then, we present our esti-

mation results.

A. Network Topology and Traffic

We simulate a wireless mobile ad-hoc network during 100

seconds. For this purpose, we created two primary geograph-

ical zone and placed 60 nodes in each of them. The size

of the zones are set such as nodes from the same zone are

(most of the time) in the same graph component. Indeed,

in our case, the communication graph can be modeled by a

Left Primary Zone Transition Zone Right Primary Zone

Fig. 2. Considered Network Topology With 3 Transition Nodes

random geometric graph, thus its probability to have a unique

component depends on the communication range, the size of

a zone and the number of nodes. The two primary zones are

separated by a transit zone, as illustrated in Figure 2. Nodes in

different primary zones can not reach each other without the

help of a node in the transit zone. All Nodes follow a random-

way point mobility model. During the simulation they move

in their zone between 1 and 3 times at the average speed of

4.0m/s. Nodes have a unique wireless interface, their Medium

Access Control and Physical layers are simulated using the

NS-3 YansWifi model where controllers are set in an ad-hoc

mode and use the adaptive auto rate fallback algorithm without

any quality of service. Routes are discovered through the use

of AODV. In terms of traffic, each node chooses 3 destinations

to which it sends an ON/OFF Constant Bit Rate (CBR) UDP

traffic. During the ON period, all sources use the same data

rate (10KB/s) and packet size (1400 bytes).

B. Network Metrics and Consensus

We assumed that each second, a node knows its own

position and collects metrics that are derived from its lo-

cal traffic (and in practice, could be extracted from their

Management Information Base). Every consensus period τ ,

node communicate the information required to update their

consensus value (degree and dictionary). The metrics related

to the traffic are the number of byte processed by the IP

layer from the local UDP sources (sent), the number of

bytes processed by the IP layer from other sources (fwd)

and the number of bytes dropped by the IP layer (dropped).

To describe the local level of satisfaction, we derived from

these three metrics a trivial ratio sat = sent+fwd
sent+fwd+dropped ,

which decreases when a node is not able to process a packet

(route problem, overload. . .). We conducted three dynamic

average consensus, the first one tracks the average value of

the sat metric, the second tracks its distribution in the whole

network. In a last consensus nodes estimate the geographical

(multivariate) density of their population.

C. Simulation Results

In this subsection, we successively explain the three con-

sensus and illustrate each of them by a figure.

1) Estimation of the Average Satisfaction: A simple solu-

tion for a node to estimate the average value of a metric is to

use its local value. In that case the error is given by the mean

absolute deviation. In this first consensus each node estimates

the average value of their satisfaction. Figure 3 shows how

the mean absolute error is reduced by the FODAC algorithm

and illustrates the trade-off that exists between its precision

and its bandwidth consumption. On the top left sub-figure

we plot the satisfaction sati(t) of each node i every second

as well as their average. The average satisfaction decreases

progressively due to nodes’ dynamic and to the start of UDP

sources. The top right and the bottom left sub-figures represent

the FODAC estimation xi(t), of this average for the consensus

period τ = 0.33s and τ = 0.1s, respectively. We can notice a

reduction of the average error with the consensus period. In the

last 20s, one node estimated the average satisfaction to zero, it

was a disconnected node in the transit zone. On the last sub-

figure we detail the mean absolute error ||x(t+1)−1.x̄(t)||1/n
for several magnitudes of period consensus. From this last sub-

figure, we can intuitively say, that at some point, in terms of

information, the reduction of the uncertainty does not worth

the price of the additional required bandwidth. We let this

optimal Shanon trade-off as an open question.

0 20 40 60 80 100
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

M
e
a
n
 a

b
so

lu
te

 e
st

im
a
ti

o
n
 e

rr
o
r Consensus Estimation Error

τ=0.33s τ=0.1s τ=0.01s

Fig. 3. Estimation of The Average Satisfaction

2) Estimation of Satisfaction Distribution: Our main contri-

bution is to estimate a time varying distribution. We illustrate

this estimation in Figure 5 with a consensus period τ = 0.1s.

The top sub-figure is the estimation of the satisfaction distribu-

tion across time (which is similar to the centralized estimation)

for a node located in the left zone. The bottom sub-figure is

the estimation of the same distribution for the node located in

the transit zone that was not well connected with its neighbors

during the last 20 seconds. At the beginning of the simulation

nodes estimate that all the network is fully satisfied. This

distribution evolves over time and both nodes are aware of this

phenomena and agree on a new estimation. As expected their

estimation differs during the last 20 seconds because the node

in the transit zone is disconnected. However, since assumption

(A.2) is respected, this node recovers the estimation when it

joins the network.

100m 200m 300m 400m 500m 600m 700m

100m

200m

300m

Node position

t=10s

100m 200m 300m 400m 500m 600m 700m

100m

200m

300m

Node position

t=60s

100m 200m 300m 400m 500m 600m 700m

100m

200m

300m

Node position

t=90s

Fig. 4. Geographical Density Estimation of a Node Moving in the Right Zone at t = 10s, t = 60s and t = 90s (From Left to Right) with 216 kernels

Time (s)

0
20

40
60

80
100

Satisf
action

0.0
0.2

0.4
0.6

0.8
1.0

D
e
n
si

ty

0
2

4

6

8

10

12

Estimation from the left zone

Time (s)

0
20

40
60

80
100

Satisf
action

0.0
0.2

0.4
0.6

0.8
1.0

D
e
n
si

ty

0
2

4

6

8

10

12

Estimation from the transit zone

Fig. 5. Estimation of Satisfaction Distribution

3) Estimation of The Geographical Density: Finally, we

consider the estimation of a time varying multivariate density.

For this last case, we consider the geographical repartition of

nodes over the map. As we noticed in section III-D the size of

messages grows with the cardinal of the kernel set. Since most

of compression method could not be used without loosing the

addition’s associativity, our technique is to limit the kernel

set. In this case, all nodes consider a set of 216 kernels whose

locations are uniformly distributed on the map (≈ 9 × 10−4

kernel/m2). Instead of communicating the kernel associated

to their own position, node use the nearest kernel in the

kernel set. Figure 4 is the geographical density estimation of a

node located in the right zone at different instants. During the

simulation, transit nodes relay the information between zones,

and the node improve its view of the entire map over time,

being able to distinguish the different zones. An interesting

point is that it has a precise view of its neighborhood while

approximations only concerns distant zones.

V. CONCLUSION

Motivated by the distributed monitoring of networks with

dynamic topology, we developed in this paper a method to

estimate a time varying multivariate distribution in a decentral-

ized way. Based on their local measurement and that of their

neighbors, nodes iteratively exchange messages to track a dis-

tribution in the network. Our work relies on the f−consensus

theory from which we can derive convergence conditions and

error bounds. The resulting method allows a trade-off between

precision, and resource consumption. Simulations showed that

using several consensus, nodes could behave for the benefit

of the whole network. In the present paper, by coupling the

satisfaction distribution with the geographical density, some

nodes could decide to move towards the transit zone and

increase the global network quality. Finally, we note that the

convergence speed is limited by the fact that all nodes are

highly mobile and participate to the consensus. However, if we

relax those two assumptions, we could build overlay networks

and drastically improve the estimation giving the possibility

to efficiently monitor large fixed networks.

REFERENCES

[1] D. W. Scott, Multivariate density estimation : theory, practice, and

visualization, ser. Wiley series in probability and mathematical statistics.
Wiley, 1992.

[2] R. Nowak, “Distributed em algorithms for density estimation and
clustering in sensor networks,” Signal Processing, IEEE Transactions

on, vol. 51, no. 8, pp. 2245–2253, Aug 2003.
[3] H. Jiang and S. Jin, “Scalable and robust aggregation techniques for

extracting statistical information in sensor networks,” 2006.
[4] W. Kowalczyk and N. Vlassis, “Newscast em,” in In NIPS 17. MIT

Press, 2005, pp. 713–720.
[5] N. Vlassis, Y. Sfakianakis, and W. Kowalczyk, “Gossip-based greedy

gaussian mixture learning,” in 10th Panhellenic Conf. on Informatics,
2005.

[6] Y. Hu, J.-G. Lou, H. Chen, and J. Li, “Distributed density estimation
using non-parametric statistics,” in Distributed Computing Systems,

2007. ICDCS ’07. 27th International Conference on, June 2007, pp.
28–28.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985.

[8] V. Borkar and P. Varaiya, “Asymptotic agreement in distributed esti-
mation,” Automatic Control, IEEE Transactions on, vol. 27, no. 3, pp.
650–655, Jun 1982.

[9] R. Saber and R. Murray, “Consensus protocols for networks of dynamic
agents,” in American Control Conference, 2003. Proceedings of the

2003, vol. 2, June 2003, pp. 951–956.
[10] V. Preciado and G. C. Verghese, “Synchronization in generalized erds-

rnyi networks of nonlinear oscillators,” in Decision and Control, 2005

and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE

Conference on, Dec 2005, pp. 4628–4633.
[11] C. Xu and F. C. Lau, Load Balancing in Parallel Computers: Theory

and Practice. Norwell, MA, USA: Kluwer Academic Publishers, 1997.
[12] S. Martinez, “Distributed representation of spatial fields through an

adaptive interpolation scheme,” in American Control Conference, 2007.

ACC ’07, July 2007, pp. 2750–2755.
[13] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”

Systems and Control Letters, vol. 53, pp. 65–78, 2003.
[14] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-

varying metropolis weights,” 2006.
[15] M. Zhu and S. Martnez, “Discrete-time dynamic average consensus,”

Automatica, vol. 46, no. 2, pp. 322 – 329, 2010.

