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A differential tube-based model for predicting the linear
viscoelastic moduli of polydisperse entangled linear polymers
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We presentasimpletubetheoryfor topologicallylinearentanglegolymersthataccountdor reptation contour-lengttluctuationsandthermal
constraintreleaseThis theoryis basedon a newdifferential formulationof the thermalconstraintreleasgphenomenomproposedy the authors
[A.Leygue,C.Bailly, R.KeuningsA differentialformulationof thermalconstrainteleasdor entanglecolymers,J.NonNewtonianFluid Mech.
128 (1) (2005) 23—-28] which is extendedhereto accountfor contour-lengthfluctuations.We apply the theory to mono- and poly-disperse
polystyrenemeltsanddemonstratés ability to producequantitativgpredictions Additionally, we discussaamathematicalljinearapproximatiorof
ourapproachhatpreserveshestructureof themodel While mostquantitativeubetheoriesfor predictinglinearviscoelasticityaremathematically
non-linear,our approactellows oneto addresghe linear viscoelastiaoesponsef a polydisperseentangledsystemwith a mathematicallylinear
theory.

Keywords: Entangled linear polymers; Linear visco-elasticity; Polymer mixtures

1. Introduction In order to predict the relaxation modulus of an entangled
polymer, one must describe how the polymeric chains escape
Tube theories addressing the quantitative prediction of the linfrom their constraining tubes and how this relaxation process
ear viscoelastic properties of entangled systems based on thaiffects the tubes themselves. For linear polymers, the escape of a
microstructure have now reached a high level of maturity. Folchain can occur through reptation or contour-length fluctuations
lowing the pioneering work of de Gennfd on reptation, nu-  [13]. Although they are often addressed separately, these two
merous tube models are now capable of a quantitative descriptigghenomena can be viewed as different modes of a Rouse chain
of the linear viscoelastic properties of linear entangled polymergrapped in a tube potential. For example, the stochastic descrip-
(see e.g[3-7]). The success of these theories is such that thdon of linear chaing6,14,15]does not consider reptation and
focus is now on the prediction of the linear viscoelastic respons#iuctuations separately as fluctuations correspond to the breath-
of systems with a much more complex architecture such as mi¥ng modes of a one-dimensional Rouse chain escaping from a
tures of star and linear polymei&-10]. For systems involving tube. Different authors have proposed coupled descriptions of
more complex architectures such as long chain branching, a hieptation and contour-length fluctuations by either considering
erarchical algorithm has been proposed by Lafddn Park et  a position-dependefit6,17]or a time-dependeift8] diffusion
al. [12] have modified it to incorporate recent theoretical develprocess along the primitive path.
opments. Despite their focus on the linear rheology of entangled Thermal Constraint ReleafEd] theories address the effects,
systems, a striking fact about all those theories is that they aren the tube, of the relaxation of the surrounding chains. In a
mathematically non-linear. sense, constraint release is a closure to the tube potential. Viovy
et al. [20] have proposed a rigorous description of constraint
release and have shown when Rouse-like tube motion induced
"+ Corresponding author. t_)y thermal constraint release can_be a_pproximated py a dila-
E-mail addresses: bailly@poly.ucl.ac.be (C. Bailly), tion of the tube. The double reptation pictgd,22] provides
roland.keunings@inma.ucl.ac.be (R. Keunings). a simple and successful alternative to complex constraint re-



lease theories. Double reptation actually is a fair approximathe chain ends. Following Des Cloizedds] and Grahanil7],
tion of Rouse tube motion. Likthman and McLeish have re-we consider that the effect of contour-length fluctuations can be
cently shown that generalized double reptation is essentiallgccounted for through a position-dependent diffusion constant.
correct down to the Rouse time of the chdfi. For poly-  The simplest form for the evolution @] (z, s) is thereforg13]:
disperse systems, double reptation induces a non-linear mix-
ing rule which has actually been recovered in the stochasti(ﬁpf _ 9 (af(s)apf) 1)
reptation model proposed by Hua et Hi4]. A limitation of  0f 0 " as \ 1 Mas 0 )
double reptation appears for polydisperse systems where differ- ,
ent chains relax on well separated timescales. In that case, the (t,-1)=0 (2)
random pairwise interactions picture of double reptation breaks, .
down, as the fast dynamics of the short chains would induce Z\)O (11)=0fors>0, 3)
very fast relaxation of the slower chains, which is not observqug(Q s)=1for —1<s <1,
experimentally.

In this paper, we present a simple tube model for mixturegvhere Eqs(2) and (3)come from the assumption that chain
of linear polymers. This theory, valid in the rheologically lin- ends are fully relaxed.
ear regime only, proposes a coupled description of reptation, As suggested ifiL7] we considerxj;(s) to be constant along
contour-length fluctuations and constraint release. Reptation aride primitive path, except at the chain ends in two regions of size
contour-length fluctuations are accounted for through a positioproportional to,/M/M,, whereM is the molecular weight of the
dependent diffusion mechanism proposed by Graham[@f7d).  polymeric chain and/, is the molecular weight between entan-
while thermal constraint release is introduced using an extensioglements. In those regions, where contour-length fluctuations
of a new differential formulation of double reptati¢h]. Our  allow for a faster renewal of the tube segments, the diffusion
theory allows one to compute directly the tube survival prob-coefficient is proportional to the inverse of the quadratic dis-
ability along the primitive path. Furthermore, the extension totance to the chain end. As the molecular weight of the polymer
the polydisperse case yields a perfectly linear mixing rule. Theincreases, the influence of contour-length fluctuations becomes
we demonstrate the predictive capabilities of our approach omore and more negligible. In that limiting case, the reptation
a large set of polystyrene samples. Finally, we show how it ipicture[2] tells us that the diffusion constant should scale like
possible to build a mathematically linear approximation of ourthe inverse of the cube of the molecular weight of the polymer.
theory that retains both the structure of the model and the physrhe full expression foaj; (s) becomes:
ical meaning of the variables. The resulting model is therefore
mathematically linear (linear equations and mixing rule) and 4 K¢?M, < Me>
. : e : : : oy (s) = ifs>|1-Ksm/— |, (4)
is able to predict quantitatively the linear viscoelastic proper- Kym2M3 M(1 — s5)? M
ties of entangled linear polymers. The next step is of course

to build a constitutive equation for the non-linear rheological 4 K 2M, . M
: A . L e if Kpy/ =5 -1 5
regime whose linearization would be the linear model presented Kam2M3 M(1 + 5)2 §< Ny T (5)
in this work[23].
>3 Otherwise, (6)
2. Tube theory for a monodisperse system KqmeM

whereK, is a material parameter and the~3 dependence of

In this section we present a tube theory for entangled IIn'ozf(s) is due to the non-dimensional nature of the spatial para-

giie?(/;:ﬁ;ntsﬁ:gf f:?;gggj'n(ﬁg:hilmgizog'rz?t)e/rse case and th’#étric coordinates. The adjustable parametdéis is close to

Lets(—1 < s <y1) beaparame?ric)(l:oolrodinaté along the prim-umy and controls the depth of Fhe contogr-length fluctuations
itive path ofa pglymer chain in a monodisperse environmentWlthln the_ model. We do not claim any unlvers_al Va.ll.le o

Ny - - and consider it as a parameter that has to be identified for each

Letus definePy (, s) the probability for a tube segment with po- material. This is similar to the parametét* of Des Cloizeaux
sitions to surv_ive between the arbitrary initial time 0 and time [18] that also controls fluctuations. Takigy = 0 actually sup-
The superscriptdenotes that we do account for contour-lengthpesses the fluctuations as the diffusion constant becomes con-
fluctuations, while the parameteis representative of the effec-  iant along the chain. In that special case, one recovers the simple
tiveness of constraint release. Two limiting casesdre, s) and reptation picture of Doi and Edward$3]. The reptation time
P,(t, s). The quantityP({ (¢, s) is representative of a chain relax- t4(M) can then be defined as:
ing in a fixed network of entanglements where no constraint re- 3
lease occurs, whil@, (1, s) properly describes a very long chain (M) = KaM". @)
where the length-fluctuations become negligible. Reptation theat this point, it is worth noticing that the simple scaling we
ory[2,13]suggests thatthetime evolutionkg(t, s)isgoverned adopt for the width of the fluctuation zone cannot be valid for
by a diffusion operator along the coordinateThis operator poorly entangled systems. Whehis only a few timesV,, the
represents the diffusive motion of the chain inside its tube thateptation picture tends to break down as fluctuations become the
yields the destruction/renewal of a tube segment that reach@®minant relaxation mechanism.



Finally we account for constraint release using the approachndependent ag;(M) is linked toz, (M) through the underlying
we developed ifl]. This is done by adding a local relaxation segmental dynamics, characterized by the equilibration time
termto Eq(1) representative of relaxation through constraint re-Following Larson et al[24] we have:

lease. Following the double reptation picture, we postulate that 7,
the rate of constraint release is proportional to the rate of reKa = 3%’ (12)
laxation through reptation and contour-length fluctuations, and ¢
that constraint release events occur with the same probability og _ (13)

all unrelaxed segments. The first assumption translates the fact M2

that constraint release is actually driven by the other relaxatiogy,q independent parameters of the model are therafore,.,
mechanisms. The second one states that the probability for @o . Ky andy.

segment to relax through constraint release does not depend o
its position along the chain. At a given position along the prim-3 g ¢.ncion to the polydisperse case
itive path, the rate of relaxation through constraint release must

therefore be proportional to the local tube survival probability. We now extend the theory presented in the previous section to

The resulting differential problem fa/ (s, s) reads: the polydisperse case, without adding any adjustable parameter.
ap! p P The extension procedure is similar to the one we proposed in
£ =_ (ag(s)P}f) + BP/, (8)  [1], where contour-length fluctuations were neglected. Let us
or as as consider a polydisperse system of polymers witldifferent
Pf(t,-1)=0, massest®. Let P/ )z, 5) be the tube survival probability at

f time r and parametric positiom for the chains of mass/(®.

Py (1,1)=0Oforz> 0, We assume that all chains reptate and fluctuate independently of

P/O,s)=1for —1<s <1, the polydispersity of the system. The rate of constraint release
4 is however the same for all chains and is computed from the

Whereﬁ(Plf) is the instantaneous rate of thermal constraint refelaxation of a!l masses. The differential problem governing the

lease. We now extend the expressionfioP; ) proposed irfl] ~ evolution of P} reads:

to account for both reptation and contour-length fluctuations: aP)f ()

0 (o D)2 pr) £ )

S, o/0s(er] (s)/05(PL)) ds o 7B <"‘d Wahr ™) + AP (14)
1 5f ’ )
Jo1 Py ds P)f(’)(t, -1)=0,
wherey is an adjustable parameter of order unity that controls 0)
the amount of constraint release in the system. It is importanf7 = (> 1) =0 forz >0,
to notice thaig is not constant in time and therefore the local PIOO ) =1for —1 <5< 1.
relaxation does not obey a simple first-order decay. Y

The relaxation modulu& (¢) is simply defined as being pro- In view of Eq.(9), the rate of constraint releagés consistently
portional to the average tube survival probability along the chaingefined as:

| ) 1 70 76)
G() = G2 / P/ (1, ) ds, 10) o 2 a0/l T99/0s(Py T ds

No T
2 =00 13O

GY% being the plateau modulus. N . .
. . . @ /) apck
Inorderto predict the high frequency response, the expressm‘ﬁhere‘p |s'the vqlume fract|oq of species (i) a eeps the '
ame meaning as in the monodisperse case. The diffusion coeffi-

(10)for the relaxation modulus has to be modified to account f0|s_ Dy~ 0 )
the Rouse modes of the chain. In practice, this is simply done b§i€nte; ' (s) is computed from E4), whereM ™ is substituted

superposing a Rouse relaxation moduli€) on the relaxation  for M. Similarly to Eq.(10), we define the relaxation modulus as
modulus coming from reptation. Followir(§], the expression the volume average over the different species of the tube survival

for the Rouse relaxation modulus for a chain of missrites: ~ Probability:

B(P]) =y

: (15)

© q 2 0 N o® 1 .
G0=6% [ Y Sew (J’) 6 =63 % /1 P/ O, 5)ds. (16)
p=Z+1 Tr i=1 -
7 5 By directly computing the relevant quantity i.e. the tube survival
+} Z lexp P (11) probability under reptation, contour-length fluctuations and ther-
3 - Z T, ’ mal constraint release, we alleviate the need for a non-linear
= mixing rule.

wherer, = K,M? and K, is an additional linear material pa- In order to correctly model the short-time behaviour, the Rouse
rameter. The integeX is defined as the closest integer to the relaxation modulugl11) can be added for each species using a
ratio M/M,. The material parametei§;, K, and M, are not linear mixing rule.



4. Numerical solution of the model 100

|+=-=-Likhtman-McLeish
| —— This work
-+ This work, adjusted parameters

Although the above theory is quite simple from a mathemat-
ical point of view, a closer look at E¢14) shows that the differ-
ential problems for all masses are coupled through the constraint
release term. This is numerically expensive for a large number
of masses. The numerical cost can however be reduced dramati-
cally through the use of a semi-analytical solution that decouples : ‘
the different masses. : e

In the absence of constraint release, i.e. whea 0, the
partial differential Eq.(14) become decoupled. The functions o2l
Pg (’)(t, s) can therefore be computed numerically at a reason- 10° 10' 10? 10°
able cost using a finite difference scheme. Through direct substi- M/ Me
tution, one can verify that the following expression ﬂir(‘)(t, s)
satisfies Eq(14):

107"

T

3G 7.2

Fig. 1. Dependence of the zero-shear viscosifyith the molar mass for a
strictly monodisperse sample. The plain line is the prediction of our model
(y = 1andK; = 0.6), while the dashed line is the prediction of the Likhtman

. 14
7G) £6) N ¢(l) 1 £6) and McLeish mode]6]. The dotted line is the prediction of our model where
Py (f, S) = Po (t, S) Z 7 Po (f, S) ds . (17) we increased the depth of contour length fluctuations and the effectiveness of
i=1 -1 constraint release (3 1.2 andK y = 2).

The computation op)f @ with this method has atruly negligible We also received the molecular weight distribution and the vis-
numerical cost as, for a large number of masses, the algorithmgoelastic moduli at 170C from BASF. The characteristics of
Comp|exity is reduced from quadratic to linearNn the various Samples are prOVidearmble 1. Samples PS1, PS60
and PS275 are quite monodisperse, while PS2 and PS330 have
a much broader molecular weight distribution. PS3 is a trimodal
sample with a fraction of very high masses. The parameter es-
We now present predictions of the model in the monodis-timation is actually quite a delicate task for two reasons. In the
first place, the sensitivity of the model to the different parame-

perse case. Next, we apply the model for the prediction o :
linear viscoelastic moduli of different samples of polydisperse€'s can be very uneven. Second, not all samples are suited to

polystyrene melts. For all predictions, a Rouse spectrum ddeerform this estimation, if they only provide information in a

scribed by Eq(11) has been superposed using a linear mixingMa/"oW molecular weight range which is not representative of
rule, as done by van Ruymbeke et[al. the physics built in the theory. Therefore, we chose to use the

In Fig. 1, we show the molecular weight dependence of th@road sample PS3 to fit the parameters of the model. In order

predicted zero-shear viscosity of a monodisperse system. In ttg account for the whole molecular weight distribution, we dis-
limit of highly entangled chains, the viscosity scales like thec,reuze it V_‘”th a small fixed step in ngarlﬁhmlc space. The effi-
cube of the molar mass. As the number of entanglements gef€Nt semi-analytical method described in Secttill allows
lower, this scaling gradually changes to an exponent 3.4. In thid$ t©© compute quickly the model predictions. The parameters
example we chose to sgt= 1 andK ; = 0.6, as these are the resulting from_ the ﬂ_ttmg pr.ocedure are reportedable 2. The
values we identified for the polystyrene melts discussed later iff?olecular weight distribution as well as the measured and pre-
this section. The value of the other parameters does not chan icted viscoelastic moduli for ,PS_3 are reportedig. 2(a and

the shape of the viscosity curve but merely translates it verti)- e see there agood quantitative agreement between the data
cally and horizontally. For the sake of completeness, we compar@d the predictions, over a wide range of frequencies.

our predictions with those of Likthman and McLeish,(€ 1) _InFigs. 2—4we show, for a wide range of molecular weight
[6]. The models predicts similar trends and apparently the sam@istributions, the quantitative agreement between experimen-

asymptotic value. The differences showing up for less entanglef!y measured viscoelastic moduli and the model's predictions.
systems are mostly due to differences in the relative importan lIthese predictions were obtained using the single set of param-

of contour-length fluctuations between the two models. witheters fromTable 2. The main discrepancies between predictions
y = 1.2 andK ; = 2 our model predicts a viscosity curve very and measurements are found at low and high frequencies.
close to that of Likhtman and McLeish. T
. . able 1
To evaIL_Jate the_ mode_l further,_ we test its ab'“_ty 10 COI- characteristics of the six PS samples provided by BASF
rectly predict the linear viscoelastic properties of six polydis- - —2 M, (kg/mol) M, (kg/mol) My /M,
perse polystyrene samples. The parameters of the model are

5. Model predictions

estimated using the molecular weight distribution and the vis—igi 232 igg ;;2
coelastic moduli of a single sample. The value of the parametersgs 407 143 583
is then frozen for the subsequent predictions on the remainingseo 69.6 ®.7 111
five samples. The data of the six samples named PS1, PS2, P$3$275 290 253 1.07
PS60, PS275 and PS330 were kindly provided to us by BASF.S330 324 112 2.89
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Fig. 2. Molecular weight distribution and linear viscoelastic moduli of PS3 (a and b) and PS1 (c and d). Plain lines are the model’s output, while the dots are the
experimental data.

1
4
- 3
< 05
5 2
j
0 0
10* 10° 10° 10* 10° 10°
(a) log( M) (¢) log( M)
10%
10*
= 3
&= 10
R 2
5 = 4
0 10" P
10° 10-14%
0% 10?2 10 108 10 10 10° 10° 10*
(b) wlrad/s] (d) wlrad/s]

Fig. 3. Molecular weight distribution and linear viscoelastic moduli of PS2 (a and b) and PS60 (c and d). Plain lines are the model’s output, while the dots are the
experimental data.

Atlow frequency, the model sometimes fails to correctly pre- At intermediate and high frequencies the loss modulus tends
dict the storage modulus. In this frequency range the dominatintp be underestimated. We connect this feature to the crude de-
mechanisms are reptation and constraint release. Furthermosgyription of contour-length fluctuations we implemented.
the parametey, which controls constraint release, has the main
influence on the slope of the storage modulus in this regiong, I inear approximation of the theory
We would therefore suggest that a more accurate treatment of

constraint release would help resolve these discrepancies. Despite the relative simplicity of our theory, it remains math-
Table 2 ematically non-linear. The non-linear operatorqu'(t, s) found
Parameters resulting from the fitting of the model on the PS3 data in the deﬁnition 9) malfes the rate of constraint relegséme _

) > 10° Pa dependent. This non-linearity is not a problem per se but having
., 5.0x 1045 to rely on a mathematically non-linear theory to describe lin-
M, 15700 g/mol ear rheological properties of a system prevents us from building
Ky 0.6 a theory for the rheologicaly non-linear regime on top of the
Y 10 previous one. In the present section we propose a simple ap-
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Fig. 4. Molecular weight distribution and linear viscoelastic moduli of PS275 (a and b) and PS330 (c and d). Plain lines are the model’s output, while the dots
the experimental data.

proximation of our theory that preserves its general mathemats for Eq. (14), the analytical solution of E¢20) can be ex-
ical structure, but where both the mixing rule and the operatorpressed as a function @g(");
acting on the variables of the model are mathematically linear. .

The non-linearity of our theory comes from the time- Py -z, s) = PLO(, s) exp(—1/7). (21)
dependent relaxation induced by constraint release. Therefore
we propose to approximate constraint release through a sup
position of few linear modes. Let us callcr(r) or constraint
release kernel the second factor of the right-hand-side of E

laking use of Eq(19), one can verify that the following ex-
pression for the relaxation modulus correctly approximates Eq.
416) of the original theory:

(17). This factor represents the effects of constraint release on N @ 1 [Ner
PLOq, s): GO =6%> Ll / >RGN s) | ds | . (22)
i\ 2/ j=1 '
Nog@ 1o s : : . o
Qcr(t) = Zi / pg (’)(;, s)ds | . (18)  Inthe previous expression, the sub-expression contained within
i—1 2 J the innermost parenthesis actually is an approximation of

P,f (i)(t, s). The quality of this linear approximation depends only

Let us assume that the constraint release kePgl(r) can be ;1 e quality of the approximation of the constraint release ker-

approximated by a finite sum of decreasing time—exponentialshel(18) by a sum of decreasing exponentialsElg. 5, we show

Ncr
Ocr(t) ~ > w;exp(—t/T), (19) 10°
j:O 105 L
wherew ; andr; are adjustable parameters. For a giveNoive vl [
computew; andz; using a minimisation procedure for the the :
quadratic error between the exact constraint release kergel :\; £ 10°
and its approximatioif19). We can now defin®; “(, 5) as i
the solution of the following linear differential problem:
10" }
fG.J)
Py 0 (002 pran) _ L prig
— = (ad (s)gP), b)) — r—ij b, (20) 100
.. 10" : . .
ny @@, -1) =0, 107 107 10° 10° 10*

wlrad/s]

P/ &, 1)=0fort > 0,
Fig. 5. Comparison between the viscoelastic moduli of the full model (—) and

its linear approximation(——— ). Seven modes were used to approximate the

A — _
PV (0’ s) = 1for 1<s<1l constraint release kernel of the full model.
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