
HAL Id: hal-01004700
https://hal.science/hal-01004700

Submitted on 20 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A differential formulation of thermal constraint release
for entangled linear polymers

Adrien Leygue, Christian Bailly, Roland Keunings

To cite this version:
Adrien Leygue, Christian Bailly, Roland Keunings. A differential formulation of thermal constraint
release for entangled linear polymers. Journal of Non-Newtonian Fluid Mechanics, 2005, 128 (1),
pp.23-28. �10.1016/j.jnnfm.2005.02.009�. �hal-01004700�

https://hal.science/hal-01004700
https://hal.archives-ouvertes.fr


A differential formulation of thermal constraint release for
entangled linear polymers

A. Leyguea, C. Baillyb,∗, R. Keuningsa,∗∗

a CESAME, Université Catholique de Louvain, Division of Applied Mechanics, Batiment Euler, B-1348 Louvain-la-Neuve, Belgium 
b Unité de Chimie et de Physique des Hauts Polymères, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium 

We present a new differential formulation of the thermal constraint release phenomenon for linear entangled polymers. This new formulation 
predicts a relaxation modulus identical to that predicted by the double reptation theory of Tsenoglou [C. Tsenoglou, Viscoelasticity of binary 
polymer blends, ACS Polym. Prepr. 28 (1987) 185–186] or Des Cloizeaux [J. Des Cloizeaux, Double reptation vs simple reptation in polymer 
melts, J. Europhys. Lett. 5 (1988) 437–442] for both monodisperse and polydisperse systems. Additionally, we discuss a simple approximation 
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f our approach as well as its possible use for building simple constitutive equations that account for constraint release in a polydispers
nvironment.
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. Introduction

Following the introduction on the reptation picture by
e Gennes[3], Doi and Edwards[4] proposed a tube-based

heory to explain the linear rheology of linear entangled
olymers. The numerous variations of the tube model have
ow reached a high level of maturity and are now capable of
quantitative description of the linear viscoelastic properties
f linear entangled polymers (see e.g.[5–9]). The success of

hese theories is such that the focus is now on the prediction
f the linear viscoelastic response of systems with a much
ore complex architecture, e.g. symmetric[10] or asym-
etric stars[11], and mixtures of star and linear polymers

12,13]. The key of these successes essentially is an accurate
escription of: (i) the reptation dynamics (if present), (ii) the
uctuations of the length of the tube[4], and (iii) thermal con-
traint release phenomena[14], which is a closure to the mean
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field approximation of the tube. Accounting for the coup
between those effects is of critical importance. For lin
polymers, the distinction made between reptation and
tour length fluctuations is somehow arbitrary as these are
different modes of a one-dimensional Rouse chain escap
tube. This distinction has recently been made thinner by
ham et al.[15] who proposed to model the relaxation throu
reptation and contour length fluctuations using a mod
diffusion process, where diffusivity is position-depend
along the primitive path. Thermal constraint releas
today handled efficiently either through dynamic dilution
through double reptation[2,1]. The latter theory can actua
be viewed as an approximation of Rouse tube motion
duced by constraint release events. In the monodisperse
Likhtman et al.[8] have showed how double reptation i
good approximation of Rouse tube motion. The mixing
induced by double reptation has also been recovered w
the implementation of constraint release found in a stoch
full chain reptation model developed by Hua et al.[16].

A more complete theory of constraint release involv
both tube dilation and rouse tube motion has been prop
by Viovy et al.[17].
1



In the present text, we present a new mathematical for-
mulation of the thermal constraint release phenomenon for
monodisperse systems, which we prove to be equivalent to the
double reptation theory of Des Cloizeaux[2] and Tsenoglou
[1]. This new formulation is then extended to the case of
polydisperse systems where it yields a mixing rule identical
to the one of double reptation. In parallel, we propose a sim-
ple approximation of our theory, which can easily be used as
a starting point for building non-linear constitutive equations
of the differential type. Finally, we show that our approach
to constraint release can simplify integral non-linear integral
constitutive equations of polydisperse systems such as the
extension proposed by Pattamaprom and Larson[18] of the
so-called MLD model of Mead et al.[19].

2. Classical double reptation

In this section, we first recall basic elements of reptation
theory and its extension to double reptation. In a fixed net-
work of entanglements, reptation theory[3,4] suggests that
a polymeric chain is constrained in a tube-like region and
therefore can only relax through curvilinear diffusion along
its primitive path. Neglecting length fluctuations of the prim-
itive path, one can describe the relaxation of the chain (or
equivalently the destruction/renewal of the tube) through the
f
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Under simple reptation the relaxation modulusG0(t) is pro-
portional to the relaxation kernel:

G0(t) = G0
NK0(t), (5)

whereG0
N is the plateau modulus.

Introduced by Tsenoglou[1] and Des Cloizeaux[2],
double reptation takes into account the mutual interactions
of relaxing chains. In a sense, it is a closure to the mean
field approximation of the tube. If one assumes that chains
interact in a binary fashion (through entanglements), then
whenever a chain segment relaxes through reptation, another
segment must also relax through thermal constraint release.
For monodisperse linear entangled polymers, this simply
gives the following relaxation modulus[2]:

G∗(t) = G0
N (K0(t))1+γ, (6)

whereγ should be equal to unity, but is often left as an
adjustable parameter. A classical choice is to takeγ slightly
above unity (γ= 4/3) [20].

Except for the factorG0
N , G∗(t) is the power (1+ γ)

of G0(t). As G0(t) is often approximated by its dominant
exponential, a crude approximation of double reptation is
therefore to simply divide the characteristic relaxation time
τd by (1+ γ).

In a polydisperse system, double reptation provides a mix-
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ollowing diffusion equation[4]:

∂P0

∂t
= αd

∂2P0

∂s2
,

P0(t, −1) = 0,

P0(t, 1) = 0 for t > 0,

P0(0, s) = 1 for − 1 < s < 1,

(1)

here the equilibrium length of the primitive chain has b
ormalized to 2 andαd is a characteristic diffusion consta
caling like the inverse of the cube of the molecular mass
ubscript ‘0’ indicates that we do not consider any const
elease yet.

The quantityP0(t∗, s) is the probability for a tube segme
ith curvilinear positions along the primitive chain of no
aving relaxed betweent = 0 andt = t∗.

FromP0, we define the relaxation kernelK0 as

0(t) = 1

2

∫ 1

−1
P0(t, s) ds, (2)

hich is but the average ofP0 over s. Using the analytica
olution of(1), the relaxation kernelK0(t) can be found t
e[4]:

0(t) = 8

π2

∑
p odd

1

p2
exp

(
−p2t

τd

)
, (3)

here the longest relaxation timeτd is defined as

d = 4

π2αd
. (4)
ng rule for predicting the relaxation modulus based on
elaxation kernel of all the present species:

∗(t) = G0
N

(∑
i=1

φ(i)K
(i)
0 (t)

)1+γ

, (7)

hereφ(i) is the volume fraction of speciesi, and K
(i)
0 its

elaxation kernel. The disengagement timeτ
(i)
d of species (i

s then assumed to be proportional to a particular pow
he molecular weightM(i) of the species. This use of dou
eptation as a mixing rule is quite common and has
roved to give good predictions of the relaxation modulu
function of the molecular weight distribution of the sam

see e.g.[6,7]).

. Constraint release in monodisperse systems

In this section, we propose a modification to Eq.(1) in
rder to simultaneously account for reptation and const
elease through double reptation. We will not address th
ue of contour length fluctuations in this work as we w
o focus on the thermal constraint release phenomenon
he incorporation of contour length fluctuations might
eed lead us to modify the typical diffusion operator of
eptation theory.

The classical approach of double reptation is based o
rinciple of first computing the relaxation kernel of a ch
elaxing in a fixed network, and then modifying it in ord
o take into account the effect of the surrounding rela



chains. This two-step method is not suited for the construc-
tion of non-linear constitutive equations, as the mixing rule is
non-linear, and does not offer a dynamical description of the
processes involved. Instead, we would like to find a differen-
tial problem, similar to Eq.(1), such that it would describe the
relaxation dynamics of the different segments of the primitive
chain under reptation and thermal constraint release.

As any segment of the primitive chain can relax either
through reptation or constraint release, we choose to add a
second term on the right-hand side of Eq.(1)to account for the
latter phenomena. This new term is constructed as follows:
Assuming that thermal constraint release can occur with the
same probability on any unrelaxed segment[14], it must have
an intensity, along the chain, proportional to the fraction of
locally unrelaxed segments. This leads to the following dif-
ferential problem:

∂Pγ

∂t
= αd

∂2Pγ

∂s2
+ βPγ,

Pγ (t, −1) = 0,

Pγ (t, 1) = 0 for t > 0,

Pγ (0, s) = 1 for − 1 < s < 1,

(8)

whereβ is the rate of thermal constraint release. Following the
concept of double reptation, we make this rate proportional
to the rate of relaxation through reptation:

β
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Finally, we define the relaxation modulusGγ (t) as pro-
portional to the fraction of unrelaxed chain segments:

Gγ (t) = G0
N

1

2

∫ 1

−1
Pγ (t, s) ds. (11)

This approach to constraint release predicts exactly the same
relaxation modulus as double reptation. The equivalence of
both formulations is easily seen through the comparison of
Eqs.(6) and (11), wherePγ has been substituted by its ana-
lytical expression(10). We also see that the parameterγ has
the same meaning in both formulas and that the expression
(9) for β can be simplified as

β(t) = γ

∂K0(t)
∂t

K0(t)
. (12)

In describing the relaxation of a polymeric system one
might not only be interested in the relaxation modulusGγ (t)
but also in the dynamics of relaxation through reptation
and constraint release along the chain. Such information is
needed, for example, in the full contour-variable reptation
model proposed by Mead et al.[19]. Under simple reptation,
tube segments are renewed at the chain’s ends only, while
thermal constraint release allows the renewal of the orien-
tation of internal tube segments. If one neglects constraint
release (γ= 0), the variation ofP0(t, s) is only due to a flux
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= γ

∫ 1
−1 αd

∂2Pγ

∂s2 ds∫ 1
−1 Pγ ds

, (9)

here the parameterγ describes the fact that the relaxat
f one chain segment through reptation might induce th

axation of more than one other segment (γ≥ 1). We will
rove later thatγ actually is the same as is Eq.(6).

Another interpretation of Eqs.(8) and (9)is the following:
or any tube segment that relaxes on a given chain thr
eptation, there is another tube segment that will relax. W
he first disappearing segment will be located at a chain
he second has to be picked randomly among all the u

axed tube segments. The expression
∫ 1
−1 αd

∂2Pγ

∂s2 ds simply
easures the rate of relaxation through reptation, whil

unction Pγ∫ 1
−1 Pγ ds

describes how this rate of relaxation sho

e redistributed along the chain; i.e. proportionally to the
al fraction of unrelaxed chain segments (or surviving
egments).

It can be verified by simple substitution that Eqs.(8) and
9) have the following analytical solution:

γ (t, s) = P0(t, s)

(
1

2

∫ 1

−1
P0(t, s′) ds′

)γ

= P0(t, s)(K0(t))γ , (10)

hich is a product of two factors where the first one ca
nterpreted as accounting for the relaxation of a chain
xed environment, while the second one would accoun
he relaxation of the environment.
rom the inside of the chain towards the chain’s ends, w
ll the actual relaxation occurs. Whenγ is not zero,Pγ (t, s)
lso decreases due to a local relaxation, and the tota
long the chain isγ times the loss at the chain’s ends. T
ifference in the dynamics of internal segments can be
bserved at early times when looking at the relaxation o
egments at the center of the chain. InFig. 1, we compar
0(t, s) andPγ (t, s) at the center of the chain; i.e.s = 0 and

or γ = 1. At early times,P0(t, 0) exhibits a plateau whic
omes from the fact that inner segments can only r
hrough reptation and must therefore wait for the chai

ig. 1. Comparison of the relaxation dynamics at the center of the prim
hain with (P1(t, 0): - · - · -) and without (P0(t, 0): —) constraint release.



reptate far enough before having the opportunity to relax. On
the other hand, we see thatPγ (t, 0) does not have that feature,
as some inner segments can relax through thermal constraint
release as soon as the outer segments relax through reptation.

4. Construction of a simple linear viscoelastic model

From the partial differential equation (PDE)(8) we pro-
posed for the evolution ofPγ , it is possible to build a linear
viscoelastic model that accounts for both reptation and con-
straint release in simple shear flows. Let us defineσ(t, s) as
the non-dimensional stress carried at timet by tube segments
at positionsalong the primitive path.

σ(t, s) =
∫ t

−∞
Pγ (t − t′, s)γ̇xy(t′) dt′, (13)

whereγ̇xy(t′) is the shear rate at timet′. This simple linear
model reads:

∂σ

∂t
=γ̇+αd

∂2σ

∂s2
+
∫ t

−∞
β(t − t′)Pγ (t − t′, s)γ̇xy(t′) dt′,

σ(t, −1) = 0,

σ(t, 1) = 0 for t > 0,

σ(0, s) = 0 for − 1 < s < 1,

(14)
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Fig. 2. Normalized effective relaxation time as a function ofγ.

following equation:∫ +∞

0
(K0(t))(1+γ) dt =

∫ +∞

0

(
K0(t) exp

(
− t

τcr

))
dt.

(18)

The approximate model(16) is of little use by itself, but it
is a first step towards a more realistic non-linear differential
constitutive equation which would have the same structure
in terms of differential operators along thescoordinate.

The zero-shear viscosityη0 predicted by these models is a
function ofαd andγ. It can easily be proved thatη0 scales like
α−1

d , but does not scale exactly like (1+ γ)−1. For γ = 0 we

can prove thatη0 = G0
N

3αd
, but for higher values ofγ we have

to computeη0 numerically. Defining the effective relaxation
time τeff as τeff = η0

G0
N

, we illustrate inFig. (2) how this

quantity changes with respect toγ. Whenγ = 1, the effective
relaxation time is less than half (≈0.42) the relaxation time
when double reptation is ignored. Thermal constraint release
is traditionally accounted for in constitutive equations simply
by dividing the relaxation time by 2, which is apparently not
enough when one considers the full spectrum of relaxation
times instead of the dominant one only.
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β(t) = γ

∂K0(t)
∂t

K0(t)
,

τxy(t) = G0
N

1
2

∫ 1
−1 σ(t, s) ds,

(15)

hereτxy is the shear stress.
In order to obtain from(14) and (15)a simple differentia

inear model we approximate the relaxation kernelK0(t) ap-
earing in Eq.(15) by a single decreasing exponential w
haracteristic timeγτcr. The new model simply reads:

∂σ

∂t
= γ̇ + αd

∂2σ

∂s2
− σ

τcr
,

σ(t, −1) = 0,

σ(t, 1) = 0 for t > 0,

σ(0, s) = 0 for − 1 < s < 1,

τxy = G0
N

1

2

∫ 1

−1
σ ds.

(16)

he response of this simplified model after a unit step s
s

(t, s) = P0(t, s) exp

(
− t

τcr

)
. (17)

The scalarτcr is of the order ofτd and represents the a
rage disentanglement time through thermal constrain

ease phenomena. Its value is chosen such that Eqs.(14) and
16) yield the same zero-shear viscosity. From the ana
al solution of(16), we find thatτcr is the solution of th
. Constraint release in polydisperse systems

Using the same approach, the above formulation of
traint release can easily be extended to polydisperse sy

In the absence of thermal constraint release, we can
ider that all species reptate independently. From a mod
oint of view, this would lead to a set of uncoupled pa
ifferential equations (PDEs), where each PDE describ
articular species. As soon as constraint release come
lay, the relaxation of the species is coupled because th
ach other’s environment (including themselves). The



issue is therefore to compute consistently the rateβ of relax-
ation of the environment.

Assuming that the polydisperse system is made of
molecules with a discrete distribution ofN masses, let us
defineP (i)

γ (t, s) as the tube survival probability for molecules

of massM(i). The time evolution ofP (i)
γ (t, s) is described by

the following PDE:

∂P
(i)
γ

∂t
= α

(i)
d

∂2P
(i)
γ

∂s2
+ βP (i)

γ ,

P
(i)
γ (t, −1) = 0,

P
(i)
γ (t, 1) = 0 for t > 0,

P
(i)
γ (0, s) = 1 for − 1 < s < 1.

(19)

In view of Eq.(9), the rate of constraint releaseβ is consis-
tently defined as

β = γ

∑
i φ

(i)
∫ 1
−1 α

(i)
d

∂2P
(i)
γ

∂s2 ds∑
i φ

(i)
∫ 1
−1 P

(i)
γ ds

, (20)

whereφ(i) is the volume fraction of species (i) andγ keeps
the same meaning as in the monodisperse case. The diffusion
coefficientα(i)

d has the form:

α

w xpo-
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lu-
t de-
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P
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salong the primitive path, we obtain the following model:

∂σ(i)

∂t
= γ̇ + αd

∂2σ(i)

∂s2
+
∫ t

−∞
β(t−t′)P (i)

γ (t−t′, s)γ̇xy(t′) dt′,

σ(i)(t, −1) = 0,

σ(i)(t, 1) = 0 for t > 0,

σ(i)(0, s) = 0 for − 1 < s < 1,

(24)

β(t) = γ

∑
i φ

(i) ∂K
(i)
0 (t)
∂t∑

i φ
(i)K

(i)
0 (t)

, (25)

τxy(t) = G0
N

∑
i

φ(i)

2

∫ 1

−1
σ(i)(t, s) ds. (26)

This linear viscoelastic model only needsN objects, namely
theN functionsσ(i) to reproduce the full complexity of ther-
mal constraint release within a polydisperse system ofN
masses. It is also capable of accounting for an arbitrary mix-
ing exponentγ. This new formulation of constraint release
could therefore be used as a starting point for the implemen-
tation of complex integral constitutive equations for polydis-
perse systems.

Such a constitutive equation has been proposed by Pat-
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(i)
d = 4

π2Kd(M(i))3
, (21)

hereKd is an adjustable material parameter and the e
ent 3 accounts for the scaling of the disengagement timτd
ith respect to the molecular mass.
Whenγ = 0, all PDEs(19)are decoupled and their so

ionsP
(i)
0 (t, s) can be computed easily as each equation

cribes the relaxation through simple reptation of a partic
pecies. Whenγ 
= 0, Eq.(19)has the following solution:

(i)
γ (t, s) = P

(i)
0 (t, s)


∑

j

1

2

∫ 1

−1
φ(j)P

(j)
0 (t, s′) ds′




γ

, (22)

nd P
(i)
0 (t, s) is the tube survival probability under simp

eptation. In the previous expression, the first term acco
or the relaxation of the chains through reptation only, w
he second accounts for the relaxation of the environm
inally, we define the relaxation modulus as

γ (t) = G0
N

∑
i

φ(i)

2

∫ 1

−1
P (i)

γ (t, s) ds. (23)

It is straightforward to check that the resulting modulu
dentical to the modulus one would obtain with the mix
ule (7) of double reptation.

Similarly to what we did for monodisperse systems
s possible to build upon this approach a linear viscoe
ic model for polydisperse systems. Definingσ(i)(t, s) as the
tress carried by chain segments of species (i) and coor
amaprom and Larson[18], as an extension of the so-cal
oy-MLD model by Mead et al.[19]. The implementatio
f thermal constraint release (or reptative constraint rel

ollowing the authors) within the polydisperse version of
oy-MLD model relied on a popular approach in which o
ccounts for any possible interaction between allNpolymeric
asses. A first drawback of this method is that it cannot
le cases whereγ is not equal to unity. FurthermoreN2 modes
all M(i)M(j) pairs) are required to fully model double re
ation. This higher algorithmic complexity can dramatic
ncrease the computational simulation cost when dealing
olymeric systems composed of many different masses.

hese constraints are alleviated when using Eqs.(24)–(26)to
mplement thermal constraint release.

. Conclusions

We have proposed a new differential formulation of th
al constraint release in monodisperse and polydispers

angled polymeric systems. The core of our approach
ifferential problem that allows the direct computation of

ube survival probability when both reptation and ther
onstraint release are active. Although this theory pre
relaxation modulus mathematically equivalent to the

redicted by the double reptation theory of Tsenoglou[1]
nd Des Cloizeaux[2], it does not use a non-linear mixi
ule, and thus is easier to extend to a full constitutive e
ion. Progress along this line is the subject of a forthcom
ublication.
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