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We presentinewdifferentialformulationof thethermalconstrainteleasgphenomenofor linearentanglegholymers Thisnewformulation
predictsarelaxationmodulusidenticalto thatpredictedby thedoublereptationtheoryof TsenogloyC. TsenoglouViscoelasticityof binary
polymerblends ACS Polym.Prepr.28(1987)185-186Jor DesCloizeauxJ. DesCloizeaux Doublereptationvs simplereptationin polymer
melts,J.EurophysLett. 5 (1988)437-442for bothmonodispersandpolydisperssystemsAdditionally, we discussasimpleapproximation
of our approachaswell asits possibleusefor building simple constitutiveequationshat accountfor constraintreleasen a polydisperse
environment.
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1. Introduction field approximation of the tube. Accounting for the coupling
between those effects is of critical importance. For linear
Following the introduction on the reptation picture by polymers, the distinction made between reptation and con-
De Genne$3], Doi and Edward$4] proposed a tube-based tourlengthfluctuations is somehow arbitrary as these are only
theory to explain the linear rheology of linear entangled different modes of a one-dimensional Rouse chain escaping a
polymers. The numerous variations of the tube model have tube. This distinction has recently been made thinner by Gra-
now reached a high level of maturity and are now capable of ham et al[15] who proposed to model the relaxation through
a quantitative description of the linear viscoelastic properties reptation and contour length fluctuations using a modified
of linear entangled polymers (see §%-9]). The success of  diffusion process, where diffusivity is position-dependent
these theories is such that the focus is now on the predictionalong the primitive path. Thermal constraint release is
of the linear viscoelastic response of systems with a much today handled efficiently either through dynamic dilution or
more complex architecture, e.g. symmetd®] or asym- through double reptatioj2,1]. The latter theory can actually
metric starg11], and mixtures of star and linear polymers be viewed as an approximation of Rouse tube motion in-
[12,13]. The key of these successes essentially is an accurateuced by constraint release events. In the monodisperse case,
description of: (i) the reptation dynamics (if present), (ii) the Likhtman et al.[8] have showed how double reptation is a
fluctuations of the length of the tupg, and (iii) thermal con- good approximation of Rouse tube motion. The mixing rule
straintrelease phenomejid], which is aclosuretothe mean induced by double reptation has also been recovered within
the implementation of constraint release found in a stochastic
 Gomesponding author full chain reptation model developed by Hua et[aB]l. .
** Co-corresponding author. Tel.: +32 10 47 2087; fax: +32 10 47 2180. A more (_:omplete theory of ConStre.“m release involving
E-mail addressesbailly@poly.ucl.ac.be (C. Bailly), both tube dilation and rouse tube motion has been proposed
roland.keunings@inma.ucl.ac.be (R. Keunings) by Viovy et al.[17].



In the present text, we present a new mathematical for- Under simple reptation the relaxation modutuig(z) is pro-
mulation of the thermal constraint release phenomenon for portional to the relaxation kernel:
monodisperse systems, which we prove to be equivalentto the 0
double reptation theory of Des Cloizeaj2t and Tsenoglou Go(1) = Gy Ko(1), ()
[1]. This new formulation is then extended to the case of
polydisperse systems where it yields a mixing rule identical
to the one of double reptation. In parallel, we propose a sim-
ple approximation of our theory, which can easily be used as
a starting point for building non-linear constitutive equations

whereGY, is the plateau modulus.

Introduced by Tsenoglolfil] and Des Cloizeaux2],
double reptation takes into account the mutual interactions
of relaxing chains. In a sense, it is a closure to the mean
. . . field approximation of the tube. If one assumes that chains
of the differential type. Finally, we show that our approach interact in a binary fashion (through entanglements), then

o coqstr_amt releafse can S'mp"f_y integral non-linear integral whenever a chain segment relaxes through reptation, another
constitutive equations of polydisperse systems such as the

extension proposed by Pattamaprom and Laf&8hof the segment must also relax through thermal constraint release.
For monodisperse linear entangled polymers, this simpl
so-called MLD model of Mead et gl19]. P geec Poly 4

gives the following relaxation modulyg]:

G*(1) = GR(Ko()**. (6)
2. Classical double reptation

where y should be equal to unity, but is often left as an

In this section, we first recall basic elements of reptation adjustable parameter. A classical choice is to taktightly

theory and its extension to double reptation. In a fixed net- above unity (y= 4/3) [20].
work of entanglements, reptation thedBy4] suggests that Except for the factorG},, G*(r) is the power (& y)
a polymeric chain is constrained in a tube-like region and of Go(t). As Go(t) is often approximated by its dominant
therefore can only relax through curvilinear diffusion along €xponential, a crude approximation of double reptation is
its primitive path. Neglecting length fluctuations of the prim- therefore to simply divide the characteristic relaxation time
itive path, one can describe the relaxation of the chain (or Td by (1+ ¥).
equivalently the destruction/renewal of the tube) through the  Inapolydisperse system, double reptation provides a mix-
following diffusion equatiorj4]: ing rule for predicting the relaxation modulus based on the
relaxation kernel of all the present species:

dPy 92 P,

W = adW, | | 14y

Fol 1) =0 @ G0=0 (Z ¢")K3)(t)> ’ )
Po(t, 1) = Oforz > 0, i=1

Po(0,5) = 1for =1 <s <1, whereg® is the volume fraction of speciésand KU its

where the equilibrium length of the primitive chain has been relaxation kernel. The disengagement tirff& of species (i)
normalized to 2 andyg is a characteristic diffusion constant IS then assumed to be proportional to a particular power of
scaling like the inverse of the cube of the molecular mass. Thethe molecular weight/@) of the species. This use of double
subscript ‘0’ indicates that we do not consider any constraint feptation as a mixing rule is quite common and has been
release yet. proved to give good predictions of the relaxation modulus as
The quantityPo(*, 5) is the probability for a tube segment & function of the molecular weight distribution of the sample
with curvilinear positions along the primitive chain of not  (see €.9[6,7]).
having relaxed between= 0 andr = r*.

From Po, we define the relaxation kern&b as 3. Constraint release in monodisperse systems

1 1
Ko(r) = > / L Po(t, 5) s, ) In this section, we propose a modification to Et) in
o - ) . order to simultaneously account for reptation and constraint
which is but the average af overs. Using the analytical  yglease through double reptation. We will not address the is-
solution of (1), the relaxation kerneko(z) can be found o gye of contour length fluctuations in this work as we wish

be[4]: to focus on the thermal constraint release phenomenon only.
8 1 P2t The incorporation of contour length fluctuations might in-
Ko(t) = = Z — exp(—r—> , 3) deed lead us to modify the typical diffusion operator of the
" podd P d reptation theory.
where the longest relaxation timg is defined as _Th_e class@cal approa(_:h of double reptation is based on_the
principle of first computing the relaxation kernel of a chain
T4 = i ) relaxing in a fixed network, and then modifying it in order

- may’ to take into account the effect of the surrounding relaxing



chains. This two-step method is not suited for the construc-  Finally, we define the relaxation modulas,(r) as pro-
tion of non-linear constitutive equations, as the mixing rule is portional to the fraction of unrelaxed chain segments:
non-linear, and does not offer a dynamical description of the 1

processes involved. Instead, we would like to find a differen- G,(1) = G?v} / P,(t, 5)ds. (11)
tial problem, similar to Eq(1), such that it would describe the 2J1

relaxation dynamics of the different segments of the primitive Thg approach to constraint release predicts exactly the same
chain under reptation and thermal constraint release. relaxation modulus as double reptation. The equivalence of
As any segment of the primitive chain can relax either o formulations is easily seen through the comparison of
through reptation or constraint release, we choose to add 8qs.(6) and (11), where, has been substituted by its ana-
second term on the right-hand side of Eqt(laccount for the lytical expressior(10). We also see that the parametdras

latter phenomena. This new term is constructed as follows: {ha same meaning in both formulas and that the expression
Assuming that thermal constraint release can occur with the(g) for 8 can be simplified as

same probability on any unrelaxed segnié#i, it must have
an intensity, along the chain, proportional to the fraction of 3Ko(1)

locally unrelaxed segments. This leads to the following dif- plr) = J/th(t)- (12)
ferential problem: o . .
5 In describing the relaxation of a polymeric system one

Py _ et P might not only be interested in the relaxation modulyg()

ot ds? ’ but also in the dynamics of relaxation through reptation
Py(t,-1) =0, (8) and constraint release along the chain. Such information is
P,(t,1) = Ofort > 0, needed, for example, in the full contour-variable reptation
P,(0.5)=1for —1<s <1, model proposed by Mead et §l9]. Under simple reptation,

) ) _ tube segments are renewed at the chain’s ends only, while
wheregis the rate of thermal constraintrelease. Following the ihermal constraint release allows the renewal of the orien-

concept of double reptation, we make this rate proportional tation of internal tube segments. If one neglects constraint

to the rate of relaxation through reptation: release (3= 0), the variation ofPy(z, s) is only due to a flux
fl adazﬁ ds from the inside of the chain towards the chain’s ends, where
B = —11—3s2 (9) all the actual relaxation occurs. Wheris not zero,P, (1, s)
J=, Pyds also decreases due to a local relaxation, and the total loss

where the parameter describes the fact that the relaxation 2/0ng the chain iy times the loss at the chain's ends. This
of one chain segment through reptation might induce the re- difference in the dynamics of internal segments can be best
laxation of more than one other segment{;1). We will observed at early times when Iookmg at the relaxation of the
prove later thay actually is the same as is E@). segments at the center of the chainHig. l we compare
Another interpretation of Eq8) and (9)s the following: ~ Fo(t, s) and P, (i, s) at the center of the chain; i.e= 0 and

For any tube segment that relaxes on a given chain throughfor ¥ = 1. At early times,Po(r, 0) exhibits a plateau which
reptation, there is another tube segment that will relax. While €Omes from the fact that inner segments can only relax
the first disappearing segment will be located at a chain end,through reptation and must therefore wait for the chain to
the second has to be picked randomly among all the unre-

2
laxed tube segments. The expressfé@ ad% ds simply 1
measures the rate of relaxation through reptation, while the
function — Py _ describes how this rate of relaxation should oslk®
1 Fy ds '

be redistributed along the chain; i.e. proportionally to the lo-
cal fraction of unrelaxed chain segments (or surviving tube g4l
segments).

It can be verified by simple substitution that E(®) and Py
(9) have the following analytical solution:

1 Y
P,(t,s) = Po(t, s) (% /_1 Po(t, s') ds/)

= Po(t. s)(Ko(1)”, (10)

which is a product of two factors where the first one can be
interpreted as accounting for the relaxation of a chain in a
fixed environment, Whllg the second one would account for rig. 1. comparison of the relaxation dynamics at the center of the primitive
the relaxation of the environment. chain with (R(t, 0): -+ - - - y and without (B(z, 0): —) constraint release.

0.4r

I IR R
t/ [ [, P(t.s)dsdt



reptate far enough before having the opportunity to relax. On 1
the other hand, we see thaj(z, 0) does not have that feature,
as some inner segments can relax through thermal constraint

release as soon as the outer segments relax through reptation 08}
0.7
4. Construction of a simple linear viscoelastic model reft(y) 06
3a
From the partial differential equation (PDE) we pro- 0.5
posed for the evolution of,, it is possible to build a linear oal
viscoelastic model that accounts for both reptation and con- '
straint release in simple shear flows. Let us defifres) as 0.3}
the non-dimensional stress carried at tirbg tube segments
at positions along the primitive path. 920702 04 06 08 1 12 14 16 18 2
: 7
o(t,s) = P,(t—1,8)y()dr, 13
(t.9) /_Oo y( )J/xy( ) (13) Fig. 2. Normalized effective relaxation time as a functioryof
whereyy, (t') is the shear rate at time. This simple linear
model reads: . .
following equation:
do . o ! , Sy
—=ytad— + Blt = )P, (t — 1, s)yxy(t)dr’, +00 L +00 "
ot ds —oo / (Ko(0))XH) dr = / (Ko(t) exp(——)) dr.
o(t,-1)=0, (14) 0 0 Ter
o(t, 1) = Ofors > 0, (18)
0(0.5) =0for —1<s <1, The approximate modé16)is of little use by itself, but it
IKo(t) is a first step towards a more realistic non-linear differential
Blt) = y—2 constitutive equation which would have the same structure
Ko() (15) in terms of differential operators along teeoordinate.

The zero-shear viscosity predicted by these models is a

_ 011
Tot) = Giyz J21 00 5)ds, function ofg andy. It can easily be proved thag scales like

wherer,, is the shear stress. ay ! but does not scale exactly like {1y) 1. For y = 0 we

. . . . 0
_ In order to obtain fror_'r(14) and (15n S|_mple differential can prove thaty = %\é but for higher values of we have
linear model we approximate the relaxation kerkig(r) ap- 1o computeyo numerically. Defining the effective relaxation

pearing in Eq(15) by a single decreasing exponential with  ime Teff @S Teff = (’;'_._9 we illustrate inFig. (2) how this

characteristic tim . The new model simply reads: . N .
¥ Tar Py guantity changes with respecttoWheny = 1, the effective

9o . P o relaxation time is less than half (~0.42) the relaxation time
o Y+ O‘dﬁ T when double reptation is ignored. Thermal constraint release
_ is traditionally accounted for in constitutive equations simply
o(t,—1) =0, . o L
by dividing the relaxation time by 2, which is apparently not
o(t,1) = 0fors > 0, (16) enough when one considers the full spectrum of relaxation
0(0,5) =0for -1 <5 <1, times instead of the dominant one only.

1 1
Ty = G?\,E-/lods.
5. Constraint release in polydisperse systems

The response of this simplified model after a unit step strain

IS Using the same approach, the above formulation of con-
‘ straintrelease can easily be extended to polydisperse systems.
o(t,5) = Po(t, 5) exp(—r—> (17) In the absence of thermal constraint release, we can con-
cr

sider that all species reptate independently. From a modeling
The scalar, is of the order ofry and represents the av-  point of view, this would lead to a set of uncoupled partial
erage disentanglement time through thermal constraint re-differential equations (PDEs), where each PDE describes a
lease phenomena. Its value is chosen such that(E4sand particular species. As soon as constraint release comes into
(16) yield the same zero-shear viscosity. From the analyti- play, the relaxation of the species is coupled because they are
cal solution of(16), we find thatr¢, is the solution of the  each other’s environment (including themselves). The key



issue is therefore to compute consistently the patérelax- salong the primitive path, we obtain the following model:
ation of the environment.

Assuming that the polydisperse system is made of 9@ . 32 ¢ / 0
. . ST = 1=t )PP (t=1', )y (1) O,
molecules with a discrete distribution 6f masses, let us a VTS Pu=r)P Do l)
defineP)(,’)(t, s) as the tube survival probability for molecules .
(s, —=1) =0, (24)

of massM (. The time evolution o{’(z, s) is described by

the following PDE: o{(r, 1) =Ofort > 0,

. . @) — _
8P)(,’) B (i)azp)(/[) o(0,s)=0for —1<s <1,

— p@

?g %d 52 AR () K
P)," (t, 1) =0, (29) B(t) = VM—O) (25)
PO, 1) = 0fors > 0, > 0Ky (1)

(@) .
Py(0,5) =1for —1 <s < 1. 0 r1

() =G% Y e / (1, 5) ds. (26)

In view of Eq.(9), the rate of constraint releagds consis- ; 2 Ja

tently defined as
This linear viscoelastic model only needobjects, namely

(D) (t) BZPV theN functionso to reproduce the full complexity of ther-

Y0 1 ds ; oy .

B _ (l) , (20) mal constraint release within a polydisperse systenN of
390 f_l Py ds masses. It is also capable of accounting for an arbitrary mix-

0 . o ing exponenty. This new formulation of constraint release
where¢™ is the volume fraction of species (i) anckeeps  ¢oud therefore be used as a starting point for the implemen-
the same meaning as in the monodisperse case. The diffusioRation of complex integral constitutive equations for polydis-

coefﬂmentoe(’) has the form: perse systems.
Such a constitutive equation has been proposed by Pat-
ag) — ; (21) tamaprom and Larsofi8], as an extension of the so-called
2 Kg(M©)3 toy-MLD model by Mead et al[19]. The implementation

of thermal constraint release (or reptative constraint release,
following the authors) within the polydisperse version of the
toy-MLD model relied on a popular approach in which one
accounts for any possible interaction betweehglblymeric
masses. A first drawback of this method is that it cannot han-
dle cases whereis not equal to unity. Furthermoié® modes
(all MD M) pairs) are required to fully model double rep-
tation. This higher algorithmic complexity can dramatically

whereKy is an adjustable material parameter and the expo-
nent 3 accounts for the scaling of the disengagementtjme
with respect to the molecular mass.

Wheny = 0, all PDEs(19)are decoupled and their solu-
tions Pé’)(t s) can be computed easily as each equation de-
scribes the relaxation through simple reptation of a particular
species. Whem # 0, Eq(19) has the following solution:

1 14 increase the computational simulation cost when dealing with
PO (1, 5) = pg)(L 5) Z 1 / oW pc()j)(L ds' | . (22) polymeric systems composed of many different masses. Both
~2J these constraints are alleviated when using Ef§—(26)to

implement thermal constraint release.

and Pé’)(t, s) is the tube survival probability under simple

reptation. In the previous expression, the first term accounts

for the relaxation of the chains through reptation only, while 6. Conclusions
the second accounts for the relaxation of the environment.

Finally, we define the relaxation modulus as We have proposed a new differential formulation of ther-
0 1 mal constraint release in monodisperse and polydisperse en-
0 P (i) tangled polymeric systems. The core of our approach is a
= — P . 2 . ! . .
Gy(0) GN; 2 /_1 4 (t, ) ds (23) differential problem that allows the direct computation of the

tube survival probability when both reptation and thermal

Itis straightforward to check that the resulting modulus is constraint release are active. Although this theory predicts
identical to the modulus one would obtain with the mixing a relaxation modulus mathematically equivalent to the one
rule (7) of double reptation. predicted by the double reptation theory of Tsenodlbu

Similarly to what we did for monodisperse systems, it and Des Cloizeauf?], it does not use a non-linear mixing
is possible to build upon this approach a linear viscoelas- rule, and thus is easier to extend to a full constitutive equa-
tic model for polydisperse systems. Definin@(z, s) as the tion. Progress along this line is the subject of a forthcoming
stress carried by chain segments of species (i) and coordinat@ublication.
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