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A general anisotropic damage model is developed that accounts for the thermodynamics of

irreversible processes in the framework of generalized standard materials and Kelvin ten-

sor decomposition. Damage is described by fourth-rank tensors, one per eigenspace of the
initial stiffness tensor. Their number thus ranges from two for an initially isotropic material

to six for an initially triclinic material. The yield criteria are expressed in terms of a limiting

energy for each eigenspace. The second-rank eigentensors (at most six) of the fourth-rank
damage tensors define the direction of influence of the damage, while the associated eigen-

values characterize its intensity. These eigentensors evolve during loading, inducing an

evolution of the symmetry group of the elastic tensor subject to the constraints of the Curie

principle.

1. Introduction

1.1. Damage mechanics

The damage concept was introduced by Kachanov
(1958) as a decay of the material elasticity under plastic
work. Lemaitre (1996) gave a major contribution to the
formulation of damage under the framework of the gener-
alized standard materials which was introduced by Hal-
phen and Nguyen (1975) to describe the non linear
evolution of solids within the Thermodynamics of Irrevers-
ible Processes. Damage processes concern various classes
of materials. In particular, the quasi-brittle materials
(stone, concrete, ceramic etc). Bazant and Planas (1998)
are considered to present only this kind of evolution at
early stages of degradation.

At the micro level, damage is associated with the crea-
tion of voids or micro-cracks. Micro-mechanical models
are based on a homogenization of the behavior of a micro-
scopic cell which considers mechanisms of defects creation
and propagation. From pioneer work of Bazant (1984) and
Andrieux et al. (1986), this approach led to various models

(Chaboche, 1988; Raous et al., 1998; Pensée et al., 2002;
Carpinteri et al., 2003; Mattei et al., 2007). However, the
complexity of the mechanisms at the micro scale such as
grain de-bonding, microcrack sliding and induced opening
(Royer-Carfagni and Salvatore, 2000) requires a priori sim-
plifications which induce specific directions to damage,
and influences the symmetry group of the elastic tensor
of the damaged material.

Another class of models circumvents these difficulties
by the use of mathematical analysis of the fourth-rank
elasticity tensor which is generally anisotropic (initially
and/or due to damage evolution). The decomposition of
Boehler et al. (1994) is successfully used in damage
mechanics for example by Onat (1984), and Halm and Dra-
gon (1998). The other available decomposition of the elas-
ticity tensor is the Kelvin decomposition which is used in
this article.

According to Zheng and Boehler (1994), the symmetry
group of the material (its microstructure) is included in
the symmetry group of the physical properties (elasticity
in our case). For example, according to the (Hermann,
1934) theorem, a composite with pentagonal cells
(symmetry group D5) presents a transverse isotropic linear
elasticity (He and Zheng, 1996; Auffray et al., 2009). This is
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consistent with the Curie principle: the symmetry group of
the consequences (the elasticity tensor) includes the sym-
metry group of the causes (the microstructure). Although
informations on microstructure can be described by the
use of structure tensors (Xiao et al., 2006), we suppose in
this introductory article that the symmetry group of the
material is also the symmetry group of the elasticity
tensor.

1.2. The Kelvin decomposition

In its original form it stated the existence of six stresses
for which the corresponding strains are proportional, for
any linear elastic material (Thomson (Lord Kelvin), 1856).
This outstanding result, obtained before tensor analysis,
has only been fully understood and rewritten in a modern
form (the diagonalization of the elasticity tensor) one cen-
tury later (Ostrosablin, 1984; Annin and Ostrosablin, 2008;
Rychlewski, 1984; Mehrabadi and Cowin, 1990; Helbig,
1994). This decomposition, which expresses the elastic
tensor as a collection of weighted (by the Kelvin elastic
moduli) fourth-rank projectors, is briefly recalled in Sec-
tion 2. The proportional projections of the stresses and
strains are referred to as eigenstresses and eigenstrains.
The Kelvin decomposition allows formulations which are
equivalent in stress, strain and energy, suppressing the a

priori choice between them (or equivalently between stiff-
ness and compliance) which is generally required. For
example, the widely used von Mises criterion belongs to
this class as it can be equivalently regarded as the norm
of the deviatoric part of the stress or the strain which is
an eigentensor of the isotropic elasticity tensor; the Druc-
ker–Prager criterion used in soil mechanics corresponds
also to a Kelvin decomposition of the isotropic elasticity.
More recently, anisotropic yield surfaces have been devel-
oped in the Kelvin framework (Schreyer and Zuo, 1995;
François, 1995; Arramon et al., 2000; Desmorat, 2009).

The ‘‘basic idea’’ for the use of the Kelvin decomposition
in damage mechanics models consists in the decay of the
Kelvin moduli. However, such approach keeps the projec-
tors (thus the symmetry group of the elastic tensor) un-
changed. On the contrary, the decay of stiffness can affect
tensorial directions which are dependent also upon the ap-
plied stress or strain. For example, a damage induced by a
tension may leave the response of the material under some
hydrostatic pressure or shearing unchanged. The Kelvin
decomposition induces naturally the eigenstrain or eigen-
stress as tensorial direction of damage in case of propor-
tional loading. In case of non proportional loading this
direction evolves and the few attempts in the field (Schre-
yer, 1995; François, 1995) were not fully defined in the
general case.

1.3. The Curie principle

The Curie principle (Curie, 1894) (for an English transla-
tion see Rosen, 1982) postulates that ‘‘Lorsque certaines

causes produisent certains effets, les éléments de symétrie

des causes doivent se retrouver dans les effets produits.’’

which can be translated in ‘‘When some causes produce
certain effects, the symmetry elements of the causes must

be retreived in the effects’’. Abundant literature can be
found on the topic: see for example Chalmers (1970), Siv-
ardière (1995), and Rosen (1995) who stated the symmetry
principle as ‘‘The symmetry group of the cause is a sub-
group of the symmetry group of the effect’’.

This principle a priori fails in many cases of non linear
phenomena. In the classical example of a cylindrical bar
buckling under compression the symmetry group of the ef-
fects (a reflection with respect to the median plane and a
rotation of p) does not includes the one of the causes
(the transverse isotropy around the bar axis). Renaud
(1935) (see Rosen, 1982 for the English translation) gener-
alizes the Curie principle as follows: ‘‘Si un ensemble de

causes est invariant par rapport á une transformation quel-

conque, l’ensemble de leurs effets est invariant par rapport á

la même transformation’’ which corresponds to ‘‘If a set of
causes is invariant with respect to some transformation,
the set of effects is invariant with respect to the same
transformation’’. The concept of set is a key point: in the
example of buckling, the bar has as many chances to curve
towards one side as towards the others thus the symmetry
group of the consequences (envisaged as the set of solu-
tions) includes (in this case, is equal to) the symmetry
group of the causes. Similar consideration can be found
in the book of Rosen (1995) (see for example p. 85, about
the Rutherford experiment).

In the present case of damage mechanics, we consider a
large number of microcracks (Lemaitre, 1996). In the sim-
ple case of compression, the crack normal forms an angle
with the compression axis which can range from p/4
according to the Tresca criterion to p/2 according to the
maximal principal strain criterion (Mazars and Pijaudier-
Cabot, 1996) or in between according to other localization
criterions (François, 2007). As for the buckling example,
this constitutes locally a symmetry breaking. However,
the cracks statistically occur at any angle around the axis
thus the set of normals form a cone whose axis is the com-
pression axis and whose symmetry group is transverse iso-
tropic as is the compression. In this article we assume the
statistical argument is valid thus the Curie’s Principle
applies.

In damage mechanics the consequence is, at the macro
scale of interest, the loss of stiffness of the material. The
causes are the actual elasticity, stress and strain tensors.
These element have, in general, different symmetry
groups. However, the Kelvin decomposition allows us to
consider the manifold constituted by the eigentensors
which depends upon both the material stiffness and the
loading and does not require a choice between stress or
strain formulation.

1.4. This article

The Kelvin decomposition is recalled in Section 2. The
damage model is presented in Section 3. The damage is de-
scribed by fourth-rank tensors D

i (one by eigenspace T i),
which are associated with thermodynamic forces Y

i

through the Gibbs free energy. According to the general-
ized standard material framework, the evolution is de-
scribed by both the normality rule and the consistency
equation. Positiveness of the intrinsic dissipation is

2



verified. The Kelvin decomposition of the tensors D
i is

studied in Section 4. It is shown that the second-rank eig-
entensors of Di indicate the damage tensorial direction of
influence and that the corresponding eigenvalues define
the damage intensity, in the manner of the classical dam-
age theory. Section 5 is dedicated to the verification of
the Curie principle. Examples consider initially isotropic
material (for sake of simplicity). The first loading path con-
sists in two successive proportional loadings (oedometric
tension and shear). It allows a simple comprehension of
the model. The two last ones are circular non proportional
paths in the same bi-dimensional strain space. They illus-
trate the path dependance of the model.

2. The Kelvin decomposition

This section recalls the Kelvin decomposition of the
elasticity tensor and details the notation used in the article.
Details can be found in the article of Mehrabadi and Cowin
(1990).

The Cauchy stress r and the infinitesimal strain e own
the index symmetry rij = rji and eij = eji in the canonical ba-
sis ei � ej. A basis Bi of the group T of the second-rank sym-
metric tensors can be defined from the orthonormal vector
basis (e1,e2,e3) as:

B1 ¼ e1 � e1;

B2 ¼ e2 � e2;

B3 ¼ e3 � e3;

B4 ¼ ðe2 � e3 þ e3 � e2Þ=
ffiffiffi
2

p
;

B5 ¼ ðe3 � e1 þ e1 � e3Þ=
ffiffiffi
2

p
;

B6 ¼ ðe1 � e2 þ e2 � e1Þ=
ffiffiffi
2

p
: ð1Þ

In this basis the stress r has six components obtained by

the double index contraction r̂i ¼ r : Bi ¼ rpqB
i
pq. Please

note that, in this article, the Einstein’s summation conven-
tion only applies for lower (straight) indexes, related to the
canonical basis. The Euclidean norm is (simply)

krk ¼
P6

i¼1ðr̂iÞ2
� �1=2

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rpqrpq

p
. Similar results are ob-

tained for the strain. This basis is orthonormal i.e. Bi: Bj = dij
where d is the Kronecker delta.

The fourth-rank elasticity (or Hooke) tensor C defines
the stress to strain relationship in linear elasticity
r ¼ C : e equivalent to rij = Cijklekl. The index symmetries
rij = rji and ekl = elk lead to the relations Cijkl = Cjikl = Cijlk
which allow one to use the basis formed by the 36 terms
Bi � Bj. The components of C in this basis are denoted as
bC ij ¼ Bi

: C : Bj. Due to the major index symmetry Cijkl = Cklij
(which is due to thermodynamics considerations), the ma-
trix of components bC ij is a 6 � 6 symmetric matrix with
only 21 independent terms. If the material is stable, bC ij is
positive definite, invertible, and the compliance tensor §
has the components bSij ¼ ðbC ijÞ�1 in the same basis. The
diagonalization of this matrix gives the I 6 6 eigenvalues
ki referred to as the Kelvin moduli and the six eigenvectors
Ein referred to as eigentensors. The Hooke tensor can be ex-
pressed as:

C ¼
XI

i¼1

ki
XNi

n¼1

Ein � Ein; ð2Þ

where Ni is the multiplicity of the corresponding ki andPI
i¼1N

i ¼ 6. This relationship exhibits the fourth-rank pro-
jectors P

i:

P
i ¼

XNi

n¼1

Ein � Ein; ð3Þ

which constitute an orthogonal decomposition of the
fourth-rank identity tensor:

I ¼
XI

i¼1

P
i; ð4Þ

whose components are bI ij ¼ dij in the basis Bi � Bj and Iijkl =
(dikdjl + dil djk)/2 in the canonical basis. As a consequence,
the Hooke’s law is written in a very synthetic form:

C ¼
XI

i¼1

kiPi: ð5Þ

The projectors P
i define the subspace T i 2 T (of basis

fEi1
. . .EiNi

g) and, from the orthogonal decomposition (Eq.
4), we have T ¼ aI

i¼1T
i. The Hooke law is rewritten sim-

ply as a set of proportionality relations between the projec-
tions of the stress and the strain:

r
i ¼ kiei; ð6Þ

r
i ¼ P

i
: r; e

i ¼ P
i
: e; ð7Þ

r ¼
XI

i¼1

r
i; e ¼

XI

i¼1

e
i: ð8Þ

Due to the orthogonality of these projections, the Helm-
holtz free energy (from which the stress expression deri-
vates) splits in subparts associated with the free energy
of each modes:

2qWðeÞ ¼
XI

i¼1

kiðeiÞ2 ¼
XI

i¼1

1

ki
ðriÞ2: ð9Þ

The positiveness of the free energy for any strain yields
ki > 0. Rychlewski (1984) showed that the symmetry group
of the stiffness tensor is the intersection of the symmetry
group of its projectors:

GðCÞ ¼ \I
i¼1GðPiÞ: ð10Þ

For an isotropic material the Kelvin decomposition gives
two isotropic subspaces named respectively T H for the
uni-dimensional hydrostatic one and T D for the 5-dimen-
sion deviatoric one:

C ¼ 3KP
H þ 2lP

D;

3PH ¼ I� I;

P
D ¼ I� P

H;

ð11Þ

where K is the bulk modulus and l the shear modulus. In
the basis Bi � Bj these isotropic projectors write as:
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3PH ¼

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2

666666664

3

777777775

;

3PD ¼

2 �1 �1 0 0 0

�1 2 �1 0 0 0

�1 �1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

2

666666664

3

777777775

: ð12Þ

3. The proposed anisotropic damage model

Damage consists, at the macro-scale, in the reduction of
the elastic moduli. The simplest way to combine it with the
Kelvin decomposition is the constitutive law r

i = -
ki(1 � di)ei in which a scalar damage term di affects the Kel-
vin elastic modulus ki related to the elastic projector P

i

(Ladevèze, 1993; François, 1995). However such model
considers the symmetry group of the material as fixed,
independent with respect to the stress or strain symmetry.
The presented model is less constraint: the damage effect
is described by fourth-rank damage tensors Di whose evo-
lution is given by the thermodynamics of irreversible pro-
cesses. The remaining constraint is that D

i act onto the
subspace T i associated with the projector Pi.

3.1. State

The I fourth-rank damage tensors D
i define, together

with the strain e, the state variables. Each one is associated
with an elastic projector Pi (related to the sound material
by Eq. 5). The proposed Gibbs free energy is:

2qWðe;DiÞ ¼ e :

XI

i¼1

kiðPi �D
iÞ : e: ð13Þ

The stress, obtained by derivation with respect to e, and
the actual elasticity tensor are:

r ¼
XI

i¼1

kiðPi �D
iÞ : e; ð14Þ

C ¼
XI

i¼1

kiðPi �D
iÞ: ð15Þ

These relations show that kiDi can be regarded as the loss of
stiffness of the mode I of initial stiffness kiPi. This can be
seen as an extension, in the 3D Kelvin framework, of the
classical uni-dimensional approach of damage r = E(1 � d)e
where E is the Youngmoduluswhich corresponds in 1D to a
Kelvin modulus and d the scalar damage. The major
hypothesis of the present model is that the tensors D

i

remain internal into the original subspace T i i.e.

D
i
: T ! T i: ð16Þ

This hypothesis, already retained by Schreyer and Zuo
(1995), allows the evolution of the symmetry group of

the material if D
i acts on a subset of T i. It implies that

the actual Kelvin decomposition of the material constitutes
a partition of the initial one. In other words, the initial
structure is never completely lost even if the material be-
comes fully anisotropic: this anisotropy will be related to
the initial symmetry of the material. This point will be de-
tailed in Section 5.

According to the framework of the GSM (generalized
standard materials) (Halphen and Nguyen, 1975), the ther-
modynamic forces Yi are associated with the damage vari-
ables Di with respect to the free energy ðYi ¼ �@qW=@DiÞ.
Considering the hypothesis of Eqs. (16) and (7), one
obtains:

2Yi ¼ kiei � e
i: ð17Þ

3.2. Yield surface

Following Biegler and Mehrabadi (1995), we shall con-
sider in this introductory model that the free energy of
each mode of the sound material is bounded by a maxi-
mum energy Wi. Thus I 6 6 (the number of Kelvin modes
of the sound material) material constants Wi are required.
These modal criterions (from Eq. 13) are:

f iðe;DiÞ ¼ ki

2
e : ðPi �D

iÞ : e�W i
6 0: ð18Þ

The damage evolution occurs if the criterion is reached
(fi = 0) and if the further evolution cannot be withstood
with the actual damage level i.e. f iðeþ de;DiÞ > 0 or
equivalently

@f i

@e
: de > 0: ð19Þ

In order to use the GSM framework, it is necessary to re-
write the criterion with respect to the thermodynamic
force Y

i. One obtains:

f iðYi;DiÞ ¼ kYik �Y
i
<D

i �W i; ð20Þ

where the symbol ‘‘<’’ represents the contraction over the
nearest four indexes in the canonical basis or, equivalently,
over the two indexes in the Bi � Bj basis.

3.3. Evolution

According to the GSM framework (in its associated
form), the evolution of the state variablesDi obeys the nor-
mality rule which ensures the maximum dissipation
principle:

dDi ¼ @f i

@Yi
dKi; ð21Þ

where dKi is a positive Lagrange multiplier. From Eqs. (20)
and (17) one gets:

dDi ¼ Ki � Ki �D
i

� �
dKi: ð22Þ

Ki ¼ e
i

keik : ð23Þ
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This key equation shows that the tensorial direction of the
damage evolution depends upon both the actual damage
state (via D

i) and the actual strain (via Ki). In case of non
proportional straining, Ki changes, the damage tensor D

i

does not remain colinear to itself thus the elastic tensor
C (Eq. 15) and its symmetry group may change. Obtained
from Eq. (18), the partial derivatives

@f i

@e
¼ kiðPi �D

iÞ : e; ð24Þ

@f i

@Di
¼ � ki

2
e
i � e

i; ð25Þ

allow one (using Eq. 16 fromwhich dDi
: e ¼ dDi

: e
i) to ex-

press the consistency equation df iðe;DiÞ ¼ 0 as follows:

2e : ðPi �D
iÞ : de ¼ e : dDi

: e: ð26Þ

Together with Eq. (22), this gives the value of the Lagrange
multiplier:

dKi ¼ 2
e : ðPi �D

iÞ : de
e : ðPi �D

iÞ : e
: ð27Þ

The intrinsic dissipation evolution is given by the product
of thermodynamic forces and fluxes (Halphen and Nguyen,
1975) i.e., for the mode I:

dDi ¼ Y
i
<dDi: ð28Þ

This can be expressed, using successively Eqs. (17), (26)
and (24), as:

dDi ¼ ki

2
e : dDi

: e; ð29Þ

¼ kie : ðPi �D
iÞ : de; ð30Þ

¼ @f i

@e
: de: ð31Þ

The last expression, together with 19, leads to:

dDi > 0 ð32Þ

in case of damage evolution. Thus, the global dissipation
dD ¼ PI

i¼1dDi is positive as required by the second princi-
ple of the thermodynamics. From Eqs. (30) and (27) one
obtains:

dDi ¼ ki

2
e : ðPi �D

iÞ : edKi; ð33Þ

¼ qWidKi; ð34Þ
¼ W idKi; ð35Þ

where qWi denote the free energy stored in the mode i,
consistently with Eq. (14). From above e : ðPi �D

iÞ : e ¼
e
i
: ðPi �D

iÞ : ei ¼ 2W i=ki > 0 for any strain e which be-
longs to the (ellipsoidal) yield surface fi = 0. A generic
strain e

⁄ can be expressed as e
⁄ = e⁄\ + jei where e

⁄\

belongs to the space T � T i. Thus e
�
: ðPi �D

iÞ : e� ¼
2j2W i=ki > 0 and this shows that Pi �D

i and C are posi-
tive semidefinite.

3.4. Algorithm

Algorithm 1: Damage model

Require: strain states e[t], initial

elasticity ki;Pi and limit energies Wi

1: D
i½1� ¼ 0;r½1� ¼ 0

2: for t = max (t) � 1 do

3: for i = 1:I do
4: if f iðe½t þ 1�;Di½t�Þ < 0 (Eq. 18) then
5: D

i½t þ 1� ¼ D
i½t� {Elastic evolution}

6: else

7: de = e[t + 1] � e[t] {Damage
evolution}

8: dKiðde; e½t�;Pi;Di½t�Þ (Eq. 27)
9: dDiðdKi; e½t�;Pi;Di½t�Þ (Eq. 22)
10: D

i½t þ 1� ¼ D
i½t� þ dDi

11: end if

12: r
i½t þ 1�ðDi½t þ 1�; e½t þ 1�Þ (Eq. 15)

13: end for

14: end for

The proposed model has been implemented in a simple
integration scheme as shown by Algorithm (1). The index t

refers here to the actual step of the calculus. Using tenso-
rial basis (Eq. 1), the 2 � I fourth-rank tensors P

i and D
i

are stored in 6 � 6 matrices and the second-rank tensors
r, e in 6 � 1 vectors. The algorithm was programmed with-
in the Matlab software and the main body of the program
is less than ten lines. It concerns a strain-driven path which
can be used as a UMAT in the ABAQUS software. The
robustness test of Matallah and La Borderie (2009), which
consists in a strain path of the form e = cos (h) sin (h/
2n)B1 + sin (h) sin (h/2n)B2 + (1 � cos (h/2n))B3 where h

ranges from 0 to 2pn, (for many n) has been successfully
tested (not presented).

3.5. Example of the initially isotropic material and two

proportional loadings

For sake of simplicity this example refers to an initially
isotropic material (Eq. 11). In Table 1, the Kelvin moduli
(3K,2l) correspond to a Young modulus E = 1 and a Pois-
son’s ratio m = 1/3, WH and WD are the limit energies of
respectively the hydrostatic (H) and deviatoric (D) modes
(Eq. 18).

The first loading path is an oedometric tension defined
as follows:

e
1 ¼ eðtÞB1; ð36Þ

where e(t) evolves from 0 to 1 then back to 0 and t repre-
sents time. From Eq. (23), the normed tensors Ki are KH and

Table 1

Material constants.

3K 2l WH WD

3 3/4 1/4 1/6
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KD1 whose respective components are ð1;1;1;0;0;0Þ=
ffiffiffi
3

p

and ð2;�1;�1; 0;0;0Þ=
ffiffiffi
6

p
in the basis Bi. At the beginning

of yielding, both the damage tensors D
H and D

D are null.
Eq. (22) shows that, in such case of proportional loading,
the damage tensor D

H remains colinear to KH � KH and
D

D colinear to KD1 � KD1. Thus one can write
D

H ¼ d
H
KH � KH ¼ P

H; D
D ¼ d

D1
KD1 � KD1 and, from Eq.

(15), the actual Hooke law is:

C ¼ 3Kð1� d
HÞPH þ 2lðPD � d

D1
KD1 � KD1Þ: ð37Þ

This expression shows that the response of the material to
an hydrostatic strain is reduced but still isotropic and that
the response to a deviatoric strain is no more isotropic: the

4-dimensional subspace of projector PD � KD1 � KD1 corre-
sponds to an unchanged Kelvin modulus 2l but the 1-

dimensional subspace of projector KD1 � KD1 corresponds
to a reduced Kelvin modulus 2l(1 � dD1). The consistency
Eq. (27) simplifies in this case to dKH = dKD = 2de/e. This

allows one to obtain, from Eq. (22): d
H ¼ 1� ðeHy =eÞ

2 and

d
D1 ¼ 1� ðeDy =eÞ

2 where eHy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WH=K

q
and eDy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3WD=2l

q

are the strains at which yielding begins, given by their
respective initial yield conditions (Eq. 18). These strains cor-
respond respectively to the points A and A’ on Fig. 1. Be-
tween points 0 and A fH < 0 and fD < 0, the behavior is
linear elastic of slope K + 4l/3 in the coordinates of the
Fig. 1. From A to A’ fH = 0 and fD < 0, dH evolves alone. From
A’ to B, fH = 0 and fD = 0, dH and dD increase. In both cases,
one can easily verify from above that the stress to strain
curve in Fig. 1 has an hyperbolic shape, consistently with
the criterion of constant modal energy. The unloading BO
shows a reduced linear elasticity.

The strain path is continued by an imposed shearing

e
2 ¼ eðtÞB4; ð38Þ

where e evolves from 0 to 1 then back to 0. From Eq. (23)
one obtains KD2 ¼ B4. Eq. (22) shows that DD now evolves
from part along KD2 � KD2 and from part along KD1 � KD1

(which is already contained in D
D from previous loading).

The actual elasticity law can be written as:

C ¼ 3Kð1� d
HÞPH þ 2lðPD � d

D1
KD1 � KD1

� d
D2
KD2 � KD2Þ: ð39Þ

The evolution of (dH,dD1,dD2) will be detailed in Section 4.3.
However above results still show that dH is not concerned
by the present evolution (its value remains constant). The
evolution CC’D (Fig. 2), which involves damage, exhibit
similar hyperbolic shape as for the previous loading.

Eqs. (37) and (39) correspond to a Kelvin decomposition
of the material actual elasticity. Easily obtained in these
cases of proportional loading, such result is generalized
in Section 4.

Fig. 3 shows the strain path and the deviatoric yield sur-
faces fD = 0at points 0, B (endof tension) andD (endof shear)
in both the coordinates (B1,B4) and ðKD1;KD2Þ. From the
above expressions of DD1 and D

D2; f D ¼ 0 can be written as
le : ðPD � d

D1
KD1 � KD1 � d

D2
KD2 � KD2Þ : e�WD ¼ 0. For a

strain such as e ¼ xKD1 þ yKD2, this leads to
x2(1 � dD1) + y2(1 � dD2) =WD/l. This shows that the yield
surfaces in the coordinates ðKD1;KD2Þ are elliptic and, in par-
ticular, circular for the undamaged material.

4. Kelvin’s analysis of the model

4.1. Second-rank tensor basis of the damage tensors

At this stage, the model is fully defined, however, the
mechanical significance of the fourth-rank damage tensors
D

i is still not unveiled. By construction (Eq. 22), they are
fourth-rank tensors whose matrix of component in the ba-
sis Bi � Bj is 6 � 6 is symmetric. Thus they accept a diago-
nal form, i.e. a Kelvin decomposition in which, as the image
of Di is the subset T i � T (from Eq. 16), many eigenvalues
can be null. This decomposition is written as follows:

D
i ¼

XPi

p¼1

d
ip
P

ip; ð40Þ

P
ip ¼

XMip

m¼1

Eipm � Eipm; ð41Þ

where dip are the eigenvalues, the Eipm their Mip corre-
sponding eigenvectors and P

ip the associated fourth-rank
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projectors onto subspaces T ip of basis Eipm where (i,p) are
fixed. From the normality (Eq. 22) and because Ki 2 T i

(Eqs. 7, 23), Di is internal in T i as envisaged in Eq. (16)
and the set of Eipm, where i is fixed alone, is an orthonormal
basis of T i (a particular choice of the generic basis Ein de-
fined as in Eq. 2). The set of all the Eipm is an orthonormal
basis of T . This leads to:

T i ¼ a
Pi

p¼1

T ip; P
i ¼

XPi

p¼1

P
ip;

XPi

p¼1

Mip ¼ Ni: ð42Þ

Table 2 helps the reader for these notations. This Kelvin
decomposition of D

i consitutes a partition of the Kelvin
decomposition for the sound material (Eq. 2) and is consis-
tent with it for dip = 0. Above results and the Hooke law
(Eq. 15) show that the Kelvin decomposition of C shares
the same projectors as D

i:

C ¼
XI

i¼1

ki
XPi

p¼1

ð1� d
ipÞPip: ð43Þ

In the manner of Eqs. (6) and (7), we have:

r
ip ¼ kið1� d

ipÞeip; ð44Þ
r

ip ¼ P
ip
: r; e

ip ¼ P
ip
: e; ð45Þ

r ¼
XI

i¼1

XPi

p¼1

r
ip; e ¼

XI

i¼1

XPi

p¼1

e
ip: ð46Þ

The free energy Eq. (13) and the yield criterions Eq. (18)
can be written as:

2qW ¼
XI

i¼1

ki
XPi

p¼1

ð1� d
ipÞeip : eip; ð47Þ

f i ¼ ki

2

XPi

p¼1

ð1� d
ipÞeip : eip �W i: ð48Þ

This shows that the criterion fi = 0 is (hyper) elliptic, cen-
tered on tensor 0 and convex in any cases. Expressions
Eq. (43), (44) and (47) clearly indicate that the dip represent
a loss of stiffness with respect to the sound state of the
material as defined for damage mechanics. The projectors
P

ip define the tensorial subset of influence of each corre-
sponding scalar damage dip whose maximum number is
6. A given mode i can ‘‘vanish’’ if the corresponding
dip ? 1, "p. If this is true for all modes, dip ? 1, "(i,p),
the material is fully damaged and associates an infinitively
small stress to any strain.

4.2. Scalar damage evolution

The calculation of dip and Eip requires the diagonaliza-
tion of Di. Although easy in the basis Bi, this operation is
not necessary for the model operation. The positiveness
of the dissipation, in its expression of Eq. (29), can be trans-
formed by using successively the normality Eq. (22), the
expression of Di in Eq. (40) and the orthogonal projector
relation in Eq. (42):

e : ðKi � Ki �D
iÞ : e > 0;

e
i
: e

i �
XPi

p¼1

d
ip
e
ip
: e

ip > 0;

XPi

p¼1

ð1� d
ipÞeip : eip > 0: ð49Þ

Recalling that this equation applies for any choice of e
(such as fi = 0) yields dip < 1. As a consequence C (Eq. 43)
has positive Kelvin moduli thus is positive definite and
the free energy (Eq. 47) is positive. The damage evolution
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Fig. 3. Strain path and deviatoric yield surfaces in the strain space: initial (dashed), at point B (dash dotted), and D (plain).

Table 2

The index system.
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dDi (Eq. 22) is expressed in the basis Eipm as the difference
between the symmetric matrix of Ki � Ki and the diagonal
one of D

i. A diagonal term of dDi has the form k2 � dip

where k ¼ Ki
: Eipm is a component of the normed tensor

Ki thus 0 6 k2 6 1. This term can be negative, leading to a
reduction of dip and this recovery capability differs from
classical damage models. The highest rate of damage
reduction is given when k = 0 and this gives, from Eq.
(22), ddip = �dipdKi thus, as dKi > 0, dip cannot be negative.

0 6 d
ip
< 1: ð50Þ

This case corresponds to an evolution of damage in a tenso-
rial direction Ki orthogonal to the direction Eipm related to
the considered damage dip. Such case is met in Section 4.3.

4.3. Example

In this part we apply these results to the example of
Section 3.5. As envisaged, the hydrostatic damage intensity
dH increases continuously during AB but remains constant
during path CD in which the strain e

2 is purely deviatoric.
During A’B, dD1 increases (see Fig. 4), the material becomes
weaker with respect to the direction KD1 which is the devi-
atoric part of the actually imposed strain e

1. From Eq. (37),
KD1 is an eigenvector of DD i.e. KD1 ¼ ED1 (this simplicity is
due to the proportionality of the loading). During CD, dD2

increases, concerning the direction KD2 ¼ ED2 of the im-
posed strain e

2. In the same time dD1 decreases as envis-
aged in Section 3.5. This can be observed on Fig. 3: the
yield surface radius along KD1 decreases from state B to
state D. The rate of increase of dD2 is compared to the rate
of decrease of dD1 at point C (where dD2 = 0). In the basis
ðKD1;KD2Þ (other dimensions are not concerned), one can
write the damage evolution dDD (Eq. 22) as follows:

ddD1 0

0 ddD2

" #
¼ �d

D1 0

0 1

" #
dKD: ð51Þ

According to this expression, ddD1 = �dD1ddD2 thus the rate
of decrease of the inactive damage dD1 is lower than the
rate of increase of active damage dD2. This case corresponds
to the case of fastest damage decrease (k = 0) envisaged in
Section 4.2. The dissipation (Eq. 28) can be expressed as
dDD ¼ 2lede > 0 which does not involve the value of the
inactive damage dD1.

5. Symmetry analysis and Curie principle

5.1. Symmetry group of the actual elasticity tensor

From Theorem 10, the symmetry group of the elasticity
tensor is the intersection of the symmetry groups of its

projectors. These ones have the structure of an elasticity
tensor (with 6 �Mip null eigenvalues) then their symmetry
group belongs to one of the eight possible between isotro-
pic, cubic, transverse isotropic, tetragonal, orthotropic, tri-
gonal, monoclinic and tricilinic) (Huo and Del Piero, 1991;
Forte and Vianello, 1996). From theorem 3, the symmetry
group of a projector is the set of orthogonal transforma-
tions internal in the corresponding subspace. For the sound
material, the symmetry group of the stiffness tensor (Eq. 5)
is:

SðC;Di ¼ 0Þ ¼
\I

i¼1

SðPiÞ;

¼
\I

i¼1

Q 2 SOð3Þ=QðEin 2 T iÞ 2 T i
n o

: ð52Þ

Similarly, for the damaged material (Eq. 43) the symmetry
group is:

SðCÞ ¼
\I

i¼1

\Pi

p¼1

SðPipÞ;

¼
\I

i¼1

\Pi

p¼1

Q 2 SOð3Þ=QðEipm 2 T ipÞ 2 T ip
n o

: ð53Þ

As soon as the Eipm constitute a particular choice of the Ein,
it is easy to verify that the first group contains the second
i.e. that the damaged material is less (or equally) symmet-
ric than the sound one.

5.2. Symmetry group of the causes

The causes have two origins: the material’s actual
state defined by the actual stiffness tensor C and the
mechanical solicitation. This last one is represented by
both the stress r and the strain e which have, in general,
a different symmetry group as soon as they are not pro-
portional tensors. However, the Kelvin decomposition
decomposes them into proportional parts (Eq. 6 for the
sound material and Eq. (44) for the damaged one). The
symmetry group of rip and e

ip are the same thus are capa-
ble to describe the symmetry group of the mechanical
solicitation. Under this assumption, the symmetry group
of the causes is

SðcausesÞ ¼ SðCÞ
\I

i¼1

\Pi

p¼1

SðeipÞ: ð54Þ

5.3. Symmetry group of the consequences

At each infinitesimal step of the damage evolution the
stiffness of the material evolves towards Cþ dC. This term
is considered as the consequence of the process. The nor-
mality (Eq. 22) and the expression of Di (Eq. 40) yields:

SðdDiÞ ¼
\Pi

p¼1

SðPipÞ
\

SðKi � KiÞ: ð55Þ

From above, the stiffness tensor expression (Eq. 15) and its
symmetry group (Eq. 53), one deduces the symmetry
group of the consequences:
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Fig. 4. Scalar damage levels v.s. fictitious time.
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dC ¼ �
XI

i¼1

kidDi; ð56Þ

SðdCÞ ¼
\I

i¼1

SðdDiÞ; ð57Þ

SðCþ dCÞ ¼ SðCÞ
\I

i¼1

SðKi � KiÞ; ð58Þ

5.4. Verification of the Curie principle

The Corollary 1 and the definition of Ki (Eq. 23) lead to:

SðeiÞ ¼ SðKiÞ � SðKi � KiÞ: ð59Þ

From the partition of the projectors (Eq. 42), ei ¼ PPi

p¼1e
ip

thus:

Q 2
\Pi

p¼1

SðeipÞ ) Q 2 SðeiÞ;

()
\Pi

p¼1

SðeipÞ � SðeiÞ: ð60Þ

From the inclusions relations (Eqs. 59 and 60) one deduces
the final relation:

\Pi

p¼1

SðeipÞ � SðKi � KiÞ; ð61Þ

SðCÞ
\I

i¼1

\Pi

p¼1

SðeipÞ � SðCÞ
\I

i¼1

SðKi � KiÞ; ð62Þ

which corresponds to the verification of the Curie princi-
ple, i.e. the symmetry group of the consequences (the right
hand term, Eq. 58) includes the one of the causes (the left
hand term, Eq. 54). The consequences are at least as
symmetrical as the causes, as envisaged by the Curie prin-
ciple. One can remark that the first inclusion relation (Eq.
59) is simply due to the use of fourth-rank projectors. On
the contrary, the second one (Eq. 60) is due to the expres-
sion of dDi (Eq. 22) as its first member depends upon
Ki ¼ P

i
: e=kPi

: ek where P
i is the projector associated

with the sound state (and not the actual ones P
ip). This

observation can be useful for further evolution of the
model.

5.5. Example and remarks

The symmetry group of the stiffness tensor evolves all
along the damage process presented in the example (Sec-
tions 3.5 and 4.3). In order to have a visual interpretation
of the symmetry group of the stiffness tensor C, pole fig-
ures (François et al., 1998; Diner et al., 2011) are used.
They consist in a measurement of a distance nðC;nÞ be-
tween C and its symmetric SnðCÞ with respect to all planes
whose normals n range the half unit sphere:

nðC;nÞ ¼ kC� SnðCÞk
kCk ; ð63Þ

where kCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpqrsCpqrs

p
. The result is presented on gray-

scale pole figures (thumbnails in Figs. 1, 2 and 6). Black
corresponds to n = 0, denoting the existence of a symmetry
plane of normal n. White corresponds to a large discrep-
ancy between C and SnðCÞ. A fully black pole figure denotes
the isotropy. The eight possible symmetry groups for the
elasticity tensors can be distinguished by the number
(and orientation) of the dark spots (see François et al.,
1998 for details).

Concerning the example of Section 3.5, the symmetry
group of the hydrostatic damage tensor D

H ¼ d
H
P

H re-
mains SOð3Þ and thus does not affect the symmetry group
of the material since, S \ SOð3Þ ¼ S for all symmetry group
S). From A’ to B the deviatoric damage tensor D

D evolves
proportionally to ED1 � ED1. The symmetry group of
ED1 ¼ KD1 is obviously transverse isotropic (of axis e1), thus
ED1 � ED1 (from Corollary 1) and C (from theorem 10) are
also transverse isotropic, as shown by the pole figure at C
in Fig. 1. From C to D, DD evolves also along the projector
ED2 � ED2. However, if ED2 ¼ KD2 ¼ B4 is orthotropic (the
symmetry group is D2), from Corollary 1 ED2 � ED2 is
tetragonal because the elements of D4 transform B4

in ± B4 (for example the rotation R½e1 ;p=2�ðB4Þ ¼ �B4). Again
from theorem 10, the symmetry groups of D and C are the
intersection of the transverse isotropy of ED1 � ED1 and this
tetragonal symmetry. Sharing the same axis (e1,e2,e3), the
transverse isotropy includes the tetragonal symmetry thus
D and C are tetragonal as shown in Fig. 2 which shows the
five spots (normal of symmetry planes) characteristic of it.
Point C’ is the point where dD1 = dD2 (Fig. 4): the two pro-
jectors PD1 and P

D2 share temporarily the same eigenvalue.
At this moment, the two uni-dimensional modes join to-
gether in a bi-dimensional one of basis (ED1,ED2) which
leads (without demonstration) to a cubic symmetry re-
vealed in Fig. 2 by its nine characteristic symmetry planes.

A general study of the symmetry group evolution would
be of interest in a future work. The above analysis of the
symmetry groups considers only exact symmetries. How-
ever, the evolution from a symmetry group to another is
progressive. For example, on the pole figure at point D,
the nine dark spots revealing the cubic symmetry are still
perceptible but only the ones relative to the tetragonal
symmetry are truly black (at the value 0). An animation
of the pole figure between C’ and D would reveal a progres-
sive fading of the spots related symmetry planes which be-
long to the cubic symmetry but not to the orthogonal
symmetry. Such distance between a stiffness tensor and a
symmetry group can be measured (François et al., 1998;
Moakher and Norris, 2006).

5.6. Path dependance and non proportional loading

The previous example (Sections 3.5, 4.3 and 5.5) was
dedicated to two successive proportional loadings. On the
contrary, we consider here two non proportional loadings:

e
I ¼ sinðhÞB1 � cosðhÞB4

e
II ¼ ð1� cosðhÞÞB1 þ sinðhÞB4;

ð64Þ

where h varies between 0 and p/2.
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Even if final strains are equals, the final stresses differ
(Fig. 5) and this shows the history effect of the model. The
deviatoric damage tensor evolves continuously and, at the
final point, consists in auni-dimensionalweightedprojector

D
DI ¼ d

DI
EDI � EDI with dDI = 0.75 and EDI = 0.75ED1 + 0.66B4

for the path I and D
DII ¼ d

DII
EDII � EDII with dDII = 0.76 and

EDII = 0.48ED1 + 0.88B4 for the path II. The material is more
damaged in tension for the loading I and in shear for the
loading II. These uni-dimensional projectors lead to yield
surfaces of radius unchanged in the four (deviatoric) direc-
tions orthogonal to EDI (respectively EDII) as this can be ob-
served (for one of them) on Fig. 6. The deviatoric tensors
EDI and EDII are orthotropic. However D

DI is accidentally
close to be tetragonal andD

DII close to be transverse isotro-
pic (Fig. 6). These symmetry groups include the orthotropic
one as allowed by the Curie principle.

6. Conclusions

The proposed damage model is consistent with both the
thermodynamics of irreversible processes and the Kelvin
eigentensor decomposition. In its present form it applies
for the damage description of both initially isotropic and
anisotropic materials, describing the continuous evolution
of the symmetry group of the elasticity tensor within the
respect of the Curie principle. The damage is represented
by (fourth-rank) tensorial variables decomposed into their
(second-rank) eigentensors which indicate the direction of
damage and (scalar) eigenvalues which denote damage
intensity. Due to the use of the Kelvin framework, the mod-
el is equivalently defined in term of stress or strain. Few
material constants are required (a limit energy for each
Kelvin mode). Each concept has a simple mechanical
meaning. The model is already usable in a finite element
code after the development of a more sophisticated inte-
gration scheme than the simple one used here.

The damage affects the response of the material in the
tensorial direction of the actual eigenstrain and the present
formulation induces (lower) damage recovery along the
other (inactive) tensorial directions of the mode. This as-
pect is due to simplicity of the present exploratory model
and further developments should include the introduction
of coupling terms between active and passive damages,
leaving the tensorial directions (thus the symmetry groups)
unchanged with respect to the proposedmodel. In a similar
manner, the retained energetic criterions are known (since
the Beltrami criterion) to be quite unrealistic (especially for
the non isochoric modes). Further enhancement may con-
sist in the used of positive parts commonly used in damage
mechanics, which have been shown to be consistent with
the Kelvin’s framework by Desmorat (2001).

Appendix A

Theorem 1. If Q 2 SOð3Þ is an orthogonal transformation

and A;B 2 T then Q(A):Q(B) = A:B.

Proof. In the canonical basis ei:

QðAÞpqQðBÞpq ¼ QprQqsArsQpmQqnBmn ¼ drmdsnArsBmn

¼ ArsBrs:

In particular, if A = B, this recalls that the Euclidean natural
norm is preserved Q(A) : Q(A) = kQ(A)k2 = kAk2. h
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Fig. 5. Stress path for the two loadings I and II.
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Theorem 2. The matrix bQ pq of an orthogonal transformation

Q in an orthonormal tensor basis Ep of T is orthogonal.

Proof. From theorem 1:

QðEpÞ : QðEqÞ ¼ dpq;

X6

r;s¼1

bQ prE
r
: bQ qsE

s ¼
X6

r¼1

bQ pr
bQ qr ¼ dpq:

This result can also be deduced from the Bond’s expression
of the matrix bQ qr (Auld, 1973). It also applies in case of a
transformation Qi internal in a subspace T i 2 T (consider-
ing a basis Eip of dimension Ni of this subspace). h

Theorem 3. The set of the orthogonal transformations Qi

internal in T i is the symmetry group of the projector Pi asso-

ciated with T i.

Proof. Let Eip, where i is fixed, be an orthonormal basis of
T i thus Pi ¼ PNi

p¼1E
ip � Eip. Supposing Qi internal in T i, one

has:

Q iðPiÞ ¼
XNi

p¼1

Q iðEipÞ � Q iðEipÞ ¼
XNi

p¼1

XNi

k¼1

XNi

r¼1

bQ i
pk
bQ i

prE
ik � Eir:

From the orthogonality of bQ i (theorem 2):

Q iðPiÞ ¼
XNi

k¼1

Eik � Eik ¼ P
i;

thus Qi belongs to the symmetry group of Pi.
To prove equivalence relation we suppose P

i ¼ Q iðPiÞ
thus, for a given r 2 {1 . . .Ni}:

Q iðEirÞ : Pi
: Q iðEirÞ ¼ Q iðEirÞ : Q iðPiÞ : Q iðEirÞ;

XNi

q¼1

Q iðEirÞ : Eiq � Eiq
: Q iðEirÞ

¼
XNi

p¼1

Q iðEirÞ : Q iðEipÞ � Q iðEipÞ : Q iðEirÞ;

and, from theorem 1:

XNi

q¼1

ðQ iðEirÞ : EiqÞ2 ¼
XNi

p¼1

ðEir
: EipÞ2 ¼ 1:

This proves that Q iðEirÞ 2 T i;8r 2 f1 . . .Nig because its
norm in T i equals 1 (its norm in T ). Thus Qi is internal in
T i as envisaged. h

Corollary 1. The symmetry group of a one dimensional pro-

jector P
i ¼ Ei1 � Ei1 is fQ 2 SOð3Þ=QðEi1Þ ¼ Ei1g

S
fQ 2

SOð3Þ=QðEi1Þ ¼ �Ei1g (the first set is the symmetry group of

Ei1).

Proof. From theorem 3 the symmetry group of Pi is the
collection of orthogonal transformations Q internal in T i.
In this unidimensional subspace this includes the two pos-
sibilities Q(Ei1) = ±Ei1. h
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