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1 INTRODUCTION 

 

The aim of the present paper is to develop new con-

stitutive model for lifetime prediction of elastomers 

which are physically motivated, well adapted for 

numerical problems, and accurate for rubber materi-

als under multiaxial high cycle fatigue loadings. We 

propose a strain energy function expressed in terms 

of independent strain invariants restricted, in the pre-

sent paper, to uniaxial high cyclic loadings. A way to 

predict the fatigue life is to calculate the damage ac-

cumulation cycle by cycle using the continuum dam-

age mechanics approach (Lemaitre & Chaboche 

1990). For rubber-like materials, CDM approaches 

are mainly focused on the Mullins effect (Chagnon 

et al. 2004, 2006, Cantournet  2002, Cantournet et al. 

2009). Few models are developed for fatigue phe-

nomena (Wang et al. 2002, Ayoub et al. 2012). In 

the present study, the damage model (Gornet et al. 

2012) initially developed for the multiaxial Mullins 

effect (few cycles) is extended to high cycle fatigue 

loadings. In the Finite Element context, the proposed 

model can easily be implemented thanks to its strain 

invariants formulation. Finite Element predictions of 

samples have been carried out with the Finite Ele-

ment code Abaqus.  

2 STRAIN ENERGY FUNCTION 

In this section, the hyperelastic strain energy func-

tion that defines the foundation of the proposed fa-

tigue model is briefly recalled. For incompressible 

materials, a phenomenological energy function is 

expressed in term of the first I1 and the second invar-

iant I2 (Gornet et al. 2012).  

2.1 Incompressible GD strain energy density 

Assuming that rubber materials are both isotropic 

and incompressible, the proposed strain energy func-

tion W only depends on the two first invariants of the 

left Cauchy-Green stretch tensor B: 
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where h1, h2, h3 are the material parameters. In this 

strain energy, the term depending on I1 of W de-

scribes the global response of the material and is 

similar to the first part of the Hart-Smith model 

(Hart-Smith 1966). The second term that involves I2 

improves the accuracy of the model for multiaxial 

loading conditions (a general power I2-term has been 

introduced by Lambert-Diani & Rey, 1999). The true 

stress tensor is defined by the differentiation of the 

proposed strain energy with respect to B: 
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2.2 Links between GD and eight-chains models 

The hyperelastic model is characterized by its ability 

to describe the strain-hardening of the material that 

takes place under large strains. This strain-hardening 

phenomenon is mainly due to the extensibility limit 

of polymer chains. The first part of the GD model is 

equivalent to Hart-Smith model and then to the 

eight-chains (Arruda & Boyce 1993) and Gent models 

for the entire range of strains (Chagnon G. et al. 

2004). 
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We proposed to remind the physical motivation of 

the second part of strain energy W2(I2) of the GD 

model. As mentioned by (Treloar 1975), term that 

depends on I2 in constitutive equations can be seen 

as corrections of the phantom network theory (I1 

function). We have proposed to constrain the eight-

chains model by a new network of chains on the sur-

face of the cube (figure 1). The confinement of the 

eight-chains model is governed by a strain energy 

potential. This potential constrains the eight-chains 

cube surface. Let us recall that the surface of the 

eight-chains model (a cube) is I2
1/2

 and that its in-

crease under deformation is I2
1/2

 - 3
1/2

. We therefore 

define a pressure constrain of the eight-chains rubber 

network. This phenomenon is modeled by the sec-

ond invariant energy part:  
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where 3h2 stands for the pressure constrain of entan-

glement of the eight-chains rubber network. 

 

 
Figure 1. Entanglement of the eight-chains rubber network. 
Eight-chains model completed by surrounding chains (in bold) 
is the physical motivations of the GD model. 
  

3 MULTIAXIAL EXPERIMENTAL DATA 

AND GD PARAMETERS IDENTIFICATION 

In order to compare the efficiency of the models, we 

choose two complementary data sets issued from 

classical references (Marckmann & Verron 2006). 

The first set is due to Treloar (1944). In the current 

study, data from Treloar for unfilled natural rubber 

(cross-linked with 8 parts of S ) were used. This ma-

terial exhibits highly reversible elastic response and 

no stretch-induced crystallization up to 400%. Thus 

it is well-modeled by hyperelastic constitutive equa-

tions. Experimental measurements were performed 

for four different loading conditions: equibiaxial ex-

tension of a sheet (EQE), uniaxial tensile extension 

(UE), pure shear (PS) and biaxial extension (BE). 

The second data set is due to Kawabata et al. (1981). 

It was obtained using an experimental apparatus for 

general biaxial extension testing. In terms of stretch 

ratios, unfilled polyisoprene specimens were 

stretched from 1.04 to 3.7 in the first direction (λ1) 

and from 0.52 to 3.1 in the perpendicular direction 

(λ2). These values correspond to moderate strain but 

lead to deformation conditions from uniaxial exten-

sion to equibiaxial extension. Here, both experi-

mental data sets are simultaneously considered to 

compare the models because the two materials are 

quite similar. Thus, for a given model, a unique set 

of material parameters must be able to reproduce 

these data with a good agreement. The parameter 

identification is performed using genetic algorithms 

as presented in (Marckmann 2004). The GD model 

assumes entanglement of the eight-chains rubber 

network and identified responses are depicted on 

figures 2-4. The GD model responses on figures 2 to 

4 are almost equivalent to Ogden six parameters 

(Ogden 1972) results.  

 

 
Figure 2. Experimental data (- -) and GD model identification 
for biaxial tensile tests. Piola-Kirchhoff function of extension 
for several transverse extensions. Incompressible GD model re-
sponse. 



 
Figure 3. Experimental data (- -) and GD model identification 
for biaxial tensile tests. Piola-Kirchhoff function of extension 
for several transverse extensions. Incompressible GD model re-
sponse. 

 
Figure 4. Experimental data (.) and GD model identification 
for biaxial extension (BE), equibiaxial extension (EQE), pure 
shear (PS), uniaxial tensile extension (UE). Incompressible GD 
model response. 

 

The GD parameters are: h1=0.142 MPa, 

h2=1.585 10
-2

 MPa and h3=3.495 10
-4

. The proposed 

GD model is able to accurately reproduce the whole 

"S" shaped response of the material. The model be-

haves satisfactory under all the presented loadings 

(figures 2-4). 

4 A UNIFIED DAMAGE MODEL FOR 

MULLINS AND FATIGUE MODELLING 

4.1 Material 

The material studied here is a carbon black-filled 

natural rubber. Its recipe and mechanical characteris-

tics are given in Table 1. Samples are obtained by in-

jection molding in order to reproduce industrial con-

ditions of mass produced parts. The compound has 

been cured for 7 min, with a mold temperature set to 

165°C. All samples were made using the same mate-

rial batch to limit properties scattering due for ex-

ample to mixing.  

 
Table 1: Recipe and mechanical characteristics of the material ______________________________________________ 
Formulation                  ______________________________________________ 
NR                 100.00 
Zinc Oxide                9.85 
Plastificant                3.00 
Carbon black               43.0 

Stearic acid               3.00 
Antioxidant               2.00 
Accelerators               4.00 ______________________________________________ 

Mechanical characteristics            _____________________________________________ 

Density                 1.13 
Shore hardness A             58 
Failure stress (MPa)            22.9 
Failure stretch (%)             635 

 

4.2 Damage modeling 

Elastomers present a loss of stiffness after the first 

loading cycle of a fatigue experiment (Mullins, 

1969). It has been observed that this phenomenon is 

only dependent on the maximum deformation previ-

ously reached in the loading history of the material. 

It is quite important to model it because the mechan-

ical behaviour of rubber products is highly modified 

by this softening phenomenon. The stress-softening 

for fatigue loadings should be explicitly included in 

the model. The continuum damage mechanics has 

often been used to model the Mullins effect even if 

phenomenon undergoing Mullins effect is not a 

strictly speaking an irreversible damage phenome-

non. For example, it can be recovered with time and 

annealing accelerates this recovery. The general the-

ory of Continuum Damage Mechanics is detailed in 

Lemaitre and Chaboche (1990) book. When applied 

to GD hyperelastic density, it yields to GDM model. 

This new strain energy function for hyperelastic 

model with damage variables can be written (eq  6) : 
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The incompressible state laws (eq. 2) associated with 

this model are classically obtained by equation 7. 
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We define the thermodynamic forces 
idY associated 

to damage internal variables 
iM

d by: 

i

GDM
d

iM

W
Y

d

∂
− =

∂
 (8) 

The failure of rubber part under fatigue loadings is 

taken into account by three damage variables Fd1 , 

Fd2 and Fd3 . The micro damage crack growth under 

high cycle fatigue can be considered as a combina-

tion of damages due to the Mullins Effect and due to 

the cyclic variation of the loading, hence total dam-



age evolution for three different material constants 

ihɶ can be expressed as follows: 

 

1, 2,3iM iFid d d i
• • •

= + =      (9) 

Where the term iMd
•

 corresponds to Mullins Effect 

under few cyclic static loading and iFd
•

 is related to 

high cyclic fatigue one. Variables id
•

 represent the 

total damage rate for each mechanical constant. The 

details of Mullins and fatigue damage variables will 

be discussed hereafter.  

4.3 Mullins effect damage evolution law 

For the Mullins part, a non-standard damage model 

is built here, the damage thermodynamics forces are 

not used to describe damage evolution laws. Instead 

of that, we consider that the quantity governing the 

damage evolution laws is the maximum value of the 

first invariant. This assumption is achieved accord-

ing to the physical motivations of maximum strain 

state endured during the history of the deformation 

(Marckmann et al. 2002). In order to do this we can 

introduce damage criterion functions  

fi = I1 – ki(diM) (10) 

such as fi<0 implies no damage evolution and as 

damage evolves at fi=0 with then diM =ki
-1

(I1). 

Choosing particular expressions for ki-functions al-

lows to derive the damage evolution laws (equations 

8-13) and makes the model complete for Mullins ef-

fect. This model is able to represent unloading Mul-

lins effect responses (figure 12). Evolution equations 

of the damage variables are expressed thanks to the 

first strain invariant.  
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where d1∞,η1, d2∞,η2 and b are material parameters. 

I1
max

 (or 1I in the following) represents the maxi-

mum value of the first strain invariant obtained dur-

ing loadings. The coupling with damages d1M and 

d2M is similar to the discontinuous damage part of 

the constitutive equations proposed by Miehe 

(1995). Let us consider the mass conservation of the 

polymer network, which implies that the number of 

monomer segments per unit volume must remain 

constant (Marckmann et al. 2002). For the 8 chains 

model this assumption leads to: 
R

C N cst= . This 

equation is derived for the GDM model. Chagnon et 

al. 2004, suggest a relationship between parameters 

of the 8 chains model, HartSmith model and the 

Gent model. These relations lead to equation: 

12 1
3

m
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J
C N h
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                                             (12) 

Where the maximum value of 1 3I −   is  
m

J  in the 

Gent models. 

 

According to relationship between parameters this 

leads to link the mechanical properties 1hɶ and 3hɶ  and 

shows that d3 is not an independent thermodynamics 

damage variables. 
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4.4 High cycle fatigue damage evolution law 

The proposed high cycle fatigue part of the damage 

model is based on an improved method already pro-

posed in (Gornet & Ijaz 2011) for composite materi-

als. Hence, in case of fatigue loadings, we assume 

that the damage variables of the rubber part will be 

also governed by the maximum value of the first in-

variant during the cyclic loadings. In this article, a 

fatigue model based on damage maximum value of 

the first invariant release rates is proposed as fol-

lows:  
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     (14)  

Where, Ff   is a damage loading function and defines 

the threshold of fatigue damages growth. This func-

tion can be written in terms of the first strain invari-

ant as
∗

−= 11 IIfF  , where 
∗

1I  is the first invariant 

threshold value and damage will grow only and only 

if 0≥Ff . This threshold value 
∗

1I  is assumed zero 

in this paper. 

Here, ig  is a dimensionless function and depends on 

maximum value of the first invariant on the cycle 

1I . Since the damage growth defined by Equation 

(14) is in rate format, it should be integrated over 

each time increment in the numerical analysis in or-



der to obtain the damage at the end of increment. 

The damage variable at the end of a time increment 

t∆ can be written as: 
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Here t  and tt ∆+  are the times corresponding to 

end of cycles N  and NN ∆+  respectively. Here 

1( , )
i

d IΡ represents the small variation of damage 

within one cycle compared to total number of cycles 

and is expressed through following form: 
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Where i
α  are three functions of the maximum value 

of the first strain invariant 1I  obtained during the cy-

clic loading.  
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The effect of load ratio “R”, for loads varying be-

tween maximum and minimum values of 
1I  during a 

cycle is not taken into account in the present study. 

The sum over the cycle numbers in Equation (15) 

can be approximated by using numerical integration 

schemes like trapezoidal rule or Simpson’s rule for 

definite integrals. In the present paper we assume 

that fatigue damage evolution rate is equivalent for 

each variable 1Fd   and 2Fd  . 

1 2F F Fd d d
• • •

= =      (18) 

 

According to relationship between parameters this 

leads to link the mechanical properties 1hɶ and 3hɶ  and 

shows that for the unified Mullins and fatigue d3 is 

not an independent thermodynamics damage varia-

ble. 
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F Fa N a e
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The last relationship suggests here that the number 

of structural monomers in the chain network can de-

crease during cyclic fatigue loading with the increase 

of dangling chains. Indeed, the mass conservation 

written in term of monomer in the rubber matrix (Eq. 

12) must not be taken strictly. Damage can injure the 

chain structural network. 

 

In order to verify the possibilities of the proposed fa-

tigue damage evolution law. The global fatigue re-

sponse of the cylindrical samples under cyclic uniax-

ial loadings (equations 20-21) are depicted on 

Figures 5-7 for several values of ( )1i
Iα  with 

1
6.15, 38.76Iλ = = . 

  2
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Figure 5. Variation of the adimensional Piola-Kirchhoff tensile 
stress with respect to ultimate Failure Cycles over the wide 
range of 1

α  for  1
6.15, 38.76Iλ = = with 2

0.6α = and 

3
6α = . 

 

 
Figure 6. Variation  of the adimensional Piola-Kirchhoff tensile 
stress with respect to ultimate Failure Cycles over the wide 



range of 2
α , for  1

6.15, 38.76Iλ = =  with 1
400α = and 

3
6α = . 

  

 
Figure 7. Variation of the adimensional Piola-Kirchhoff tensile 
stress with respect to ultimate Failure Cycles over the wide 
range of 3

α  for 1
6.15, 38.76Iλ = = . with 1

400α = and 

2
0.6α = . 

5 EXPERIMENTAL CONTEXT 

5.1 Apparatus 

Linear actuators are used for experiments. The Line-

ar actuator is servo-jack which maximum loading 

displacements is 100 mm, and maximum loading 

speeds is 0.6 m.s
-1

. The maximum loading force is 

3 kN. Fatigue tests are performed in a thermal oven, 

and the sample skin temperature is set to 23°C. It is 

possible to realize uniaxial combined tensile-

compressive-torsion loadings with this equipment 

(Figure 8). 

 
Figure 8. Tensile-torsion fatigue experiments (climatic chamber 
is not shown). 

5.2 Sample 

A classical test sample was used for this experi-

mental and simulation campaign. The sample is 

called AE2 and the mesh is presented in Figure 9 

(half of the specimen). It is an axisymmetric notched 

sample, the radius of the notch being equal to 2 mm. 

It is used in the case of uniaxial and multiaxial load-

ing conditions, because its geometry induces a mul-

tiaxial stress state in the notch, even under uniaxial 

loading conditions. 

 
Figure 9. AE2 sample for static and fatigue loading. The maxi-
mum value of 1M

d (Mullins effect) is in the center of the sam-
ple. 

5.3 Monitoring and data acquisition 

Both displacement (resp. angle) and force (resp. 

torque) can be monitored during fatigue test. A test 

is a series of cycle sequences. In this way, a large va-

riety of tests can be conducted. Experimental data 

are recorded, such as the minimum and maximum 

displacements and forces, and the shape of hysteresis 

cycles. In this paper, the fatigue damage model is 

identified on idealized fatigue experimental data 

(Figure 10). The loading is an imposed axial dis-

placement with constant sine amplitude. As exam-

ple, the damage accumulation in AE2 specimen un-

der tensile fatigue loadings is presented Figure 9. 

Experimental evolution of the hysteresis loop and 

GDM predictions obtained for non-relaxing uniaxial 

tensile experiments are presented on Figure 11.  

 
Figure 10. Experimental evolution of the hysteresis loop for an 
enforced displacement relaxing experiment on a AE2 sample. N 
represents the number of fatigue cycles.  

 

In order to overcome identification problems of the 

parameters overs the 985 experimental cyclic re-

sponses an equivalent cylindrical sample is used to 

evaluate the local material response in the notch of 

the specimen. Piola-Kirchhoff stress responses are 



then normalized. The offset of the cyclic loading, 

generally attributed to anisotropic and viscous ef-

fects, is also vanished since the present model can-

not reproduce it. 

5.4 Identification of the parameters 

It must be highlighted that uniqueness of the pa-

rameters values is one of the fundamental underlying 

questions in inverse analysis. Genetic algorithms are 

used to explore the influence of parameters on the 

behavior responses. Figure 11 represents the tensile 

response of the damage model corresponding to ex-

perimental condition of Figure 10. This figure shows 

how the model is able to accurately reproduce the re-

sponse of fatigue loadings for a maximal stretch.  

 
Figure 11. Simulations of the evolution of the averaging re-
sponse of the hysteresis loop during fatigue loadings (AE2 un-
der relaxing experiments. N represents the number of fatigue 
cycles.  

 

Figure 12 represents the response of the identified 

model for fatigue cyclic extension to λ=10 and for 

several cycles. Even if the model cannot reproduce 

the hysteresis response of the material, the global 

pseudo-hyperelastic response can be accurately re-

produced. The envelope of the maximum value of 

the stress for different extension are given in Figure 

13 as function of the number of fatigue cycles for 

different values of extension. The corresponding 

curves directly derived from of Eq (20) and (21). 

The Mullins and cyclic fatigue effect of the damage 

model are presented (Figure 14). The above results 

showed the efficiency of our damage model to cap-

ture the rubber response under constant amplitude 

loading conditions. However, the model can also be 

used with variable amplitude cyclic loadings. The 

identified parameters for GDMF are given below: 

h1=0.02457 MPa, h2=1.49 10
-6

 MPa and 

h3=1.1883 10
-11

, a1=14.01, b1=-1.564, a2=0.61209, 

b2=0.07659, a3=7.3392, b3=-0.05347,aF=2.83, 

0.0001146γ = , 1 2 .6896d d∞ ∞= = ,

1 1

1 2 0.017269η η− −= =   

 

 
Figure 12. Fitted damage model response superimposed to ex-
perimental data for a AE2 sample. N in the legend stands for 
the number of fatigue cycles.  

 

 

Figure 13. Piola-Kirchhoff functions of number of fatigue cy-
cles (N) for several values of the maximum first invariant val-
ues of λmax. 

 
Figure 14. Model responses for tensile tests : load 1, 2 and 3 re-
spectively from λ=1 to 3.5 (first time), 3.5 (second time) then 
6.5 (first time) and 6.5 (second time). Fatigue effect of the re-
sponse for cycle 50 and 500.  



6 CONCLUSIONS 

We propose here a simple isotropic hyperelastic 

model (GD) expressed in terms of classical inde-

pendent strain invariants of the symmetric Cauchy-

Green tensor. The strain-energy part as function of I1 

is to the same as the one of the Hart-Smith model. 

Moreover, this part is equivalent to the Eight chain 

model. Concerning the function of the second invar-

iant I2 a square root part is proposed. The corre-

sponding energy density contribution is connected to 

the non-affine deformation of the entanglement 

Eight-chains network. The Mullins and fatigue ef-

fects are then modeled through 3 damage variables. 

The model is thus derived stating that the loss of 

stiffness depends on the maximum value of the first 

invariant I1 under Mullins and fatigue loadings. An 

inverse optimization technique is used in order to ad-

just the fatigue damage parameters on tensile fatigue 

tests. The constitutive equations were presented in 

their most general form and can be adapted to all hy-

perelastic rubber form. The propose model can de-

scribe successfully the experimental response for 

low and high cyclic uniaxial extensions. The per-

formance of the proposed model is presented for the 

fatigue life response of AE2 rubber samples under 

tensile fatigue loadings. The model provides a good 

agreement between experimental stiffness decrease 

and the numerically AE2 adjusted one. 
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