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A constitutive equation for entangled linear polymers
inspired by reptation theory and consistent with

non-equilibrium thermodynamics

A. Leygue, A.N. Beris, R. Keunings
CESAME, Division of Applied Mechanics, Université catholique de Louvain, 

Bâtiment Euler, B-1348 Louvain-la-Neuve, Belgium

Using the single generator bracket formalism of non-equilibrium thermodynamics, we build a thermodynamically 
consistent constitutive equation of the differential type for linear entangled polymers. The starting point of our 
developments is the MGI rheological model proposed recently by Marrucci et al. [Rheol. Acta 40 (2) (2001) 98], 
which can be viewed as a modification of the classical Doi–Edwards reptation theory that includes convective 
constraint release and a modified strain measure. The proposed constitutive equation has an additional parameter 
which governs the dissipative part of the model. The MGI model is recovered as a particular case, but with a 
stress-conformation relationship which contains an additional term suggested by non-equilibrium thermodynamics. 
Predictions of the proposed model in steady and transient shear flows are shown to be in qualitative agreement 
with experimental observations. 
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1. Introduction

Since the introduction by De Gennes [2] of the reptation picture, a number of successful molecular
theories have been able to describe with increasing accuracy the linear rheology of entangled linear
polymers. The original idea is to consider the polymer chain confined in a tube formed by the topological
constraints, or entanglements, between the chain and the surrounding polymer chains. The dominant
relaxation mechanism comes from the reptation of the chain out of the confining tube. Considering chain
length fluctuations, it is possible to predict with reasonable accuracy the linear viscoelastic properties of
linear monodisperse polymers. The prediction of non-linear rheological properties is far less accurate,
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however. In the classical Doi–Edwards (DE) theory [3], the tube is deformed affinely by the flow and
its segments are gradually destroyed and renewed as the chain slowly reptates out of the tube. It is also
assumed that the chain-retraction mechanisms are so fast that the chain always has its equilibrium length.
Among the successes of the classical DE theory, we find the prediction of the plateau modulus and of
the damping function in response to a step strain. The DE model also predicts a non-zero second normal
stress difference in shear flows. There are nevertheless major features that the DE model fails to predict,
even qualitatively [4].

1. The transient response of DE in startup of shear flow has an overshoot in the shear stress but
none for the first normal stress difference, while large overshoots both in shear and normal stresses
are observed experimentally. Furthermore, DE predicts the overshoot in shear stress to occur at
a strain which is independent of the shear rate, which is again incompatible with experimental
observations.

2. For steady-state shear flows, DE predicts the shear stress to be a non-monotonic function of the shear
rate, which is a constitutive instability. It also predicts the first normal stress to approach a constant
value as the shear rate increases. Experimental data seem to show an almost constant but slowly
increasing shear stress and an ever-increasing first normal stress difference.

3. For small shear deformations, DE underestimates the value of the normal stress ratio−N2/N1: its
zero-strain limit is 1/7= 0.142, while experiments show values around 0.25 [5].

It has been shown, [4] that the first discrepancy can be removed at high shear rates by consideration of
chain stretch effects. Several models including this feature have been proposed. Recently, Ianniruberto
and Marrucci [6] suggested that a mechanism called convective constraint release (CCR) might explain
the observed monotonic growth of the shear stress. This mechanism takes into account the convection
of the entanglements along the polymer chain due to the flow. At high flow rate (τdγ̇ > 1, whereτd

is the reptation time constant), the convective removal of entanglements induces a faster relaxation of
the chain at increasing shear rates, thus explaining the observed growth of the shear stress. Marrucci
et al. [7] also suggested that the discrepancy concerning the normal stress ratio might come from an
inappropriate strain measure in the basic DE theory. They showed that a new strain measure, derived
from force balance requirements at the nodes of a simple three-chain network, correctly predicts the
value for the normal stress ratio in a step strain experiment. The CCR mechanism and the new strain
measure have both been implemented recently by Marrucci et al. [1] in the so-called MGI constitutive
equation. The latter has an integral form which is very well approximated by a differential constitutive
equation. The behaviour of the MGI model in complex flows has been studied recently by Wapperom and
Keunings [8].

Recent constitutive equations such as the MGI model introduce an additional coupling between the
velocity gradient and the conformation variables, whose thermodynamic consistency needs to be veri-
fied. In the present work, using the single generator bracket formalism of non-equilibrium thermody-
namics [9], we build a thermodynamically consistent constitutive equation of the differential type for
linear entangled polymers. The starting point of our developments is the MGI differential model. We
show that non-equilibrium thermodynamics suggests the introduction of an additional term in the re-
lation between the stress and the conformation variables of the MGI model. The proposed constitutive
equation has an additional parameter and contains the consistent MGI model as a particular case. Its
behaviour in steady and transient shear flow is shown to be in qualitative agreement with experimental
observations.
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2. Non-equilibrium thermodynamics

The compatibility of constitutive equations with non-equilibrium thermodynamics, as developed thro-
ugh the single generator bracket [9] or the two generator GENERIC [10] formalisms, ensures the satis-
faction of symmetry constraints for the coupling parameters describing the dissipation in the linear limit
(Onsager/Casimir reciprocal relation [11]). It also ensures a non-negative entropy production.

We consider differential constitutive equations for incompressible isothermal flows in the context of
the single generator bracket formalism [9] of non-equilibrium thermodynamics. In order to describe the
behaviour of a fluid with an internal microstructure, one has few but important choices to make:

• The variables of the problem. In addition to the velocityvα, we shall consider here a single second-order
conformation tensorcαβ as an internal parameter describing the microstructure of the fluid. The phys-
ical meaning of the selected variables alone dictates the conservative convective component of the
constitutive equation. In this case, the conservative part of the system follows Euler’s equations
of hydrodynamics with an additional component depending onc, and an evolution equation given
in the form:

∇
c = 0,

where (
∇· ) is the upper-convected time derivative [12]. Therefore, in the absence of dissipation,c can be

interpreted as the Finger strain tensor, the governing equations reducing to those for large deformation
elasticity [13].

• The extended Helmholtz free energy densitya of the system as a function of the selected variables
and possibly their gradients. Here, we consider that the gradient of the conformation tensor does not
influence the free energy. At equilibrium,a reduces to the thermodynamic free energy, which is obtained
whena is minimised with respect to the internal parameters. Away from equilibrium, the gradient of
a is, in general, non-zero and acts like a thermodynamic driving force.

• The structure of dissipative phenomena, related for example to CCR and the relaxation of the mi-
crostructure.

For a viscoelastic constitutive model described by a single second-order internal tensor parameter, the
addition of dissipative phenomena described by the lowest possible order (quadratic) interaction terms
yields the following general constitutive equation [9]

∂cαβ

∂t
= −vγ ∇γ cαβ + cαγ ∇γ vβ + cγβ∇γ vα

−Λαβγ ε

∂a

∂c γ ε
+ Lαβγ ε∇γ vε, (1)

σαβ = 2cβγ

∂a

∂cαγ

+ Lαβγ ε

∂a

∂cγ ε

+ Qαβγ ε∇γ vε. (2)

Eq. (1) describes the time evolution of the conformation tensor (cαβ), while Eq. (2) expresses the stress
as a function of the system’s variables and of the derivative of the extended free energy with respect
to these variables. On the first line of Eq. (1), we recognise the upper-convected time derivative of
the conformation tensor, while on the second line we find two dissipative terms. The first accounts
for relaxation phenomena, while the second is a mixed term leading, e.g. to the mixed-convected time
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derivative in the Johnson/Segalman fluid model [9]. The three terms on the right-hand side of Eq. (2) can be
respectively interpreted as a conservative term, similar to what is obtained in non-linear elasticity, a mixed
correction term, and a viscous dissipation term. The fourth-order tensorsΛαβγ ε , Lαβγ ε andQαβγ ε arise in
the limit of linear irreversible thermodynamics [14] and come from a first-order approximation of general
dissipative phenomena. These tensors are phenomenological and can depend upon the variables of the
problem but not their derivatives. They also need to be invariant to the following permutations of indices

αβγ ε ↔ βαγ ε ↔ αβεγ ↔ βαεγ. (3)

Appropriate choices for the extended free energy and the dissipative structure yield well known consti-
tutive equations such as the UCM, Johnson/Segalman or Giesekus models [9].

At this point, it should be noticed that Eqs. (1) and (2), as presented in [9], were obtained for a tensor
Lαβγ ε symmetric with respect to an exchange of the first two indices by the last two,αβ ↔ γ ε. In
Appendix A, we show that these equations remain valid for a general tensorLαβγ ε where this symmetry
is not obeyed.

In the following sections, we shall first present the physical phenomena we wish to include in the
constitutive equation, and then we shall consider the way to express these in a form compatible with the
single generator bracket formalism.

3. Convective constraint release and force balance

It is not a surprise that constitutive equations that consider reptation as the only source of dissipation are
unable to predict a monotonic growth of the steady-state shear stress as a function of shear rate. Indeed, at
increasing flow rates, the thermal relaxation terms of these equations can be considered frozen, compared
to the convective part. The relatively slow relaxation of the tube segments cannot counteract alignment
in the shear direction. This explains why one observes a decrease of the shear stress at increasing shear
rates greater than 1/τd [6].

CCR takes into account the removal of entanglements due to their convection by the flow along the
polymer chain. In this fashion, entanglements are destroyed once they are convected past the end of the
chain. Considering that classical relaxation and flow-induced CCR operate in parallel, it is possible to sum
their frequencies. With the assumption that the tube renewal frequency caused by CCR is proportional to
the rate of convection along the tube, Ianniruberto and Marrucci [6] obtained a modified relaxation time
τ , defined as

1

τ
= 1

τd
+ βk : 〈uu〉, (4)

whereτd is the DE disengagement time,〈uu〉 the orientation tensor,k the transpose of the velocity gradient
andβ denotes an adjustable scalar parameter. Although a value forβ of unity seems more natural, it has
been argued [6] thatβ should be somewhat greater than unity. One should also notice thatk: 〈uu〉 is very
similar to the rate of tube stretch found in models like those presented in [4]. Ianniruberto and Marrucci [6]
showed that the CCR relaxation mechanism induces a monotonic growth of the shear stress and improves
the agreement of the model with the Cox–Merz rule.

In order to correct the step strain predictions of DE, Marrucci et al. [7] suggested that a strain measure
taking into account some requirement of force balance at the node of the entangled network should be
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adopted. Using a simple three-chain cubic network, they proposed a new strain measure that automatically
fulfils the force balance at the entanglements of the network. For an elastic (non-relaxing) network, the
new measure is

Q̃ = C1/2

Tr(C1/2)
, (5)

whereC is the Finger tensor. For step strain deformations, just after the deformation, and before relaxation
starts, the stress tensor is then given by

σ = 6G
(0)
N

(
Q̃ − 1

3
δ

)
, (6)

whereG(0)
N is the plateau modulus andδ is the unit tensor.

4. Constructing the model

Relating the concepts of force balance and CCR to the bracket formalism is not straightforward and
requires some insight. In this section, we present this process in a top–down approach.

Having selected a non-negative definite, symmetric second-order tensorc as an additional internal
variable, we see from Eqs. (1) and (2) that the remaining building blocks are as follows:

1. The specification of the extended Helmholtz free energy densitya.
2. The development of the three fourth-order tensorsΛ, L andQ.

Since the tensorQ accounts for viscous dissipation, its contribution will be neglected as we are interested
in microstructure-induced stress. From Eq. (1), we find that the CCR mechanism described earlier can only
be incorporated in the model through the mixed termLαβγ ε∇γ vε . Indeed, in the lowest order expansion
for the dissipation, only this term can provide a coupling between the velocity and the conformation
tensor other than the upper-convected time derivative. Additional constraints betweenΛ andL will also
appear from Eq. (4). In the absence of dissipative phenomena, the only degrees of freedom lie in the free
energy density. This is where we incorporate the new strain measure (5).

4.1. Conservative part

In the absence of dissipative phenomena, the constitutive equation is uniquely determined by the form
of the free energy density. From Eq. (1) we see that the evolution equation of the conformation tensorc is
compatible with its interpretation as the Finger strain tensor. In the absence of dissipation (Λ = L = 0),
equating the remaining non-vanishing parts of the right-hand side of Eqs. (2) and (6) implies that the free
energy densitya satisfies

6G
(0)
N

(
c1/2

Tr c1/2
− 1

3
δ

)
= 2c

∂a

∂c
, (7)

or

∂a

∂c
= 3G

(0)
N

(
c−1/2

Tr c1/2
− 1

3
c−1

)
. (8)
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This expression allows us to use the thermodynamic formalism in order to describe the same strain
measure as proposed by Marrucci et al. Integrating Eq. (8), we find the following expression for the
extended free energy density

a(c) = 6G
(0)
N { ln(Tr c1/2) − 1

6 ln(detc)}. (9)

A closer look at this expression shows that it is independent of the magnitude ofc. Indeed, if we substitute
c for γ c in Eq. (9),γ being a positive scalar, we get

a(γ c) = 6G
(0)
N { ln(γ 1/2Tr c1/2) − 1

6 ln(γ 3detc)}
= 6G

(0)
N {1

2 ln γ + ln(Tr c1/2) − 1
2 ln γ − 1

6 ln(detc)} = a(c).

As a is independent of the magnitude ofc, and asc is by definition equal to the unit tensor at equilibrium,
a should be minimised forc = γ δ. For these values indeed, the gradient∂a/∂c vanishes, while the
second-order derivative ofa reduces to

∂2a

∂c2
eq

= G
(0)
N

3γ4
δδ,

which is a positive definite fourth-order tensor. Eq. (9) describes, therefore a thermodynamically valid
free energy.

We can better understand the meaning of this free energy density if we rewrite it as

a(c) = −G
(0)
N ln det

(
c1/2

Tr c1/2

)2

. (10)

This shows that all stretching effects have been neglected through the scaling with the trace ofc1/2,
and only an entropic orientational contribution remains (See Eq. 13C.7–7 p. 209 in [15], withα =
3c/Tr c). The modelling assumption is thus that the orientational distribution of the tube segments
is described byc1/2 rather than byc. As taking the square root ofc only changes the eigenvalues
of the tensor, this can be interpreted as a reweighting of the eigenvectors of the conformation
tensor.

4.2. Dissipative part

In the modelling of dissipative phenomena, we shall first focus on the relaxation tensorΛ of Eq. (1).
Since the extended free energy density (9) is independent of the magnitude ofc, it is also most natural
to keep this feature here and obtain an evolution equation forc that would also be independent of its
magnitude. Therefore, comparing Eqs. (1) and (8), we find thatΛ should scale likec2. We shall then
define two different relaxation tensors that satisfy the symmetry relations (3)

Λ
(1)
αβγ ε = c

1/2
δδ

6τdG
(0)
N

(c1/2
αγ cβε + c1/2

αε cβγ + c
1/2
βγ cαε + c

1/2
βε cαγ ), (11)

Λ
(2)
αβγ ε = 3

6τdG
(0)
N

(cαγ cβε + cαεcβγ + cβγ cαε + cβεcαγ ). (12)
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The tensorΛ(1) has been constructed to obtain a constitutive equation as close as possible to the MGI
differential model proposed in [1] (see Appendix B). On the other hand, the tensorΛ(2) can be seen in a
naive way as the most natural tensor expression with a scaling likec2. This relaxation tensor is actually
identical to the one found in the Giesekus model with the mobility factor equal to unity (see [9] p. 265
with α = 1). It is obtained fromΛ(1) using a mobility tensor equal to 3c1/2/Tr c1/2 (see [9], pp. 252–256).
The pre-factors in Eqs. (11) and (12) are such as to obtain the right linear viscoelastic limit and to keep
the physical meaning of the parametersτd andG

(0)
N unchanged. Finally, we propose the relaxation tensor

Λ to be a linear combination ofΛ(1) andΛ(2)

Λαβγ ε = (1 − α)Λ
(1)
αβγ ε + αΛ

(2)
αβγ ε. (13)

The phenomenological parameterα plays a role similar to that of the mobility factor in the Giesekus
model [9].

4.3. Introducing convective constraint release

The dissipative term induced in Eq. (1) by theΛ tensor is independent of the velocity gradientkT.
The CCR mechanism (4), however, introduces an additional linear dependence onk. The only way this
can originate within the quadratic dissipation formalism is from a non-vanishingL tensor in Eq. (1).
Moreover, by comparing Eqs. (1) and (4), we find thatL must have the following form:

Lαβγ ε = −J (c, k)τdβΛαβδφ

∂a

∂c δφ

c
1/2
γ ε

c
1/2
θθ

≡ J (c, k)L∗
αβγ ε, (14)

whereJ (c, k) is an appropriateswitchfunction which is equal either to 1 or 0 (see Appendix A).
At this time, we have to remark that, in contrast to the original quadratic dissipation theory (as described

by Eqs. (1) and (2)),L is found here to be a function of the Volterra derivative of the Hamiltonian with
respect to the internal parameterc. Indeed, this is the only way through which the CCR mechanism can
be introduced into the non-equilibrium formalism, i.e. by requiring a higher order non-linearity in the
dissipation mechanism introduced byL. What we therefore propose here is an “ansatz”, sort of a mean
field theory approach, with the form forL being suggested by rather than dictated from non-equilibrium
thermodynamics (since the Onsager–Casimir relations from which the original term introduced byL in
the dissipation originates are strictly applicable only for a quadratic dissipation close to the equilibrium
limit). On the other hand, what non-equilibrium thermodynamics requires is that the overall rate of entropy
production be non-negative. Since a non-symmetricL contributes to the entropy production (see Appendix
A) and this contribution can be either positive or negative, and since it is not in general easy to a priori
tailor the other contributions to guarantee in all cases an overall positive entropy production, we take the
further step here to also propose a corrective multiplicative factorJ (c, k)which acts as a “switch function”
selectively turning theL term off when its individual contribution to the rate of entropy production is
negative (see Appendix A for a full expression). This is certainly allowed, sinceL corresponds to a higher
non-linearity anyhow. It only risks to be too conservative (eliminating CCR for conditions under which
it may have been thermodynamically admissible), but we propose it anyhow for two reasons:

1. It is a thermodynamically-induced correction that it is relatively easy to implement and when imple-
mented guarantees the thermodynamic consistency of the model,
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2. It is a correction that is applicable only rarely (most notably: during flow reversal) since in most flows,
and certainly all the simple shear flows examined in the present work, this correction is not necessary
as the corresponding rate for the entropy production term is positive (and thusJ (c, k) = 1).

Finally, we note that a similar correction was found necessary to be introduced in the original MGI
model [16] in connection to the physical interpretation of the CCR as a correction to the relaxation time —
for consistency, such a correction needs to be taken into account only when it is positive; if negative, it
risks to make the overall relaxation time negative which is aphysical. However, note that here, and in
contrast to the original MGI model, we have this on–off switch affecting both the stress and the evolution
equation forc in a concerted fashion.

A consequence of the introduction of a non-vanishing tensorL is that it brings an additional term in
the stress Eq. (2). This term is of similar nature to the one that has to be introduced in the Johnson and
Segalman model when a mixed time derivative is used instead of the upper-convected derivative. The
presence of this term introduces significant changes in predictions for the extra-stress tensor.

5. Completed model

Combining all the building blocks presented above, we can derive a full model, which is thermodynami-
cally-consistent and involves both the new strain measure and the CCR mechanism of the MGI model.

After substitution of Eq. (14) into Eqs. (1) and (2), the model reads

∂cαβ

∂t
= −vγ ∇γ cαβ + cαγ ∇γ vβ + cγβ∇γ vα

−
(

1 + J (c, k)τdβ
c

1/2
δφ

c
1/2
θθ

∇δvφ

)
Λαβγ ε

∂a

∂cγ ε

, (15)

σαβ = 2cβγ

∂a

∂cαγ

− J (c, k)τdβΛαβδφ

∂a

∂cδφ

c
1/2
γ ε

c
1/2
θθ

∂a

∂cγ ε

, (16)

with a, Λ andJ (c, k) defined respectively, by Eqs. (9), (13) and (A.3). On the second line of Eq. (15),
we clearly see that all dissipative phenomena will occur with an apparent relaxation time corresponding
to CCR, while the new strain measure appears in the first term of Eq. (16).

In the sequel, we focus on two limiting cases of the proposed model, obtained forα = 0 and 1. For
α = 0, the model reads

∇
c = −2

(
1

τd
+ J (c, k)βk :

c1/2

Tr c1/2

)
Tr c1/2

(
c

Tr c1/2
− 1

3
c1/2

)
, (17)

σ = 6G
(0)
N

(
c1/2

Tr c1/2
− 1

3
δ

)
·
(

δ − J (c, k)β
(

3 − 1

3
Tr c1/2 Tr c−1/2

)
c1/2

Tr c1/2

)
. (18)

It can be proved (see Appendix B) that this model is almost equivalent to the MGI differential model
proposed by Marrucci et al. [1]. The evolution equation for the conformation tensorc is identical. The
MGI model, however, lacks the last factor in the expression of the extra stress tensor (18), which comes
from the introduction of CCR into the model. Close to equilibrium, both models are very close as the
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missing term in the stress equation is only a high-order term. Forα = 0, the proposed model is thus a
thermodynamically-consistent version of the MGI model.

Forα = 1, the model reads

∇
c = −6

(
1

τd
+ J (c, k)βk :

c1/2

Tr c1/2

)(
c3/2

Tr c1/2
− 1

3
c
)

, (19)

σ = 6G
(0)
N

(
c1/2

Tr c1/2
− 1

3
δ

)
·
(

δ − 3J (c, k)β
(

3 − 1

3
Tr c1/2 Tr c−1/2

)(
c1/2

Trc1/2

)2
)

. (20)

This new model incorporates both CCR and the new strain measure as in the MGI model, but the structure
of dissipative phenomena away from equilibrium, as shown in the next section, is quite different.

6. Model predictions

In this section, we compare the above models in various transient and steady-state shear flows. In all
cases, the adjustable parameterβ has been set to unity as suggested in [6].

6.1. Step strain in shear

The normal stress ratio is an inherent feature of a model which, for step strain experiments, cannot
be adjusted through a superposition of several modes; its value, therefore represents a good test. Fig. 1
shows the normal stress ratio(−N2/N1) after a step strain in shear, as a function of the applied strain.
These results were obtained numerically by applying a shear rate of large magnitude over a small time
interval�t , until a limit was reached for�t → 0. The experimental data are taken from Olson et al.

Fig. 1. Normal stress ration as a function of strain. Experimental data for a polystyrene solution and a poly-isoprene melt are
reported from [5].
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Fig. 2. Dimensionless shear stress as a function of the Deborah number.

[5]. As imposed by the strain measure (6) through the free energy (9), all three models predict a limit
−N2/N1 = 0.25 for small strains. At higher strains, however, the MGI model does seem to reach a plateau
at somewhat too large a value. The proposed model, on the other hand, exhibits too strong a decrease as
the strain increases. A criterion for choosing between the models would be the value of the normal stress
ratio at high strains, if such data were available experimentally.

6.2. Steady-state shear flow

As shown in Fig. 2, the new model displays a monotonic increase of the shear stress a a function of the
shear rate, with a unit value forβ. On the other hand, it has been shown [1] thatβ needs to be greater
than 3.8 in order to obtain the same feature with the MGI model. Moreover, it should be noted that, at
high shear rates, the proposed model displays shear stresses approaching a plateau value very close to
G

(0)
N , which is in good agreement with the Cox–Merz rule.
The steady-state values of the first normal stress, shown in Fig. 3, show a major difference between the

models. While the new model withα = 0 and MGI predict the first normal stress difference to reach a
plateau, the new model withα = 1 predicts an ever-increasing curve. Such a behaviour is in agreement
with experimental data [4]. Moreover, it should be recalled that no chain stretching effects have been
introduced in any of these models.

In Fig. 4, we report the predictions of the various models as well as the experimental data for the normal
stress ratio obtained by Kalogrianitis and van Egmond [17] in steady shear flow. Even though the MGI
model predicts values which seem to fall in the right range, it does not predict the right slope, as the
shear rate increases. The proposed model predictions forα = 0 and 1 however provide an envelope for
the experimental data. Interestingly, the asymptotic limit of the normal stress ratio is a function of the
α-parameter. Forα = 1, the limiting ratio is 1/2 in shear flow, while it is 0.25 in step strain (Fig. 1). These
numerical predictions have also been checked with an asymptotic analytical solution of the governing
equations at smallDe.
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Fig. 3. Dimensionless first normal stress difference as a function of the Deborah number.

6.3. Startup and cessation of shear flow

In this section, we consider a non-trivial transient flow, namely the startup of shear flow followed by
its sudden cessation. The simulation results should be compared qualitatively with the extensive set of
experiments carried out by Kalogrianitis and van Egmond [17] on an entangled semi-dilute high molecular
weight polystyrene solution. Among the features reported by these authors, we note an overshoot in the
first normal stress difference upon inception of the flow, as well as an overshoot in the second normal

Fig. 4. Normal stress ratio as a function of the Deborah number. Experimental data for a polystyrene solution are reported from
[17].
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Fig. 5. Transient first normal stress difference as a function of time. As reported in [17], a strain rate of 20 s−1 is applied between
time 0 and 2.7 s, andτd = 0.25 s.

stress difference both upon inception and cessation of the flow. Another important observation is that
the relaxation of the normal stress ratio follows a single curve, independent of the shear rate previously
applied. Also, the relaxation is non-exponential and the normal stress ratio approaches a constant value
of about 0.9 at long times.

As shown in Fig. 5, all models display an overshoot in the first normal stress difference upon inception
of the flow, but it is only significant for the new model withα = 1.

Fig. 6. Transient second normal stress difference as a function of time. As reported in [17], a strain rate of 20 s−1 is applied
between time 0 and 2.7 s, andτd = 0.25 s.
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Fig. 7. Transient normal stress ratio as a function of time. As reported in [17], a strain rate of 20 s−1 is applied between time 0
and 2.7 s, andτd = 0.25 s.

Predictions of the second normal stress difference (Fig. 6) also show that the best behaviour is provided
by the new model withα = 1. Indeed, only this model predicts an overshoot upon cessation of the shear
flow, in agreement with experimental observations [17].

The evolution of the normal stress ratio is shown in Fig. 7. First, we see that all the models predict
the same limit at small deformations but reach different steady-state values. Upon cessation of the flow,

Fig. 8. Transient normal stress ratio as a function of time for the proposed model withα = 1. Corresponding experimental data
taken from [17].
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only the new model withα = 1 does predict the normal stress ratio to relax towards a value of 0.9, as
observed experimentally. Also, the normal stress ratio predicted by the MGI model is unaffected by the
cessation of the flow, in contrast with its thermodynamically-consistent version (proposed model,α = 0).
Of course these two models have the same response at large times.

In Fig. 8, we compare the transient predictions for the ratio(−N2/N1) obtained with the proposed
model against the experimental data of Kalogrianitis and van Egmond [17]. We see from there that the
new model withα = 1 predicts the normal stress ratio to relax towards a high value of 0.9, indepen-
dently of the magnitude of the previously-applied shear rate. The very fast response upon inception
of the flow is caused by the selected strain measure which enforces a value of 0.25 for small defor-
mations.

7. Conclusions

Using the single generator bracket formalism of non-equilibrium thermodynamics, we propose here
a new constitutive equation for linear entangled polymers that incorporates a simple version of the
convective constraint release as well as a new strain measure proposed by Marrucci et al. [7]. This new
model reproduces the conservative behaviour of the MGI differential model also proposed by Marrucci
et al. [1] but has additional dissipative terms, in order to incorporate in a thermodynamically consistent
fashion the convective constraint release mechanism. In steady shear flow, the new model predicts shear
and normal stresses in good qualitative agreement with available experimental data. In transient shear
flow, the proposed model is able to predict the qualitative behaviour of the normal stresses, especially
during relaxation, after cessation of the flow.

Since these results were achieved using a single conformation tensor and with relatively simple expres-
sions for relaxation and convective constraint release, the use of the single generator bracket formalism
is considered quite encouraging for further refinements which could make the model more quantitatively
correct.
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Appendix A

In this work, we considered an extended dissipative bracket, with respect to the one presented in [9]. For
two arbitrary functionalsF andG, the new dissipative bracket based on general quadratic contributions
in terms of the Volterra derivatives ofF andG with respect toc andM reads

[F,G] = −
∫
Ω

Λαβγ ε

δF

δcαβ

δG

δcγ ε

d3x −
∫
Ω

Qαβγ ε∇α

δF

δMβ

∇γ

δG

δMε

d3x

−
∫
Ω

Lαβγ ε∇α

δF

δMβ

δG

δcγ ε

− Lγεαβ∇α

δG

δMβ

∇α

δG

δMβ

δF

δcγ ε

d3x + entropy correction (A.1)
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where,δ ·/δ· is the Volterra derivative,M the momentum andΩ the flow domain. In this new expression,
only the last term changes from Eq. (8.1–5) in [9]. When the tensorLαβγ ε , is symmetric upon exchange
of αβ with γ ε, both expressions are identical. However, this new bracket allows the incorporation of a
more generalc-velocity coupling which, in the linear regime, leads to flux-potential relations that remain
compatible with the extended Onsager/Casimir reciprocal relations. Direct identification leads to the
dissipative terms of Eqs. (1) and (2).

It is interesting to note here that in the last term of (A.1), only the anti-symmetric part ofLαβγ ε (w.r.t.
αβ ↔ γ ε) brings a contribution to the entropy production, while its corresponding term in the bracket
(8.1–5) of [9] was not producing any entropy. The magnitude of theL term needs therefore to be tailored
so that it always leads to a non-negative entropy production. This is achieved by making it proportional
to aswitchfunctionJ (c, k), which turns it off as soon as its rate of entropy production becomes negative.
From [9], we know that the entropy production is given by

∂s

∂t
= − 1

T
[H,H ]wec, (A.2)

wheres is the entropy functional,T the temperature,H the Hamiltonian of the system, and the sub-
script wec means “without entropy correction”. This immediately yields the following expression for
J (c, k):

J (c, k) = 1

2

(
1 + L∗

αβγ ε(∇αvβ(∂a/∂cγ ε) − ∇γ vε(∂a/∂cαβ))

|L∗
αβγ ε(∇αvβ(∂a/∂cγ ε) − ∇γ vε(∂a/cαβ))|

)
, (A.3)

which is either equal to 1 or 0.
We believe, however that further developments of the convective constraint release theory might lead

to a formulation of a new dissipation bracket where phenomenological corrections such as this would not
be necessary anymore.

Appendix B

The differential MGI model proposed by Marrucci et al. [1] has the following form:

T · DT
Dt

+ DT
Dt

· T = k · T2 + T2 · kT − 2T2

(
k :

T
G

)
− 2

T
τ

·
(

T − G

3
δ

)
, (A.4)

σ = T − G

3
δ, (A.5)

1

τ
= 1

τd
+ βk :

T
G

, (A.6)

wherek is the transpose of the velocity gradient,(D · /Dt) is the material derivative andG = 6G
(0)
N . In

the absence of dissipative phenomena,T is linked to the Finger strain tensorC by the following relation:

T = G
C1/2

Tr C1/2. (A.7)
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In order to relate this constitutive equation to the proposed model withα = 0, we shall start from the
evolution Eq. (1) of the conformation tensorc

Dc
Dt

= k · c + c · kT + Ω, (A.8)

whereΩ represents the dissipative terms. WhenΩ can be neglected,c becomes the Finger strain tensor.
Definingq as

q = c1/2, (A.9)

we find the equation describing the evolution of the trace ofq by taking the contraction of Eq. (A.8) with
q−1

DTr q
Dt

= k : q + 1

2
q−1 : Ω. (A.10)

Writing T asT = G(q/Tr q), we have

DT
Dt

= G

Tr q
Dq
Dt

− G

(Tr q)2

DTr q
Dt

q. (A.11)

Making use of Eqs. (A.10) and (A.11), we obtain an evolution equation forT

T · DT
Dt

+ DT
Dt

· T = k · T2 + T2 · kT − 2T2

(
k :

T
G

)
− q−1 : Ω

Tr q
T2 −

(
G

Tr q

)2

Ω. (A.12)

Identifying terms between Eqs. (A.4) and (A.12), we obtain the following expression forΩ

Ω = −2

(
Tr q
τd

+ βk : q
)(

q2

Tr q
− 1

3
q
)

. (A.13)

The two dissipative contributions of Eq. (A.12) indeed reduce to

q−1 : Ω

Tr q
T2 = 0,

(
G

Tr q

)2

Ω = −2
T
τ

·
(

T − G

3
δ

)
.

The exact form ofΛ(1) is then obtained by comparing Eqs. (1), (8), (14) and (A.13). The expression
Eq. (18) for the stress equation of the proposed model withα = 0 differs however from Eq. (A.5) as we
are using a non-zeroL tensor in the modelling of dissipation. Combining Eq. (2) with Eqs. (8),(11) and
(14) we obtain the following stress equation for the new model (α= 0)

σ =
(

T − G

3
δ

)
·
(
δ − β

T
G

(
3 − G

3
Tr T−1

))
. (A.14)

This expression clearly shows that the new term in the stress equation (compared with Eq. (A.5)) is a
higher order term (orderT2), which vanishes close to equilibrium. It should also be noticed that

3 − G

3
Tr T−1 = 0,

at equilibrium.
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