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Abstract

The present paper demonstrates the equivalence between the Hart-Smith constitu-
tive model with the more recent Arruda and Boyce eight chains and Gent consti-
tutive models. The ability of these three models to predict both small and large
strain responses of rubbers is highlighted and equations that relate their material
parameters are established.
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Introduction

Elastomers exhibit a very complex mechanical behavior, that includes large
strain, time-dependent response, hysteresis and accommodation (Mullins ef-
fect). In the last few years, there was a significant effort to propose realistic
constitutive equations for these materials [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. These
models focus on the whole behavior of elastomers or on only one of the previ-
ously mentioned phenomena. Nevertheless, all constitutive equations are based
on the general theory of hyperelasticity [11]. So, consider now the non-linear
elastic response of rubber like material. It is characterized by the existence
of a strain energy potential W. Assuming that elastomers are both isotropic
and incompressible, this strain energy function only depends on the two first
invariants of the left Cauchy-Green stretch tensor B :

W = W (I1, I2) (1)
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with:
I1 = tr(B) and I2 =

[

I21 − tr(B2)
]

(2)

The true stress tensor is defined by the differentiation ofW with respect to B :

σ = −pI+ 2B
∂W

∂B
= −pI+ 2

(

∂W

∂I1
+ I1

∂W

∂I2

)

B− 2
∂W

∂I2
B2 (3)

This general theory being established, the major difficulty remains the choice
of the function W . Many developments were proposed in the bibliography (see
for example the review of Boyce [12]). A ”good” hyperelastic model can be
defined by four major qualities:

• first, it should be able to accurately reproduce the whole ”S” shaped re-
sponse of rubbers,

• second, the change of deformation modes should not be problematic, i.e. if
the model behaves satisfactorily in uniaxial tension, it should also be quite
accurate in simple shear or in equi-biaxial extension,

• third, the number of relevant material parameters must be as small as pos-
sible, in order to reduce the number of experimental tests needed for their
identification,

• finally, the mathematical formulation has to be quite simple to render pos-
sible the numerical implementation of the model.

Taking into account these four pre-requisites, three constitutive equations can
be selected: the recent models of Arruda and Boyce [13], and Gent [14], and
the ”older” formulation of Hart-Smith [15]. Through the rest of the paper,
they will be referred to as AB, G and HS theories, respectively.

The aim of the present work is to demonstrate the equivalence of these three
constitutive equations. More precisely, their small and large strain character-
istics will be thoroughly examined. As Boyce [16] recently compared the AB
and G approaches, the emphasize is laid on the equivalence of the HS model
with the two other ones. In the next Section, the three strain energy func-
tions are briefly recalled. Then, the theoretical relationships between material
parameters of the models are established in Section 2. The relevance of these
results is demonstrated in Section 3. Finally, some concluding remarks are
proposed.

1 Strain energy functions

In this section, the strain energy functions that define the HS, AB and G
models are briefly recalled.
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1.1 The HS model

In the 60’s, Hart-Smith [15] proposed an empirical form of W , that satisfac-
torily reproduces the response of rubberlike materials for the entire range of
deformation endured by rubbers:

WHS = C1

∫

exp[C3(I1 − 3)2]dI1 + C2 ln
(

I2
3

)

(4)

where C1, C2 and C3 are the three material parameters. In this equation, the
first right-hand side part of W describes the global response of the material.
It only depends on the first strain invariant I1. The second term that involves
I2 is based on the work of Gent and Thomas [17] and improves the accuracy
of the model for moderate strain (less than 150%). It can be related to the
Mooney-Rivlin theory that involves both I1 and I2 and is widely recognized
for its ability to satisfactorily reproduce rubber like behavior for small and
moderate strain [11].

1.2 The AB model

The model of Arruda and Boyce [13] is a molecular based constitutive equa-
tion, also known as the 8-chains model. Following Kuhn and Grün [18], the
behavior of an individual chain is considered non-gaussian. In order to de-
scribe the response of the polymer network, this individual response should
be integrated in an unit sphere defined by its chain density. Nevertheless, the
corresponding constitutive equation necessitates numerical integration [19].
So, in order to overcome this difficulty, privileged directions for chains orien-
tation are defined by the half diagonals of a unit cube contained in the unit
sphere. The corresponding strain energy function is given by:

WAB = CRN







√

I1
3N

β + ln

(

β

sinh β

)







(5)

where β = L−1
(√

I1/3N
)

with L being the Langevin function defined as

L(x) = coth(x)−1/x. In the previous equation, CR andN are the two material
parameters. Due to the non-gaussian nature of the chain modelling, 3N stands
for the maximum value that I1 can reach and represents the extensibility limit
of chains.

This model only depends on the first strain invariant I1 , and it is well-known
that its performances at moderate strain are not very good [19]. Very recently,
Meissner and Matejka [20] proposed the improvement of chains models by
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adding a function of I2 to the strain energy. Moreover, Fried [21] explained
the dependance of W on I2 invoking physical considerations.

1.3 The G model

Recently, Gent [14] proposed an empirical relation for the strain energy func-
tion:

WG = −E

6
ln
(

1− I1 − 3

Jm

)

(6)

where E and Jm are the two material parameters. Jm represents the maximum
value of I1 − 3 that can be undergone by the material. It is the empirical
counterpart of the extensibility limit of chains previously defined for the AB
model.

2 Comparison of materials parameters

The present section is devoted to the comparison of the three models. As
these constitutive equations are supposed to be qualitatively efficient for the
entire range of strains, both small and large strain responses will be compared.
As mentioned above, the I2 terms in constitutive equations can be seen as
corrections of the phantom network theory. So, we propose to only compare
the part of functions W that involves I1 , i.e. the phantom part of constitutive
equations. Consequently, the following HS strain energy will be considered
through the rest of the paper:

WHS = C1

∫

exp[C3(I1 − 3)2]dI1 (7)

in which only two material parameters are considered, i.e. C1 and C3.

Moreover, recalling that a previous work demonstrated the equivalence of the
AB and the G approaches [16], the present work emphasizes the comparison
of the HS model with them.

2.1 Polynomial expansion

Before explicitly comparing the models, their polynomial expansion in terms
of I1 are established. This will highly simplified the comparison of their small
strain responses. The HS strain energy function (7) can be developed into an
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infinite series of powers of I1:

WHS = C1

∞
∑

i=0

C i
3

(2i+ 1)i!
(I1 − 3)2i+1 (8)

It is to note that this expression is a particular case of the general expansion
proposed by Rivlin [22]:

W =
∞
∑

(r,s)=(0,0)

Crs(I1 − 3)r(I2 − 3)s (9)

where the dependance on I2 is not considered, said j = 0, and only odd powers
of I1 are relevant. The five first terms of the development of WAB , given by
Eq. (5), into a series of powers of I1 are:

WAB = CR

[

1

2
(I1 − 3) +

1

20N
(I21 − 9) +

1

1050N2
(I31 − 27)

+
19

7000N3
(I41 − 81) +

519

673750N4
(I51 − 243) + ...

]

(10)

This expansion is also a particular case of the Rivlin’s series (9), but, in
comparison with Eq. (8), it is expressed with both odd and even powers of
I1. Similarly to previous expansions,WG (see Eq. (6)) can be expanded into a
series of powers of I1:

W =
E

6

∞
∑

n=1

1

Jn+1
m

(I1 − 3)n (11)

Here, both odd and even powers of I1 are involved.

2.2 Small strain behavior

The small strain stiffness of the models are respectively defined by first terms
of Eqs (8), (10) and (11). Then, the three strain energy functions reduce to
the neo-Hookean expression [11]:

WNH =
1

2
C(I1 − 3) (12)

where C is a material parameter. Moreover, the first parameters of the HS, AB
and G models are proportional. They are simply related to C by the following
equation:

C = 2C1 = CR =
E

3
(13)
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2.3 Large strain behavior

As mentioned above, the three models are characterized by their ability to
describe the strain-hardening of the material that takes place under large
strain. This strain-hardening phenomenon is mainly due to the extensibility
limit of polymer chains. According to Eq. (3) and taking into account that
the considered strain energies do not depend on I2, i.e. ∂W/∂I2 = 0, the
stress-strain relationship reduces to:

σ = −pI + 2
∂W

∂I1
B (14)

in which only the first derivative of W with respect to I1 is involved. In the
three cases, this derivative is given by:

∂WHS

∂I1
= C1 exp

[

C3(I1 − 3)2
]

(15)

∂WAB

∂I1
=

CRN

2
√
3I1

L−1





√

I1
3N



 (16)

∂WG

∂I1
=

E

6

1

1− (I1−3)
Jm

(17)

Examining these equations, it is obvious that the three functions exhibit an
upturn for large values of I1. Moreover, for both AB and G models, ∂W/∂I1
tends asymptotically to infinity as the first invariant approaches a limiting
value. Vertical asymptotes correspond with values of I1 equal to 3N and Jm+3
for AB and G constitutive equations, respectively. Thus, the second material
parameters of AB and G potentials are obviously related by:

Jm = 3(N − 1) (18)

Consider now the HS model. It does not exhibit an asymptotic behaviour, be-
cause it involves an exponential-like function. Nevertheless, in order to ensure
that models reproduce the same behavior at large strain, it is important that
they admit similar slopes in this range of deformation. Here, the HS model is
only compared with the G model, the equivalence of AB and G models being
already established in Eq. (18). Slopes of stress-strain curves can be expressed
in terms of the second derivatives of W with respect to I1 that are:

∂2WHS

∂I21
= 2C1C3(I1 − 3) exp

[

C3(I1 − 3)2
]

(19)

∂2WG

∂I21
=

E

6Jm

1
[

1− (I1−3)
Jm

]2 (20)
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Thus, to ensure that the responses of HS and G models are similar, these two
derivatives should be equal. Eliminating their first material parameters, i.e.
C1 and E respectively, by the use of Eq. (13), it yields to:

2C3(I1 − 3) exp
[

C3(I1 − 3)2
]

=
1

Jm

1
[

1− (I1−3)
Jm

]2 (21)

which lies the second material parameters C3 and Jm, and depends on I1.
This equation means that the equality of slopes depends on the considered
deformation level. In order to solve this equation, it can be casted under the
following form:

C3(I1 − 3)2 exp
[

C3(I1 − 3)2
]

=
(I1 − 3)

2Jm

1
[

1− (I1−3)
Jm

]2 (22)

The solution of this equation can be expressed in terms of the LambertW
function, denoted here WL:

C3(I1 − 3)2 = WL







(I1 − 3)

2Jm

1
[

1− (I1−3)
Jm

]2





 (23)

where WL is defined to be the function satisfying (see Corless et al. [23] and
the references herein for details):

WL(x) exp
[

WL(x)
]

= x (24)

So, defining now the reduced first strain invariant by:

α =
I1 − 3

Jm

(25)

where α ∈ [0, 1] as Jm represents the asymptotic value of I1−3, and considering
some basic algebraic manipulations, Eq. (23) can be transformed into:

C3J
2
m =

1

α2
WL

(

α

2(1− α)2

)

for α ∈ [0, 1] (26)

This equation relates the second material parameters C3 and Jm that satisfy
the equality of slopes at large strain for HS and G models. As mentioned
above, it depends on α, i.e. on the strain level. Nevertheless, as the G model
increases asymptotically to infinity in the neighborhood of I1 = Jm + 3, i.e.
α = 1, and the HS model is an exponential-like function in this range of I1,
Eq. (26) is not defined for α = 1. In practice, the equivalence between the
two constitutive equations can only be demonstrated on a given range of α
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(or of I1). In this way, a mean constant value of the function in the right-
hand side of Eq. (26) can be adopted to relate C3 and Jm. This permits to
omit the dependence on α of C3J

2
m. Let us denote [αmin, 1[ with αmin > 0, the

range in which the HS and G models are close to. Thus, in this range, the two
parameters can be linked by a constant coefficient:

C3J
2
m = k with k =

1

1− αmin

∫ 1

αmin

1

α2
WL

(

α

2(1− α)2

)

dα (27)

So, the value of k depends on the range in which the equivalence of the two
models is recognized. Figure 1 presents the evolution of k as a function of
αmin. As shown by the graph, k tends to infinity as αmin tends to 0 or 1.
The practical choice of the bound αmin and the corresponding value k will be
examined in the next section for two examples.

Fig. 1. Curve of Eq.(27): k vs αmin

3 Examples

Finally, two examples are studied to demonstrate the equivalence of the three
constitutive equations, and the relevance of Eqs (13), (18) and (27) that lie
the material parameters.

3.1 Fit of the G theory

The first example consists in using the G model as a reference. In order to
build fictitious materials and their corresponding data sets to be fitted, the
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two parameters E and Jm are considered to vary in ]0, 10] and [7, 100] respec-
tively. Values of Jm stand for limits of extensibility between 200% and 900%
in uniaxial tension.

First, Jm is set to 60 and E adopts the three values 0.1, 1 and 10. In these
three cases, the function ∂WG/∂I1 given by Eq. (17) is discretized using a large
number of values, and the corresponding stress functions of HS and ABmodels,
respectively given by Eqs (15) and (16), are fitted with these data. Fitting
results are obtained using two different algorithms. First, an optimization
program based on a genetic algorithm estimates approximately the material
parameters. Second, these parameters are precisely determined with the help
of a classical steepest descent algorithm using the genetic algorithm results as
initial guess solutions. The linear relation eq. (13) between first parameters of
the three models is exactly recovered for the three tests.

Second, the initial stiffness E is set to 1, and Jm varies between 7 and 100. First
parameters of HS and AB models are calculated according to Eq. (13), said
C1 = 6 and CR = 3. For the considered values of Jm, the method employed
above for first parameters is used to determine both C3 and N . Let us first
examine the results for the AB model. Figure 2 shows the comparison between
fitted results and the theoretical relation Eq. (18). The fitted results agree well
with the theory and the linear relation between the asymptotic limit of the
two models is satisfactorily recovered.

Fig. 2. Comparison of second parameters for the G and AB models: (◦) fitted results,
(—) theoretical results of Eq. (18)

As mentioned above, the case of the HS model is more difficult. Our goal is to
verify Eq. (27). Thus, the interval of α should be defined to calculate the inte-
gral in this equation. In order to choose the lower bound αmin, we consider that
slopes of HS and G models should not be compared for small strain, because
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only the large strain responses of these models are examined. As proposed by
Kucherskii [24], the neo-Hookean formulation is valid in the first third of the
deformation range. Thus, only the two thirds of the deformation range has to
be retained for the large strain response, i.e. αmin ≥ 1/9. Moreover, as models
behaviors are highly different in the neighborhood of α = 1, because the G
model tends asymptotically to infinity and the HS model grows exponentially,
we consider that the equivalence should be demonstrated for more than a
third of the deformation range, said αmin ≤ 4/9. Consequently, according to
Eq. (27) and noting that k does not evolve monotonously in αmin ∈ [1/9, 4/9]
(see Figure 1), the range in which k varies can be easily established:

2.83 ≤ k ≤ 2.98 (28)

Finally, Figure 3 presents the comparison between fitted and theoretical re-
sults. The two boundary values of k given in Eq. (28) are considered. This
figure shows that fitted results are satisfactorily reproduced by Eq. (27), with
a slight dependance on the value of αmin.

Jm

C
3

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 3. Comparison of second parameters for G and HS models: (◦) fitted results, (-
- -) theoretical results of Eq. (27) for k = 2.83, (—) theoretical results of Eq. (27)
for k = 2.98.

3.2 Fit of Treloar’s data

The second example focuses on the comparison of models for a real material.
Here, experimental data of Treloar [25] are considered. The author performed a
large number of experiments in different deformation modes: uniaxial tension,
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pure shear, equibiaxial tension (by the use of the bubble inflation technique),
and biaxial tension (by combining tension and pure shear). The correspond-
ing stress-strain responses were thoroughly examined in the past and are not
recalled here. The reader can refer to Ogden [26] for details.

Using these data, material parameters of the three constitutive equations are
determined. The identification was performed using the four tests simultane-
ously. Fitted results for material parameters are presented in Table 1. The
corresponding results for the stress-strain responses are shown Figure 4. In
this figure, X-axis and Y-axis of each graph correspond to relevant stretch and
nominal stress of the type of experiment. The four graphs exhibit the equiva-
lence between the three models and demonstrate their ability to satisfactorily
reproduce different deformation modes with only two material parameters.

First parameter, MPa Second parameter

HS model C1 = 0.18 C3 = 2.7 10−4

AB model CR = 0.34 N = 27.9

G model E = 1.0 Jm = 92.0

Table 1 : Values of material parameters

Let us now examine the relevance of the previously demonstrated relationships
as applied to the parameters presented in Table 1. In order to simplify the
discussion, G material parameters are considered as the reference, and material
parameters of AB and HS theories are compared with them.

• Concerning the first material parameter of models, we first compute 6C1 =
1.08 for the HS model and 3CR = 1.02 for the AB theory as proposed in
Eq. (13). Thus, the maximum difference between these data and E = 1 is
about 8%.

• Second, the large strain parameters Jm and N of G and AB models are
analysed. According to Eq. (18), the theoretical value of N should be (Jm+
1)/3 = 31.0. The difference between this predicted value and the fitted
result is about 10%.

• Finally, we consider the relationship between Jm and C3. The corresponding
theoretical relation that relies these data is given by Eq. (27). In order to
compute k, the lower bound αmin of the definition range should be deter-
mined. Examining experimental results for the uniaxial test shown in Figure
4(a), the small strain range, in which the neo-Hookean theory is sufficient,
can be defined as λ ∈ [1, 4]. This interval corresponds to I1 ∈ [3, 16.5] and
the use of Eq. (25) yields to αmin ≈ 0.14. In regards with Eq. (27), k is de-
fined by an integral from αmin to 1. Nevertheless, considering that the last
experimental point of the uniaxial tensile test corresponds with λmax = 7.6,
i.e. I1 = 58, the upper bound of the integration range is not equal to 1 but
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Fig. 4. Fit of Treloar’s data, (a) unixial tension, (b) pure shear, (c) equibiaxial
tension, (d) biaxial tension: (◦) experiments, (- - -) HS model, (—) AB model, (. . . )
G model.

should be replaced by αmax = (I1max − 3)/Jm ≈ 0.6. In fact, it is impossible
to experimentally reach the extensibility limit of chains, because samples
break down for smaller stretches. Finally, the theoretical value of k to be
considered is given by:

k =
1

10.6− 0.14

∫ 0.6

0.14

1

α2
WL

(

α

2(1− α)2

)

dα ≈ 2.69 (29)

It is to note that this value is not contained in the range of Eq. (28). Using this
result in Eq (3), the second parameter of the HS model C3 should have been
equal to 3.18 10−4. Comparing this value with the fitted result given in Table 1
leads to a discrepancy of 17.7%. In regards with differences obtained between
our theoretically predicted values and fitted results, the present developments
are validated. The equivalence equations (13), (18) and (27) can now be used
to switch between HS, AB and G hyperelastic constitutive equations.
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4 Conclusion

The present work demonstrates the equivalence between three hyperelastic
constitutive equations: the HS, AB and G models. Here, only the I1 part of
the models were compared. As proposed elsewhere [20], the accuracy of the
three approaches for moderate strain can be improved by adding a function
of I2 to W . This can be performed with only one additional material pa-
rameter. Note that the original Hart-Smith model included this I2 term. The
HS model presents some advantages that will highly simplify the numerical
implementation: it is formulated in terms of stretch invariants and its large
strain behavior is governed by an exponential-like function, so that its tangent
stiffness always exists. Moreover, the equivalence demonstrated here will also
render easier the identification of material parameters, because HS parameters
can be now related to physical concepts through their equivalence with AB
data.
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