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ABSTRACT: The present paper reports on the use of Continuum Damage Mechanics to describe the Mullins 
effect in elastomers. Thermodynamics of rubber-like hyperelastic materials with isotropic damage is 
considered. Since it is demonstrated that stress-softening is not a strictly speaking damage phenomenon, the 
limitations of the approach are highlighted. Moreover, connections with two-network-based constitutive 
models proposed by other authors are exhibited through the choice of both the damage criterion and the 
measure of deformation. It is shown that the present model agrees qualitatively well with experiments except 
for the strain-hardening phenomenon. Finally, the numerical implementation highlights the influence of 
loading paths on material response, that proves the importance of considering the Mullins effect in industrial 
design. 

1 INTRODUCTION 
 
It is well known that rubber-like materials exhibit a 
strongly non-linear behaviour characterised by large 
strain and a non-linear stress-strain response under 
static conditions. Moreover, this behaviour is time-
dependent as demonstrated by relaxation or creep 
experiments. Finally, under cyclic loading 
conditions, both hysteresis and stress-softening 
phenomena are observed. The hysteretic behaviour 
may be related to viscoelasticity or plasticity, and is 
characterised by different loading and unloading 
stress-strain paths during a cycle. The stress-
softening phenomenon, also called Mullins effect, is 
characterised by a consequent loss of stiffness 
during first cycles of fatigue experiments (see 
Harwood et al. 1967 and the references therein). As 
shown by Besdo & Ihlemann (2001), and Kaliske & 
Domscheit (2001), this phenomenon highly affects 
the mechanical response of rubber parts 

The aim of the present paper is to demonstrate 
that Continuum Damage Mechanics (denoted CDM 
through the rest of the paper) can be an efficient tool 
to model the Mullins effect in rubber, if it is 
carefully employed. Our work is restricted to 
hyperelasticity with isotropic damage. In Section 2, 
a brief review of phenomenological models for the 
Mullins effect is proposed and the relevance of the 
CDM theory as applied to the Mullins effect is 
discussed. The thermodynamical framework of 
hyperelasticity with damage is derived in Section 3. 
The similarity of CDM and two-network or two-

phase approaches is demonstrated. The emphasise is 
laid on the choice of the damage criterion. Section 4 
is devoted to experimental and numerical results. 
Finally, concluding remarks are given in Section 5. 

2 PHENOMENOLOGICAL MODELS FOR THE 
MULLINS EFFECT 

 

2.1 Two-network or two-phase approaches 
The first approach used to develop constitutive 
equations for the Mullins effect is based on the two-
network theory of Green & Tobolsky (1946) and the 
two-phase model of Mullins & Tobin (1957). 

Both concepts postulate that the polymer network 
evolves with deformation: parts of the network are 
broken and others are reformed under loading. So, 
Rajagopal & Wineman (1992) proposed a general 
theory for materials under strain induced 
microstructural changes. Their approach is 
successfully applied to the Mullins effect by Huntley 
et al. (1996, 1997). Authors considered that the 
stress should be corrected by a scalar reformation 
function that depends on a given measure of 
deformation (expressed as a scalar function of 
principal stretch invariants). Similarly, Beatty & 
Krishnaswamy (2000) derived a constitutive 
equation that generalised the previous works of 
Johnson & Beatty (1993a, b, 1995). In this work, the 
two-phase theory is considered, and the 
transformation of hard regions into soft regions is 



controlled by an accommodation function that 
depends on the maximum strain state previously 
endured by the material. A different form of this 
function was recently proposed by Elias-Zuniga & 
Beatty (2002). 

2.2 Continuum Damage Mechanics approaches 
Many authors used the thermodynamical framework 
of Continuum Damage Mechanics to model the 
Mullins effect. CDM was first introduced by 
Kachanov (1958), and the general theory was 
derived later by Lemaitre & Chaboche (1985) for 
metallic materials. This theory was successfully 
applied to different classes of materials such as 
metals, composites and concrete.  

Recently, CDM was extended to the case of 
elastomers in order to simulate the Mullins effect. 
The first paper on the subject is due to Gurtin & 
Francis (1981) who proposed an one-dimensional 
hyperelastic damage model for solid propellants. 
Later, the general three-dimensional case was 
studied by Simo (1987) who derived a large strain 
viscoelastic constitutive equation with damage for 
rubber-like materials. This model was improved by 
the use of microscopic considerations (Govindjee & 
Simo 1991, 1992). More recently, several authors 
developed phenomenological hyperelastic models 
with damage to describe the Mullins effect in 
engineering applications (De Souza Neto et al. 1994, 
Miehe 1995, Kaliske & Rothert (1999), Miehe & 
Keck 2000, Bikard & Desoyer 2001, Aubard et al. 
2002). Finally, let us mention the recent work of 
Ogden & Roxburgh (1999), used by Muhr et al. 
(1999) and extended to anisotropy by Holzapfel et 
al. (1999) that differs from the aforementioned 
theories because the accommodation function (that 
depends on the maximum strain energy endured by 
the material) is activated only on unloading paths. 

 
To conclude this brief review, it should be noticed 
that constitutive equations based on network 
evolution are more specific to polymers than CDM 
models, but their thermodynamical framework is not 
as well-defined. 

2.3 Is the Mullins effect a damage phenomenon? 

The application of CDM to the Mullins effect 
necessitates some remarks. Originally, damage 
mechanics was based on the definition of effective 
stress. This theory considers that, under loading, the 
material surface on which internal forces apply is 
decreasing because of the emergence of micro-
defects and micro-voids. In regards with these 
physical considerations, three consequences are 
induced for the damage evolution: 

1. the damage cannot decrease during material life 
because micro-defects and micro-voids can not 
disappear, 

2. the damage evolution differs depending on 
loading conditions: under tension both micro-
defects and micro-voids take place, and under 
compression only micro-defects are activated 
because micro-voids are closed, 

3. the damage evolves until occurrence of a 
sufficiently large crack, because the active 
surface tends to a non-zero threshold value 
determined experimentally. 

Nevertheless, in the case of the Mullins effect in 
elastomers, these three assertions are proved false. 
More precisely, the Mullins effect is not a damage 
but a stress-softening phenomenon. It is due to the 
rearrangement of the polymer network under 
deformation when some links between chains, or 
between chains and reinforcement particles are 
broken (Bueche 1961, 1962). So the three previous 
assertions can be refuted: 
1. it was proved experimentally that the Mullins 

effect recovers with time and that this recovery 
is highly accelerated by annealing (Mullins 
1969). So, the damage may decrease, 

2. as the Mullins effect is a consequence of the 
rearrangement of the network, the damage 
evolution might not differ in regards with 
deformation modes, 

3. it is mainly recognised that the rupture in rubber 
parts is not directly related to stress-softening. 
Therefore, high values of the damage parameter 
should not be considered as a criterion for 
rupture or occurrence of cracks. 

Considering these three remarks, it should be 
concluded that CDM can be used to model the 
Mullins effect in elastomers with some restrictions 
and carefulness. 

3 CDM AS APPLIED TO RUBBER-LIKE 
MATERIALS 

3.1 Constitutive model 
Consider an isotropic, homogeneous and 
incompressible rubber-like material. This material is 
considered hyperelastic and subjected to isotropic 
damage. It is defined by the existence of a strain 
energy function, which depends on the deformation 
gradient F, and on a scalar damage variable d. This 
variable characterises the elastic stress-softening of 
the material. Taking into account the objectivity 
requirement, the isotropy and the incompressibility, 
the strain energy function can be written as: 

( )dIIWW ,, 21=  (1) 

where I1 and I2 are the two first principal invariants 
of the left Cauchy-Green strain tensor B=F FT, 
defined by: 
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Considering now that the effective Cauchy stress 
σ0, namely the stress that acts on the damaged 
material, is related to the applied Cauchy stress by 
(see for example Lemaitre & Chaboche (1985)): 

d−
=

10
σσ  (3) 

then, the strain energy function can be considered as 
the product of the surface reducing parameter 1-d 
and the strain energy function of the virgin 
undamaged material W0: 

( ) ( ) 021 1,, WddIIW −=  (4) 

In order to establish the laws of state, the 
Clausius-Duhem inequality is considered and yields 
(Miehe 1995): 

( ) 0: ≥−+ Wp &DIσ  (5) 

in which D is the rate of deformation tensor. In this 
equation, pI is an arbitrary spherical tensor due to 
incompressibility. After some algebraic 
manipulations, Equation 5 gives: 
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The left-hand side equation is the constitutive 
equation that relates the current damaged stress to 
the damage parameter, the strain energy function of 
the virgin material and the current strain state. The 
right-hand side inequality shows that the damage 
process is dissipative and that the thermodynamic 
force associated with the damage variable is –W0. 

Next, in order to completely define the damaged 
hyperelastic constitutive equation, the evolution 
equation of the damage variable has to be 
established. It is mainly recognised that the stress-
softening exclusively depends on the maximum 
deformation state endured previously by the 
material. Therefore, a measure of the deformation 
state and its maximum should be defined. This 
measure depends on both the deformation state and 
the time, and is denoted α. Its maximum is: 

( ) ( )ταα
τ

  max
tm t

≤
=  (7) 

Thus, the damage criterion reduces to a sub-region 
of the deformation space given by (Simo & Hughes 
1998): 

0)()( ≤−= tt mααφ  (8) 

Considering that the damage parameter should 
increase if, and only if the current deformation state 
is a maximum state and is in a loading direction 
from a damage state, an irreversible evolution 
equation for the damage can be proposed as follow: 
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where h characterises the evolution of the damage. 
As the damage is an irreversible non-decreasing 
variable, h is a smooth positive function and can be 
integrated: 
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Finally, the stress-strain relation of damaged 
hyperelastic material is given by Equations 6 and 10. 

3.2 Similarity between CDM and two-networks 
(phases) models 

The last problem to solve is the choice of the 
measure of deformation state α. 

In the general theory of thermodynamics of 
irreversible processes, the equation of state for an 
internal variable has to be written in terms of the 
thermodynamical force associated with this variable. 
In the present case, it means that the measure α(t) 
should be chosen as a function of –W0. The first 
authors who proposed to applied CDM to the 
Mullins effect adopted this approach (Simo 1987, 
De Souza Neto et al. 1984, and Miehe 1995). It 
yields to: 

( )0Wf=α  (11) 

Even if f has not to be a norm, it can be reasonably 
stated that f is a positive increasing function on [0,+ 
∞) and f(0)=0. 

This choice exhibits one major problem: the form 
of the strain energy function should be postulated 
before derivation of the whole model. Moreover, due 
to physical considerations, it seems to be more 
appropriate to formulate explicitly the damage 
evolution equation in terms of the deformation state. 
That was proposed by Govindjee & Simo (1991, 
1992), and later by Miehe & Keck (2000). It is to 
note that this approach can be related to the 
application of the two-network or -phase theories to 
stress-softening in rubber. Indeed, authors consider 
that the Mullins effect is due to a change in the 
microstructure of the network. The evolution of the 
network is described by a network reformation 
function that depends on the maximum strain state 
endured by the material in its life. The adopted 
deformation state is measured through a scalar 
function, which depends on I1 and I2. As proposed 
by Beatty & Krishnaswamy (2000), this function can 
be seen as a damage parameter (see footnote 5 in 
their paper). A practical study of the choice of the 
driving damage parameter, the maximum stretch or 
the maximum virgin strain energy, was recently 
proposed by Laiarinandrasana et al. (2001). 



Here, this second approach is adopted and the 
scalar measure of the deformation state is written as: 

( 21, IIg= )α  (12) 

Using the properties of f, the material isotropy, 
the convexity of W0 and the chain rule 
differentiation, it can be established that (Chagnon et 
al. submitted): 
− g is defined on [3,+∞)×[3,+∞), 
− g is differentiable in both I1 and I2 on [3,+ ∞)× 

[3,+ ∞), 
− ∂g/∂I1>0 and ∂g/∂I2≥0, 
− the choice g(I1=3,I2=3)=0, that ensures that the 

measure is null for the virgin unloaded state, is 
recommended. 

 
Some applications of these developments are 
presented in the next section. 

4 APPLICATIONS 

4.1 Identification of the constitutive equation 
The material used for the experimental part of this 
work is a carbon black filled natural rubber. The 
percentage of fillers is about 30%. 

In order to determine material parameters for the 
virgin strain energy function W0 and the damage 
equation of state 10, both cyclic uniaxial tensile and 
simple shear tests were performed. The uniaxial 
tensile experiments were conducted on flat coupon 
specimens and the simple shear specimens are four 
blocks samples. In order to simplify the fitting task, 
results of simple shear experiments were 
transformed into pure shear data. All experiments 
were performed under controlled strain conditions. 
For several strain levels, specimens underwent five 
cycles at a constant strain rate. 

As in most of the studies concerned with the 
Mullins effect, the present paper only deals with the 
loss of stiffness of the material. Therefore, the 
stress-softening behaviour should be separated from 
other inelastic phenomena such as hysteresis and 
relaxation. The details of the correction method 
adopted are given in Marckmann et al. (2002) and 
the corrected experimental data for uniaxial tensile 
experiments are presented in Figure 1. The pure 
shear results are similar. 
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Figure 1. Corrected data for cyclic uniaxial tensile 
experiments. 

 
 
In the present study, the emphasis is laid on the 

stress-softening phenomenon, so that a simple 
phenomenological strain energy function is chosen. 
In order to satisfactorily reproduce the large strain 
response of the material, the Yeoh model is adopted 
(Yeoh 1993). The corresponding strain energy 
function is given by: 

( ) ( ) ( 3
130

2
120110 333 −+−+−= ICICICW )  (13) 

where C10, C20 and C30 are the three material 
parameters. As this model only depends on the first 
principal stretch invariant, it is not well-adapted to 
moderate strain. Nevertheless, its mathematical 
simplicity and ability to reproduce the whole 
behaviour of elastomers are sufficient qualities for 
the present study. Once the virgin strain energy 
function is chosen, the form of the damage equation 
of state has to be established. As detailed in the 
theoretical part of the paper, the present approach 
focuses on the use of a measure of deformation 
expressed as a function of the two first principal 
invariants of the stretch tensor B. As a first 
approach, we adopt a very simple measure of the 
deformation state that only depends on I1: 

13/1 −= Iα  (14) 

This measure is relevant with regard to the 
properties exhibited in the theoretical section. 

The method adopted to determine the material 
parameters being thoroughly examined elsewhere 
(Chagnon 2001), only principal results are given. 
First, in order to establish the form of the damage 
function, the properties of the damage formulation 
are used: on secondary loading curves, the damage 
remains constant and the stress ratio between two 
secondary loading curves does not depend on the 



deformation level. As a consequence, we show that 
the damage evolution equation can be fitted by an 
exponential-like decreasing function, in both 
uniaxial tensile and pure shear cases (Chagnon, 
submitted): 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∞ η

αα mdd exp1~  (15) 

where d∞ and η are material parameters. 
Five material parameters have to be determined: 

three for the virgin strain energy, i.e. C10, C20 and 
C30, and two for the damage equation of state, i.e. d∞ 
and η. The identification results are compared with 
experiments in Figures 2 and 3 for uniaxial tensile 
and pure shear deformation states, respectively. 
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Figure 2. Identification for uniaxial tensile results: (L) 
experiments, (⎯) our model. 
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Figure 3. Identification for pure shear tensile results: (L) 
experiments, (⎯) our model. 
 

 
Theoretical results are globally in good 

agreement with experiments; so, the model describes 
successfully the transition between different loading 
curves in cyclic experiments and exhibits the 
influence of the maximum strain on the 
accommodated behaviour. However, the present 
model is not able to satisfactorily predict the 
behaviour of the material at the intersection of 
secondary loading curves with the primary curve. 
Indeed, the high curvature of secondary loading 
curves due to strain-hardening is not well 
reproduced. Nevertheless, such results with only five 
material parameters are quiet good, and the use of 
the present model in finite element simulations will 
provide quality results. 

4.2 Numerical results 
Here, we choose to implement the present 
constitutive equation in Abaqus by using the UMAT 
facility. 

The example considered is a well-known plane 
stress hyperelasticity problem where an initial 
20×20 mm2 strip with a circular hole of diameter 
10 mm is stretched in both horizontal and vertical 
directions. The corresponding initial mesh is shown 
in Figure 4(a). This example exhibits the strong 
dependence of the accommodation on the 
deformation history. Three different deformation 
paths are investigated (amplitudes of cycles are 
identical, namely equal to 185%) and their 
corresponding damage distributions are presented in 
Figure 4(b), (c) and (d). 

The influence of the loading history on the 
damage distribution can be highlighted by 
comparing results in Figure 4(c) and 4(d). The two 
samples were subjected to the same deformation 
state, said 185% in both directions 1 and 2. Only 
loading paths differ. In the case 4(c), the sample is 
first stretched then relaxed in direction 2. This 
intermediate state corresponds with Figure 4(b). 
This first cycle weakens the structure in the 
neighbourhood of the hole, in direction 1. Then, the 
second cycle applied in direction 1 modifies a new 
unloaded non-homogeneous damage distribution. 
So, the final damage distribution is non-symmetric. 
In the loading case 4(d), both cycles (in directions 1 
and 2) are applied simultaneously and the final 
damage distribution respects the structural 
symmetry. 
 



 
Figure 4. Finite element simulation of a square perforated 
sheet: (a) undeformed mesh, (b) damage distribution after a 
cycle in dir. 2, (c) damage distribution after a cycle in dir. 2 
followed by a cycle in dir. 1, (d) damage distribution after a 
cycle in the diagonal direction. 

5 CONCLUDING REMARKS 

Connections between the two phenomenological 
theories used for the Mullins effect, i.e. damage 
mechanics and two-network (or two-phase) 
approaches, are now established. Then, the only 
remaining difficulty is the determination of the 
equation of state that drives the parameter used to 
correct the strain-energy function: the damage 
parameter, the network reformation or 
transformation function between hard and soft 
regions of rubber, depending on the terminology 
adopted. Here, we showed that the use of the 
maximum deformation endured previously by the 
material as the damage criterion is sufficient to 
reproduce the global behaviour of elastomers 
subjected to the Mullins effect, but not enough 
accurate to describe strain-hardening. Thus, the 
damage equation of state should be also written in 
terms of the current deformation measure and not 
only in terms of the maximum deformation measure. 
Such approaches were recently proposed by Miehe 
& Keck (2000) and Elias-Zuniga & Beatty (2002). 
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