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Efficiency of hyperelastic models for rubber-like materials

G. Marckmann & E. Verron
GeM,École Centrale de Nantes, BP 92101, 44321 Nantes cedex 3, France

ABSTRACT: This paper focuses on the modeling of rubber-like material behaviour under several modes of
deformation using hyperelastic constitutive equations. Aprocedure based on genetic algorithms coupled to
classical optimisation methods is proposed to identify theparameters of the models upon experimental data
given in the literature. This leads to the classification of nineteen models with respect to criteria related to their
capability to predict material behaviour.

1 INTRODUCTION
Hyperelastic models are used to simulate the non-
linear elasticity of rubber materials under static load-
ing conditions or to develop more sophisticated mod-
els. Many models have been proposed to describe
the behaviour of elastomers, but few studies which
evaluate the ability of hyperelastic models to repro-
duce rubber behaviour for all the modes of defor-
mation can be found in literature. Recently, Seibert
and Scḧoche (2000) compared six different models
with their own experimental data. Danger of the se-
ries formulations is highlighted by showing bad pre-
dictions of biaxial response after uniaxial identifica-
tion. Boyce and Arruda (2000) confronted five mod-
els with data in three different modes of deformation.
More recently, Attard and Hunt (2004) used experi-
mental data of seven different authors to demonstrate
the efficiency of their model.

The aim of the present paper is to systematically
compare nineteen models proposed in the literature in
order to classify them with respect to their ability to
fit experimental data.

2 COMPARED MODELS
Hyperelastic models are classified into three types of
formulation, depending on the approaches adopted by
their authors for their development.

2.1 Phenomenological and empirical models

The first type concerns general mathematical forms
such as the Rivlin series. Their parameters are gener-
ally difficult to identify and their generalised form can
lead to error when these models are used out of their
identification range. Such models considered here are:

• the Mooney model ( 1940).

• the Mooney-Rivlin model (1948).

• the Biderman model (1958).

• the Haines-Wilson model (James et al. 1975) jus-
tified by Davet (1985) with experimental consid-
erations.

• (he Ogden (1972) model.

These models are mathematical representations of the
strain energy functionW with no physical or experi-
mental considerations.

2.2 Approaches in derivatives∂W/∂I1 and
∂W/∂I2

Other authors preferred to extract directly the form of
the fonction∂W/∂I1 and∂W/∂I2 from experimental
data:

• Rivlin et Saunders (1951) observed that∂W/∂I1

is independent onI1 etI2 and that∂W/∂I2 does
not depend onI1,

• Gent and Thomas (1958) proposed an empirical
form with only two material parameters,

• Hart-Smith (1966) noted that∂W/∂I1 is con-
stant for values ofI1 smaller than 12, but in-
creases for higher values. He explained this phe-
nomenon by the limit of extensibility of the poly-
meric chains,

• Valanis et Landel (1967) proposed a form ofW
in terms of the principal stretchesλi with the as-
sumption of separability onλi,
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• Gent (1996) used the idea of a limit of chain ex-
tensibility and assumed thatI1 admits a maxi-
mum value,

• Yeoh and Fleming (1997) noted that the reduced
stresses tends to a constant value independent of
(I1 − 3) for (I1 − 3) > 5.

2.3 Physical-based models
Over the last decades, development of phenomeno-
logical models tends to introduce physical considera-
tions. The third type of models are those which are de-
rived from physics of chains networks. Such models
are based on statistical methods leading to different
macroscopic models depending on the microscopic
phenomena accounted for:

• Treloar (1943) used a gaussian statistical distri-
bution to develop the neo-hookean model,

• Kuhn and Gr̈un (1942) used a non-gaussian the-
ory to take into account the limit chain exten-
sibility. They introduced the inverse Langevin
function,

• James and Guth (1943) derived the previous
model and proposed a model where chains are
re-distributed upon the three principal axes of de-
formation,

• Ishihara (1951) linearized equations of the non-
gaussian theory and obtained a Rivlin series
where parameters are linked. Thus, he intro-
ducedI2 into a physical based model (confirmed
by Wang and Guth (1952)).

The deviation in experimental data of the ideal
chain models is classically imputed to the so-called
phantom assumption which does not account for
chains entanglement and chains can pass through each
other. Authors introduced the idea of entanglement
constraints or topology conservation constraints and
adopt the following form of the strain energy func-
tions:

W = Wph + Wc (1)

whereWph is the phantom network part andWc is the
constraints or cross-linking part:

• Ball et al. (1981) developed the slip-link model
where a first term corresponds to the phantom
Gaussian model,

• Kilian et al. (1986) revived an idea of Wang and
Guth by taking into account thevan der Waals
forces. Few years later the model is presented in
a potential form (Ambacher et al. 1989),

• Flory et al. (1994) developed a model where
junction points of the chains are constrained to
move in a restricted neighbourhood due to the
presence of other chains. The phantom part of the
model is described by the neo-hookean model,

• Arruda and Boyce (1993) proposed a chain
model with a distribution of chains in eight di-
rections,

• Heinrich & Kaliske ( 1997) built a model where
chains are constrained by a tube formed by
the surrounding chains. This assumption is at-
tributed to the high degree of entanglement of
network chains. The model takes the form of
the phenomenological model of Ogden with only
two terms,

• Kaliske & Heinrich (1999) replaced the gaussian
distribution of the above tube model by the non-
gaussian approach and introduced an inextensi-
bility parameter,

• Miehe et al. (2004) developed the non-affine
micro-sphere model by associating Langevin
chain models with the tube-model. The chains
are distributed upon discrete directions and the
micro-stretches are allowed to fluctuate around
the macro-stretches with only one additional pa-
rameter.

3 IDENTIFICATION METHODS
It is now established that a unique experimental test is
unable to characterize a rubber-like material. More-
over, it is difficult to identify model parameters by
fitting only one curve corresponding to one type of
deformation, especially when the number of these pa-
rameters is large and it is not sure that other types of
deformation will be reproduced with good agreement.
A good example is given in the paper of Seibert and
Scḧoche (2000).

The incompressible assumption constrains the ad-
missible kinematical field in rubber. In the principal
axes, this equation allows the possible deformations
to be governed by only two independent variables.
Therefore a series of biaxial tests is sufficient to fully
identify the constitutive models.

3.1 Experimental data
In order to investigate the identification of the ma-
terial parameters, we choose complementary data
from classical papers. The first set of data is due to
Treloar (1944) and is widely used by other authors.
We only focus on the 8% S vulcanized rubber which
is known to exhibit highly reversible elastic behaviour
and no crystallization on stretching up to 400%. The
specimen was pre-stretched with a initial extension of
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400% to eliminate the Mullins effect (Mullins 1948).
Experimental measures were performed for equibiax-
ial extension (EQB), traction (T), pure shear (PS) and
combined biaxial extension (BE).

The second set of data is due to Kawabataet
al. (1981). With an apparatus built for general biax-
ial extension testing, they obtained data for a square
sheet of polyisopren. The specimen were stretched
from 1.04 to 3.7 in one direction (λ1) and from0.52
to 3.1 in the perpendicular direction (λ2).

The two materials used respectively by Treloar and
Kawabataet al. are similar. A unique set of mate-
rial parameters should be able to reproduce these data
with good agreement.

3.2 Identification algorithms
The problematic of identification makes analytical so-
lutions to coincide with experimental measurements.
The measure of the differenceφ is classically de-
fined by the mean square error. A minimization ofφ
is generally employed. In most cases the coincidence
of data with theoretical responses can only be estab-
lished on a restrictive set of data points (validity do-
main).

Among all possible minimization methods, we fo-
cus on classical gradient methods and genetic algo-
rithms. The latest have been used for identification
problem for few years (Furukawa & Yagama 1997;
Liu et al. 2002; Yoshimoto et al. 2003).

3.2.1 Gradient methods

The solution of the minimization problem is often
non-unique. Local solutions are generally obtained
with classical methods such as conjugate gradient,
Newton-like or Levenberg-Marquardt methods. Such
iterative methods consiter the derivatives ofφ and
the solution depends on an initial point introduced by
users. A series of points is build by looking for a de-
scent direction which allows to find a new solution
where the value ofφ is lower than the present one.

3.2.2 Genetic algorithms

Genetic algorithms (GA) were introduced by Hol-
land ( 1975). Later Michalewicz resumed the state of
the art of such methods ( 1996). A genetic algorithm
emulates biological evolutionary theories to solve op-
timization problems. According to the evolutionary
theories, only the most fitting elements in a popula-
tion are likely to survive and transmit their biologi-
cal heredity to the next generations. This leads to the
evolutive convergence of the species through operator
such as competition among individuals, natural selec-
tion and mutation of the DNA.

The introduction of randomness in the GA makes
exploration of the research space independent of the
starting point. Thus the GA are likely to obtain a
global optimum of the fitness function instead of a
local one.

The original GA was based on a similitude be-
tween chromosome and binary code. Crossover of a
sequence of bits and mutation bits were tempting to
preserve the similitude with biology. Binary coding
has long been considered as the best one but other
codings are possible and some authors recommend a
code as close to the space of parameters as possible.
Here, we choose the integer coding.

There is no guaranty for convergence of the solu-
tion with the use of GA and no conclusion must be
settle from a lonely run. Nevertheless, improvement
can be observed by increasing the number of individ-
ual while convergence is less sensitive to the number
of generation if it is not too small.

3.3 Identification algorithms
The choice of the identification algorithm is added to
our strategy. Models are first identified with genetic
algorithms and material parameters are used as ini-
tial parameters in the Levenberg-Marquardt method.
In case of divergence of the latest method, the mean
square method is used. In such a way, the results al-
ways take advantages of the genetic algorithms.

4 CLASSIFICATION
4.1 Identification steps
Both materials considered by Treloar and Kawa-
bataet.alare similar in terms of composition and be-
haviour. We will try to determine an unique set of pa-
rameters can be identified to reproduce the two sets of
experimental data. Two identifications steps are pro-
posed here to achieve this aim :

1. parameters are identified on Treloar’s data in
traction, pure shear, equibiaxial extension and bi-
axial extension:

(a) if the accuracy is good, paramaters are retained,

(b) if the accuracy is poor, the validity domain is
modified:

i. if the model is not able to reproduce strain
hardening at large strain, the domain of
validity is reduced for uniaxial extension
mode (λmax),

ii. elsewhere, other modes of deformation are
progressively eliminated from the identifi-
cation procedure. Then, the domain of va-
lidity (λmax) for the other modes of defor-
mation is observed on the response curves.

2. parameters identified by the above step are
retained to simulate Kawabata biaxial experi-
ments:
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(a) if the accuracy is good enough, the parame-
ters are considered as model parameters for
both materials,

(b) elsewhere, new parameters are identified
for the Kawabata data:

i. if the accuracy is not good enough, the
validity domain of the model for biax-
ial extension is reduced.

ii. elsewhere, parameters are retained for
biaxial mode and the domain of valid-
ity (λ1 andλ2) is then observed on the
response curves.

The strategy described above leads to the determi-
nation of parameters for all models and of the validity
domain for each mode of deformation.

4.2 Classification
The classification presented in Tables 1 and 2 is es-
tablished with the following criteria. The larger is the
domain of validity (λmax, λ1 andλ2 for the different
modes of deformation), the upper is the model in the
table. Then, the greater is the number of parameters
(nop) of the model, lower is the model. For equiva-
lent models, more consideration is given to the one
which can represent both sets of data with the same
set of parameters. Finally, a subjective criterion is
taken into account to decide between different equiv-
alent models and preferences are awarded to physical-
based models (columnPhysin Table 2).

Tables 1 gives the limitλmax of the validity domain
for (T) traction, (PS) pure shear, (EQB) equibiaxial
extension and (BE) biaxial extension for identifica-
tion on Treloar data. Notations (under) and (over) in-
dicates if stresses are predicted with underestimation
or overestimation.

Tables 2 gives limit of the validity domainλmax

in both directions (λ1 and λ2) for Kawabataet al.
data. Notations (under) and (over) indicates if stresses
are predicted with underestimation or overestimation.
Symbols (=) or (6=) indicate if only one set of param-
eters is able to reproduce both sets of data.

4.3 Example
The following graphs illustrate the performance of
the extended tube model. They are obtained with the
same set of parameters for both sets of experimental
data. The value of these parameters are given with the
notations of Kaliske and Heinrich (1999).

5 CONCLUSIONS
This paper focuses on hyperelastic models found in
the literature and investigates their capability to re-
produce the mechanical behaviour under all kinemat-
ically admissible modes of deformation.

Table 1. Classification of hyperelastic models: validity do-
main for Treloar data

Treloar data
λmax

Model name T PS EQB BE
1 extended tube - - - -
2 micro-sphere - - - -
3 Ogden - - - -
4 Haines-Wilson - - - -
5 Biderman - - - -
6 Hart-Smith - - - -
7 8-chains - - under under
8 Gent - - - -
9 Yeoh and Fleming - - - -
10 van der Waals - - 2.5 over
11 3-chains - - under under
12 tube model 4 3.5 3 -
13 Mooney 5 - 4 2
14 Ishihara 5 - 4 2.25
15 Gent and Thomas 5 - 3 -
16 Slip-link 5 4 2.5 over
17 constr. junctions 5 4 2.5 over
18 neo-hookean 5 2 3 2.5
19 Valanis and Landel 3.5 2.5 1.2 under

Table 2. Classification of hyperelastic models: validity do-
main for Kawabataet al.data; (nop) number of parameters;
(Phys) physical-based model;

Kawabata
data

λmax

Model name λ1 λ2 nop Phys
1 extended tube = - - 4 ×

2 micro-sphere = - - 5 ×

3 Ogden 6= - - 6
4 Haines-Wilson 6= 3.4 3 6
5 Biderman 6= 2.5 3 4
6 Hart-Smith = 1.9 1.5 3
7 8-chains 6= 1.9 1.9 2 ×

8 Gent 6= 1.6 1.6 2
9 Yeoh and Fleming 6= 1.6 1.6 4
10 van der Waals = 2.2 2.2 4 ×

11 3-chains 6= 1.3 1.3 2 ×

12 tube model = - - 3 ×

13 Mooney 6= 2.2 2 2
14 Ishihara 6= 1.9 1.9 3 ×

15 Gent and Thomas = 1.6 1.6 2
16 Slip-link 6= 2.5 2.5 3 ×

17 constr. junctions 6= 2.2 2.2 3 ×

18 neo-hookean = 1.6 1.6 1 ×

19 Valanis and Landel 6= 1.3 1.3 1
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Figure 1. comparison between the extended tube model and
experimental data of Treloar:Gc = 0.202; Ge = 0.153;
β = 0.178; δ = 0.0856
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Figure 2. comparison between the extended tube model and
experimental data of Kawabataet al.: Gc = 0.202; Ge =

0.153; β = 0.178; δ = 0.0856

A methodology is proposed to identify the mod-
els with previously published experimental data. An
identification procedure has been developed. An orig-
inal point of this method is the use of genetic algo-
rithms coupled to classical optimisation approaches.
The proposed method leads to the identification of
both material parameters and of the validity domain
of the models.

Finally, a classification of the models is proposed
considering the domain of validity for all modes of
deformation, the number of parameters and the type
of formulation used to derive the models. Depending
on the considered domain of deformation, the neo-
hookean model, the Mooney model and the Ogden
model can be used respectively for small, moderate
or large strain. Nevertheless, the study highlights non-
classically used physical-based models which leads
to better agreement with experiments and involves

a smaller number of parameters: the extended-tube
model and the micro-sphere model.
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