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3D periodic BE–FE model for various transportation
structures interacting with soil

H. Chebli a,*, R. Othman a, D. Clouteau a, M. Arnst a,b, G. Degrande b

a MSSMat Laboratory, Ecole Centrale Paris, France
b Department of Civil Engineering, K.U. Leuven, Belgium
A three-dimensional model for soil-transportation structures is presented. This model exploits the geometrical periodicity of the sys-
tem and takes into account the dynamic soil–structure interaction with a methodology coupling a boundary element method for the soil 
and a finite element formulation for the structure. A general overview of this approach is given based on several real transportation struc-
tures. Moreover, comparative studies between the different structures have been carried out. Then the model is improved by introducing 
a general rule for the determination of the optimal number of cells. Finally, the periodic modes propagation is investigated offering a first 
seizing of the significant dynamical phenomena in the soil–structure system.

Keywords: Periodic model; BE–FE coupling; Dynamic soil–structure interaction; Floquet–Shannon criterion; Periodic modes propagation; Railway
track; Tunnel
1. Introduction

Vibrations induced by transport vehicles are of a major
concern since they have an important impact on the human
comfort and the built environment but also on the degrada-
tion of the track components (for instance the ballast layer
in the case of a ballasted railway track). Various problems
related to these perturbations have been already addressed
such as the free-field vibrations induced by road traffic
[1–3], the ground-borne vibrations from metro tunnels
[4–7] or induced by railway trains [8–11]. European pro-
jects such as CONVURT [12] or SUPERTRACK [13]
reflect this increasing interest for these problematics.

In order to study and then to reduce these disturbances,
efficient numerical prediction tools have to be developed
and should have the possibility to consider any transporta-
tion system. Due to the geometry of the domain, the type
of load acting on the transport structure and the necessity
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to take into account the soil–structure interaction [14],
three-dimensional (3D) models of the structure and the sur-
rounding soil are required. Nevertheless, theoretical and
numerical difficulties have been encountered when using
the usual 3D models for such large systems.

In this paper, a general model is proposed for which
these domains are assumed to be periodic along one direc-
tion. Taking advantage of this geometrical property, the
analysis for the overall soil–structure system can be
restricted to one posed in a generic (or reference) cell
[16]. For this, the Floquet decomposition [15] is used.
The problem in the reference cell is then solved with a sub-
domain technique coupling a boundary element (BE)
method for the soil and a finite element (FE) formulation
for the structure [17,18].

A general overview of this approach is given here and
the first objective of this paper is to illustrate the versatility
of the proposed method. Consequently, different structures
are considered: a ballasted railway track partially embed-
ded in a soft embankment layer and a tunnel located at a
shallow depth (corresponding to the metro tunnel on the



Fig. 2. Generic cell eX.
RER line at Paris). Moreover, comparative studies between
the different structures have been carried out. At first a
numerical comparative study is presented for one decisive
parameter of the periodic model, that is the number of
cells. Then the present method has been improved by intro-
ducing a general numerical rule called Floquet–Shannon
criterion. Finally, for the physical aspects, the propagation
of the periodic modes has been investigated which allows
for a global view of the significant dynamical phenomena
occurring in the soil–structure system, and then offers a
first description of the common features (or the differences)
for the behaviour of the two structures.

In the first section, the 3D soil–structure model is pre-
sented. The periodic model is described and the subdomain
method used to solve the dynamic soil–structure interac-
tion problem is briefly recalled. The second section is
devoted to a comparative study between the different struc-
tures. From the numerical point of view, convergence anal-
yses have been carried out to obtain the optimal number of
cells and a simple general rule is proposed as an alternative.
From the physical point of view, the propagation of the
periodic modes along the structure is analysed.

2. Soil–structure model

In this section, the 3D model for the soil–structure sys-
tem is presented. This model is based on a geometrical peri-
odic formulation. Floquet decomposition is then
introduced and the generic problem is presented. More-
over, the dynamic soil–structure interaction is taken into
account using a subdomain method for which the structure
is modeled with finite elements while the boundary element
method is used for the soil.

2.1. Periodic model

2.1.1. Definitions and notations

A transportation track interacting with the soil is con-
sidered. This system is modeled by an unbounded structure
with elastic properties, partially or totally embedded in a
stratified visco-elastic half-space. This 3D domain, denoted
by X, is assumed to be periodic in the direction ey with
(ex,ey,ez) a Cartesian reference system (see Fig. 1 in which
a periodic soil–track system is represented). The length per-
iod is denoted by L.
Fig. 1. Periodic soil–track system X.
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The periodic domain X is constituted of a sequence of the

same cell named the generic (or reference) cell eX defined byeX ¼ fx 2 Xj0 < x � ey < Lg with x = (x,y,z) (see Fig. 2).
This generic domain is such as eX ¼ eXt [ eXs, where eXt cor-
responds to the bounded part related to the track structure
and eXs is the unbounded soil domain in this generic cell.

The boundary oeX of eX can be decomposed as
oeX ¼ eCf [ eC1 [ eR0 [ eRL with eCf the part where the Neu-
mann boundary conditions are specified, eR0 and eRL are the
boundaries defined by eR0 ¼ fx 2 Xjx � ey ¼ 0g and eRL ¼
fx 2 Xjx � ey ¼ Lg (see Fig. 2). Sommeferld’s radiation
conditions hold on eC1. Finally, the position vector in the
reference cell will be denoted by ~x ¼ ð~x; ~y;~zÞ.

The objective is to find the solution u of a boundary
value problem in the domain X with applied loads f. Tak-
ing advantage of the periodicity, it is shown [15,16] that
this problem can be substituted by one (the generic prob-
lem, see Section 2.1.2) in the domain eX with applied loads
~f and for which the solution ~u satisfies additional condi-
tions on the boundary of the cell

~uð~xÞ ¼ e�ijL~uð~x� LeyÞ on eRL ð1Þ
for any wavenumber j 2 ]�p/L,p/L[. The solution ~u is
called the Floquet transform [15] of u defined by

~uð~x; jÞ ¼
Xþ1

n¼�1
uð~xþ nLeyÞeinjL: ð2Þ

Moreover, for any position in X, the solution u can be
recovered from ~u using the inverse Floquet transform de-
fined by

uð~xþ nLeyÞ ¼
L

2p

Z p=L

�p=L

~uð~x; jÞe�injL dj: ð3Þ

Finally, it should be remarked that ~u can be built from the
Fourier transform of u (along ey) denoted by û, using the
following formula:

~uð~x; jÞ ¼
Xþ1

n¼�1
û jþ 2np

L

� �
e�i
�

jþ2np
L

�
~y ; ð4Þ

ûðkyÞ ¼
1

L

Z L

0

~uð~y; jÞeiky~y d~y; ky ¼ jþ 2np=L: ð5Þ
2.1.2. Generic problem of the 3D periodic soil–structure

system
Using the previous results and the defined notations, the

following generic problem has to be solved: for every



j 2 ]�p/L,p/L[ and for every circular frequency x in the
band of analysis, the structure displacement ~ut in eXt and
the soil displacement ~us in eXs have to satisfy

divrbð~ubÞ ¼ �qbx
2~ub in eXb; b 2 ft; sg; ð6Þ

ttð~utÞ ¼ ~ft on eCf t; ð7Þ
tsð~usÞ ¼ 0 on eCf s; ð8Þ
~ubð~xÞ ¼ e�ijL~ubð~x� LeyÞ on eRLb; b 2 ft; sg; ð9Þ

in which qb (b 2 {t, s}) is the mass density, rb(ub) is the
elastic stress tensor associated to the displacement field ub

and tb(ub) = rb(ub)n corresponds to the traction vector on
the considered boundary using the outer normal conven-
tion for n. Finally, the following coupling equations have
to be satisfied:

~ut ¼ ~us on eR; ð10Þ
ttð~utÞ þ tsð~usÞ ¼ 0; on eR; ð11Þ

where eR is the interface between the structure and the soil
in the generic cell (see Fig. 2).

Once the generic problem defined by Eqs. (6)–(11) has
been solved, the displacement for any x 2 X can be recov-
ered by using the inverse Floquet transform defined by Eq.
(3). The solution of the generic problem is now concerned.
In the following, a subdomain approach is proposed to
solve this problem.

2.2. Subdomain model

The 3D domain considered (the generic cell) is decom-
posed into two subdomains (the structure and the soil).
In this manner, each subdomain can be independently
modeled. The structure is modeled using the finite element
method and its dynamical behaviour is characterized by
periodic modes while the boundary element method with
suitable Green functions is used for the soil. In the next,
this method [17,18] is presented.

The displacement field ~ut in the bounded generic struc-
ture is decomposed on a given basis of modes {Wk}k=1,. . .,N

which have to satisfy Eq. (1). This kinematic basis can be
built as follows [7]:

Wkð~x; jÞ ¼ e�ij~x�eyUkð~xÞ; j 2� � p=L; p=L½; ð12Þ
where {Uk}k=1,. . .,N are the periodic modes, solutions of the
generalized eigenvalue problem associated to the generic
structure and satisfying

Ukð~xÞ ¼ Ukð~x� LeyÞ; 8~x 2 eRLt: ð13Þ
Then, for any x, the displacement field in the generic struc-
ture is written as

~utð~x; j;xÞ ¼
XN

k¼1

Wkð~x; jÞckðj;xÞ ð14Þ

with {ck}k=1,. . .,N the generalized degrees of freedom. More-
over, the soil displacement in the generic cell is written as
3

~usð~x; j;xÞ ¼
XN

k¼1

~udkð~x; j;xÞckðj;xÞ; ð15Þ

where f~udkgk¼1;...;N are elastodynamic fields satisfying

~udk ¼ Wk; on eR: ð16Þ
Using a standard Galerkin procedure for the balance of
momentum in the generic cell, for any Wk in the basis,
the following linear system is obtained:

½KtðjÞ � x2MtðjÞ þ Ksðj;xÞ�cðj;xÞ ¼ Ftðj;xÞ ð17Þ
with c = (c1, . . . ,cN) the vector of generalized degrees of
freedom. The reduced stiffness and mass matrices of the
structure, [Kt] and [Mt], are defined by

½Kt�kl ¼
Z
eX t

rtðWkÞ : �ð �WlÞdV ; ð18Þ

½Mt�kl ¼
Z
eX t

qt Wk: �Wl dV ; ð19Þ

where �(u) is the strain tensor associated to the displace-
ment field u. The quantity �u is the conjugate of u and
A : B ¼

P
klAklBkl is the contraction of the two tensors A

and B. In the context of a structure modeled by the finite
element method, these matrices can be written as

½Kt� ¼ ½W��½K t�½W�; ð20Þ
½Mt� ¼ ½W��½M t�½W�; ð21Þ

in which [W] is the matrix containing the modes
{Wk}k=1,. . .,N and where [Kt] and [Mt] correspond, respec-
tively, to the finite element stiffness and mass matrices.
The superscript * denotes the adjoint of matrices.

The generalized force vector Ft, related to the forces ~f t

acting on the structure, is defined by

½Ft�k ¼
Z
eCf t

~ft � �Wk dS: ð22Þ

Finally, the soil impedance matrix [Ks] is defined by

½Ks�kl ¼
Z
eR tsð~udkÞ � �Wl dS; ð23Þ

where tsð~udkÞ is the traction field related to the elastody-
namic field ~udk defined by Eqs. (15) and (16). The procedure
to get Eq. (23) and its calculation are subject to difficulties
since integrals along unbounded surfaces of the generic cell
have been encountered. Then, the standard boundary inte-
gral equation cannot be used directly for the soil part, be-
cause the left and the right periodic interfaces eR0 and eRL

are not bounded. However, in the context of boundary
integral equation, surfaces where the Green’s functions sat-
isfy the imposed boundary conditions disappear from the
final equation (since the fields will automatically satisfy
them). Then in order to deal with integral equation on a
bounded surface (that is eR, as it can be seen in Eq. (23)),
Green’s functions satisfying the periodic boundary condi-
tions have been proposed [16] and are referred to the
Green–Floquet functions defined by



Fig. 3. Finite element model of the generic track cell.
~uGð~x; ~y; jÞ ¼
Xþ1

n¼�1
uGð~x; ~yþ nLeyÞeinjL; ð24Þ

where uG(x,y) is the Green function at the point x due to a
point force at y. Other advantage of Eq. (24) is that the
Green–Floquet function has the same singularities as the
original Green function. Then, same numerical integration
methods can be used.

3. Numerical examples and comparative studies

Different structures, partially or totally embedded in
soil, are considered here: a ballasted railway track and a
tunnel located at a shallow depth. By means of a compar-
ative study, this section aims at obtaining a general rule
concerning the determination of the optimal number of
cells and at analysing the wave propagation pattern along
these structures by using a suitable tool.

In the first subsection, the geometrical and mechanical
characteristics of each structure (and the surrounding soil)
are described. From the numerical point of view (Section
3.2), convergence analyses have been performed to update
one parameter of the periodic model, that is the number of
cells. Based on the convergence results, a general rule is
proposed to obtain the optimal number of cells. Finally,
in the last subsection devoted to the physical point of view,
the propagation of the periodic modes along the structures
is studied.

3.1. Description of the soil-structure domains

In this subsection, the geometrical and mechanical prop-
erties of the soil–structure system are presented. The struc-
ture is modeled with finite elements whereas the soil is
considered using a boundary element method. It should
be noted here that the finite element models are built using
the structural dynamics toolbox in MATLAB, and the soil
impedance matrix defined by Eq. (23) is computed using
the Miss3D software [17,18].

3.1.1. Ballasted railway track

3.1.1.1. Track–structure model in the generic cell. The model
of the overall railway track is generated from a generic cell
whose length along the periodicity direction ey is equal to
L = 0.6 m (see the FE model of this cell in Fig. 3).

The generic railway track cell is composed of two layers.
The first one, with a thickness of 0.67 m, models a layer of
ballast with the following mechanical properties: Young’s
modulus E = 2 · 108 N/m2, Poisson’s ratio m = 0.35 and
mass density q = 2100 kg/m3. The second one models a
layer made up of sand and gravels (E = 1.8 · 108 N/m2,
m = 0.35 and q = 2135 kg/m3). On this generic track–struc-
ture, two bi-bloc sleepers in concrete (E = 3 · 1010 N/m2,
m = 0.25 and q = 2200 kg/m3) are taken into account and
are connected in pairs by means of steely crossbars
(E = 2.1 · 1011 N/m2, m = 0.285 and q = 7800 kg/m3).
Moreover, rails (with the same mechanical properties as
4

the crossbars) have been modeled and are connected to
the sleepers with pads (with a vertical stiffness equal to
159 · 106 N/m).

The FE model of the generic cell is built using 8-node
isoparametric brick elements and standard beam elements
(for the rails and crossbars). The mesh is then constituted
of 1140 elements with 1693 nodes. The BE mesh, which
is associated to the soil–structure interface, is composed
of 144 elements.

3.1.1.2. Soil model in the generic cell. The soil is assumed to
be a stratified visco-elastic half-space: the first layer, with a
thickness of 4.5 m, represents an embankment with a shear
and a dilatational wave velocities equal, respectively, to
Cs = 67 m/s and Cp = 125 m/s. This embankment rests on
a half-space made of a stiffer material (Cs = 315 m/s and
Cp = 772 m/s). A mass density q = 1720 kg/m3 and a hys-
teretic damping ratio b = 5% are considered for the overall
soil domain.

3.1.2. Shallow tunnel

The structure considered is the tunnel on the RER B line
at Cité Universitaire site in Paris. The top of the tunnel is
2.3 m below the ground surface.

3.1.2.1. Tunnel–structure model in the generic cell. The tun-
nel is a masonry cut-and-over one. Its width equals 11.9 m
(see Fig. 4). The tunnel thickness is 0.6 m on the top and
1.5 m on the two sides.

Taking into account these properties, a periodic model
for the tunnel is built, based on a generic cell whose length
along ey equals L = 0.6 m (see the FE model of this cell
in Fig. 5). The characteristics of the masonry are E =
1.4 · 1010 N/m2, m = 0.15 and q = 2400 kg/m3.

The FE model of the cell is generated using 8-node iso-
parametric brick elements. The mesh has 408 elements with
741 nodes. The BE mesh is constituted of 140 elements.

3.1.2.2. Soil model in the generic cell. The soil is modeled
as a stratified visco-elastic half-space whose stratigraphy
has been determined by means of SASW tests [19]. The
first layer and the second layer, with a thickness of 1.4 m
and 2.8 m, respectively, have the following properties:



Fig. 4. Cross-section of the tunnel on the RER B line at Cité Universitaire.

Fig. 5. Finite element model of the generic tunnel cell.
Cs1
¼ 115 m=s, Cp1

¼ 282 m=s and Cs2
¼ 220 m=s, Cp2

¼
539 m=s. The last layer models an homogeneous half-space
(Cs = 335 m/s, Cp = 772 m/s). For all materials, the mass
density is equal to 1700 kg/m3 and a hysteretic damping
ratio of 5% is assumed.

3.2. Numerical comparative study

This subsection is devoted to the determination of the
optimal value for the parameters of the periodic model.
Two main parameters control this model: the number of
structural modes N (see Eq. (14)) and the number of cells
(see Eq. (24)). In this subsection, only the analysis related
5

to the number of cells is addressed, since this parameter
is considered as the most specific of the model (and the
determination of the optimal number of modes corre-
sponds to an usual study of structural dynamics). At first,
a convergence analysis, using a norm of the soil impedance,
has been performed to obtain the optimal number of cells.
Then, a simple numerical rule, called the Floquet–Shannon
criterion, is proposed.

3.2.1. Convergence analysis using a norm of the soil

impedance

Taking into account Eq. (24), the numerical computa-
tion can be performed only for a finite series where
n ¼ � �Ny ; . . . ; �N y and j �Ny j <1. In this case, the total num-
ber of cells considered is N tot

y ¼ 2� �N y þ 1.
Concerning the first structure, that is the ballasted rail-

way track, a convergence analysis with respect to the num-
ber of cells for the frequency band B = 2p · [1,80] rad/s
has been carried out. A norm associated to the soil imped-
ance [Ks] is introduced and is defined by

jjj½Ks�jjj2B ¼
Z

B
jjj½KsðxÞ�jjj2 dx

with

jjj½KsðxÞ�jjj2 ¼ Trð½KsðxÞ�½KsðxÞ��Þ; 8x 2 B; ð25Þ
in which Tr denotes the trace of matrices and where the
superscript * corresponds to the adjoint of matrices. On
Fig. 6, it can be seen that a good convergence is obtained
for a total number of cells N tot

y ’ 140 cells.
Concerning the shallow tunnel, it is found that a number

of cells equal to 160 is sufficient to obtain a good
convergence.
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It can be noted here that the optimal number of cells for
the two cases is of the same order, even if the mechanical
and geometrical properties are totally different (only the
length in the periodicity direction of the generic cell for
these two structures remains the same, equal to 0.6 m).
Based on these observations, one can think of the possibil-
ity to define a general rule for the determination of the
number of cells, and then to avoid the previous conver-
gence analyses which require an important numerical effort
and are often time-consuming. The next subsection aims to
define this formula.

3.2.2. Floquet–Shannon criterion

The convergence analyses described previously allow to
get a finite number N tot

y of cells. Then, a length along the
periodicity direction, beyond which the contribution of
the studied quantity (for instance the displacement) is neg-
ligible, may be looked for. Consequently, in this subsec-
tion, we consider a bounded displacement-function with a
support in ½0;N tot

y L� along the periodicity direction. This
displacement-function is reproduced by translation along
the ey axis. This new function (named u by convenience)
is then periodic and its Fourier transform (along ey) can
be written as

ûðkyÞ ¼
Xþ1

j¼�1
aj d ky �

2pj
N tot

y L

!
; ð26Þ

where N tot
y is the total number of cells considered. Taking

into account Eqs. (4), (5) and (26), we deduce that the
wavenumber j should verify

j ¼ 2pj
N tot

y L
� 2pn

L
: ð27Þ

Since j 2 ]�p/L,p/L[, we obtain that j ¼ j0 þ nN tot
y with

� �Ny < j0 < �N y , since N tot
y ¼ 2� �Ny þ 1. Introducing this
6

expression in Eq. (27), we can deduce that the wavenumber
step Dj is such that

Dj ¼ 2p
N tot

y L
: ð28Þ

From this equation, similar to the Shannon criterion in the
Fourier domain, a new rule is obtained and it is named the
Floquet–Shannon criterion. Here the parameter is not the
number of cells (as seen in the previous subsection) but a
maximal length. Then, for a given step Dj, the Floquet–
Shannon criterion defined by Eq. (28) says that the compu-
tation cannot be performed beyond a maximal length equal
to N tot

y L ¼ 2p=Dj. For a case in which 160 cells are chosen,
the wavenumber step Dj . 6 · 10�2 rad/m. In other words,
if Dj = 6 · 10�2 rad/m, the computation cannot be per-
formed beyond a maximal length of 96 m.



3.3. Comparative study of the physical features

In this subsection, the periodic modes propagation
along the structure is investigated. This study allows to
get a first seizing of the significant dynamical phenomena
occurring in the soil–structure system. Then such an ana-
lysis gives a preliminary description of the common features
(or differences) for the behaviour of the two structures.

3.3.1. Informations on the periodic modes of the structures

The periodic modes defined by Eq. (13) are considered.
For the ballasted railway track, a number of 15 modes is
considered (this value results from a convergence study).
The first four modes correspond to the rigid body modes
(the other two, corresponding to the rotations around ex

and ez axes, do not satisfy the periodic condition defined
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by Eq. (13)). The eigenfrequency associated to the 5th
mode is equal to f5 = 12.53 Hz and f15 = 69.59 Hz for the
15th mode. Concerning the shallow tunnel, it is found that
the group of the first 30 modes has to be taken into account
(f5 = 9.9 Hz and f30 = 224.8 Hz).

3.3.2. Propagation of the periodic modes

For this study, the generalized coordinates associated to
the periodic modes are used. Then, for any x in the band of
analysis B, the vector of generalized coordinates qj related
to the cell j, with j ¼ � �Ny ; . . . ; �Ny (j = 0 refers to the gen-
eric cell), is defined by

qjðxÞ ¼ qj
1ðxÞ; . . . ; qj

N ðxÞ
� �

with UjðxÞ ¼ ½U�qjðxÞ;
ð29Þ
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in which [U] is the FE matrix containing the N periodic
modes defined by Eq. (13) and where the FE vector Uj is
the displacement-response of the structure-cell j for an im-
pulse force at a point belonging to the reference cell. It is
worth to notice that the solution Uj is calculated using
the method described in Section 2 (it should be precised
here that a trapezoidal integration scheme is used for the
inverse Floquet transform defined by Eq. (3)). For
k 2 {1, . . . ,N}, the quantity qj

k highlights the contribution
of the kth periodic mode in the displacement-response of
the cell j.
Fig. 13. Periodic mode no. 5.

Fig. 14. Response-displacement at 10 Hz due to a sinusoidal force, at
t = 0.

Fig. 15. Response-displacement at 10 Hz due to a sinusoidal force, at
t = T/2.
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Figs. 7–12 are related to the ballasted railway track, cor-
responding to cells j = 0 (the reference cell, Figs. 7 and 10),
j = +40 (distance at +24 m from the reference cell, Figs. 8
and 11) and j = +80 (distance at +48 m from the reference
cell, Figs. 9 and 12). The first figures (Figs. 7–9) show the
quantity jjqj

kjj
2
B ¼

R
B jq

j
kðxÞj

2 dx with respect to the associ-
ated mode k. The last figures (Figs. 10–12) show the graph
of f 7! jqj

kðf Þj (with the frequency f 2 [0, 80] Hz) for the
first four modes which have the most important global
influence on the frequency band (that is to say with the
highest value of jjqj

kjjB).
The results shown in the precedent figures are associated

to the case where the track cell (see Fig. 3) is loaded verti-
cally at a rail point (with the following coordinates (0.7875,
0.145, 0.336)). In the reference cell (Figs. 7 and 10), it can
be seen that the mode 2 (the rigid mode related to the trans-
lation on ez axis), is predominant. Moreover, since we have
0 5 10 15 20 25 30 35
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Fig. 16. jjq0
k jj

2
B with respect to the associated mode k.
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Fig. 17. jjq60
k jj

2
B with respect to the associated mode k.



an eccentricity of the force position, the ey-rotation rigid
mode 1 and the bending modes (5, 7, 12 and 13) have an
influence. For cells far away from the reference cell (Figs.
8, 9, 11 and 12), the rigid modes (which correspond princi-
pally to ez-translation and ey-rotation movements) are pre-
dominant: this phenomenon can be explained by the
presence of a stiff track on a very soft embankment layer.
And their influence is localized in the low part of the fre-
quency range (see Figs. 11 and 12). Finally, it can be noted
that the bending mode 5 (see Fig. 13) acts as well.

In Figs. 14 and 15, the displacement-response for the
soil–track system due to a sinusoidal force is shown at
10 Hz. A visualization model is then used, in which the gen-
eric track is repeated 11 times in the periodicity direction.
The reference cell corresponds to the middle cell. The free
soil surface has been modeled as well. Then, for the low fre-
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Fig. 18. jjq100
k jj

2
B with respect to the associated mode k.
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Fig. 19. Functions f 7! jq0
kðf Þj for the modes k = 8, 2, 6 and 13, with

f 2 [0,80] Hz.
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quency range, it can be observed that there are mainly
bending waves of the track along the structure axis. These
observations confirm the results shown in Figs. 7–12.

For the shallow tunnel, Figs. 16–21 show the same
quantities and correspond to cells j = 0 (the reference cell,
Figs. 16 and 19), j = +60 (distance at +36 m from the ref-
erence cell, Figs. 17 and 20) and j = +100 (distance at
+60 m from the reference cell, Figs. 18 and 21).

In the considered case, the reference cell (see Fig. 5) is
subjected to a vertical force at a point on the tunnel basis
(with the coordinates (�2.5,�0.15,�9.25)). In the refer-
ence cell (see Figs. 16 and 19), the rigid ey-rotation mode
2 and modes causing a bending motion of the tunnel
around ey axis (the mode 8 for instance) are predominant.
Concerning the distant cells (see Figs. 17, 18, 20 and 21),
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0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−9

mode 2
mode 4
mode 7
mode 6

0 10 20 30 40 50 60 70 80

Fig. 20. Functions f 7! jq60
k ðf Þj for the modes k = 2, 4, 7 and 6, with

f 2 [0,80] Hz.
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Fig. 21. Functions f 7! jq100
k ðf Þj for the modes k = 2, 4, 7 and 6, with

f 2 [0,80] Hz.



Fig. 22. Periodic mode no. 6.

Fig. 23. Periodic mode no. 7.

Fig. 24. Response-displacement at 30 Hz due to a sinusoidal force, at
t = 0.

Fig. 25. Response-displacement at 30 Hz due to a sinusoidal force, at
t = T/2.
two main observations can be done: at first, the marked
contribution of ey-rotation rigid modes 2 and 4. And their
effect is principally localized in the low frequency range.
Moreover, when the frequency increases, the assertion of
the modes 7 and 6 is noticeable. These modes are repre-
sented in Figs. 22 and 23.

Consequently, we can conclude that bending and torsion
waves of the entire tunnel predominate at low frequencies
whereas a propagation of bending waves of the tunnel
invert and the roof is generated when the frequency
increases. These conclusions corroborate the results of [7]
in which it is shown that a wave propagation in the tunnel
invert appears for high frequency. In Figs. 24 and 25, the
displacement-response of the soil–tunnel system due to a
sinusoidal force is shown at 30 Hz. A visualization model
10
is used for which the generic tunnel cell is repeated 80 times
in the periodicity direction. Three surfaces in the soil are
meshed: the free surface, two horizontal surfaces at the
depth of the tunnel and a vertical surface between the free
surface and the tunnel top. It is observed an important dis-
placement propagation along and perpendicular to the tun-
nel axis but also in the vertical direction. This phenomenon
can be mainly explained by the propagation of the modes 6
and 7, that is to say modes which induce displacement in the
ez and ex directions (as it can be seen in Figs. 22 and 23).

4. Conclusions

A general 3D model for soil-transportation structure is
proposed. It is based on a periodic formulation and takes
into account the dynamic soil–structure interaction. Differ-
ent real structures, such as railway track and metro tunnel,
are considered highlighting the ability of the method to
consider various transportation structures. Moreover, the
proposed model has been improved by introducing a gen-
eral numerical rule for the determination of the optimal
number of cells. Finally, the periodic modes propagation
has been analysed, offering a global view of the significant
dynamical phenomena in the soil–structure system.



In this paper, the forces which act on the considered
transportation structures are static. The proposed method
has now to be extended and studied for the (more real) case
of moving loads [11,20].
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Ecole Centrale de Paris; 1990.

[19] Pyl L, Degrande G. Determination of the dynamic soil characteristics
with the SASW method at the site of Cité universitaire in Paris,
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