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Abstract

A finite difference method is developed to study, on a 2D model, the acous-
tic pressure radiated when a thin elastic plate, clamped at its boundaries, is
excited by a turbulent boundary layer.
Consider an homogeneous thin elastic plate clamped at its boundaries and
extended to infinity by a plane, perfectly rigid, baffle. This plate closes a rect-
angular cavity. Both the cavity and the outside domain contain a perfect fluid.
The fluid in the cavity is at rest. The fluid in the outside domain moves in the
direction parallel to the system plate/baffle with a constant speed. A turbu-
lent boundary layer developes at the interface baffle/plate. The wall pressure
fluctuations in this boundary layer generates a vibration of the plate and an
acoustic radiation in the two fluid domains.
Modeling the wall pressure fluctuations spectrum in a turbulent boundary layer
developed over a vibrating surface is a very complex and unresolved task.
Ducan and Sirkis [1] propose a model for the two-way interactions between
a membrane and a turbulent flow of fluid. The excitation of the membrane is
modeled by a potential flow randomly perturbed. This potential flow is mod-
ified by de displacement of the membrane. Howe [2] proposes a model for the
turbulent wall pressure fluctuations power spectrum over an elastomeric mate-
rial. The model presented in this article is based on an hypothesis of one-way
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interaction between the flow and the structure: The flow generates wall pres-
sure fluctuations which are at the origin of the vibration of the plate, but the
vibration of the plate does not modify the characteristics of the flow.
A finite difference scheme that incorporates the vibration of the plate and the
acoustic pressure inside the fluid cavity has been developed and coupled with
a boundary element method that ensures the outside domain coupling. In
this paper, we focus on the resolution of the coupled vibration/interior acous-
tic problem. We compare the results obtained with three numerical methods:
(a) A finite difference representation for both the plate displacement and the
acoustic pressure inside the cavity. (b) A coupled method involving a finite dif-
ference representation for the displacement of the plate and a boundary element
method for the interior acoustic pressure. (c) A boundary element method for
both the vibration of the plate and the interior acoustic pressure.
A comparison of the numerical results obtained with two models of turbulent
wall pressure fluctuations spectrums, the Corcos model [3] and the Chase model
[4], is proposed. A difference of 20dB is found on the vibro-acoustic response
of the structure. In [5] this difference is explained by calculating a wavenumber
transfer function of the plate. In [6], coupled beam-cavity modes for similar
geometry are calculated by the finite difference method.

1 Introduction

The calculation of the flow induced sound and vibrations has been the focus of con-
siderable work. The development of high-speed transport is certainly at the origin of
this interest. As the flow induced sound become a non negligible part of the noise into
a car or a plane, there is an important economic interest in reducing this noise. This
reduction involves the knowledge of the mechanisms by witch a turbulent boundary
layer induces a vibration of a structure.

In the 2 dimensional domain R2, consider a Cartesian set of coordinates (0,x, z).
A thin elastic one-dimensional plate Σ of length L and thickness e << L occupies
the open domain {M(x, z)/0 < x < L,−e/2 ≤ z ≤ e/2}. This plate encloses a rect-
angular cavity of height H and length L. For simplicity, we assume that the plate is
homogeneous and isotropic and we model its motion by using the Kirchhoff-Helmholtz
theory. Then, the one-dimensional plate Σ reduces to a line Σ = {M(x, 0)/0 < x < L}
and its mechanical properties are: A bending stiffness D = Eh3/(12(1 − ν2)) and a
mass per unit area µ, where E and ν are the Young modulus and the Poisson ratio
of the material. Let us denote ∂Σ = {0, L} the boundaries of this plate and Σ the
enclosure of Σ. A perfectly rigid baffle occupies the domain {M(x, z)/z = 0} − Σ.

The domain z < 0 contains a rectangular cavity surrounded by 3 walls denoted
σ and by the plate Σ. We denote Ωe the exterior domain (z > 0) and Ωi the fluid
cavity. Both the domains Ωe and Ωi contain a perfect fluid characterized by a density
ρe and ρi and sound speeds ce and ci. The fluid in the exterior domain is moving in
the direction parallel to the plate with the constant speed u∞. A turbulent boundary
layer developes at the interface between the fluid and the system plate/baffle. The
wall pressure fluctuations in this turbulent boundary layer induce a vibration of the
plate and a noise in the two fluid domains. For simplicity, we make the two following
assumptions: (a) In the turbulent boundary layer, the wall pressure fluctuations are
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not modified by the vibration of the plate. (b) For the acoustic propagation in Ωe,
we consider that the fluid is at rest.

One of the first model for the vibro-acoustic response of a rectangular plane panel
excited by a turbulent boundary layer is du to Davies [7]. The author considers a
simply-supported plate immersed in air and performs a modal approach and a light-
fluid approximation to calculate the displacement of the plate. Recently, a more
complete investigation of this modal approach is proposed by Robert [8]. In both
these models, the turbulent excitation is given under the form of a space-frequency
spectrum. In the present article, the suitability of a wavenumber-frequency (k-ǫ)
spectrum for predicting the vibro-acouctic response of an elastic structure excited by
a turbulent boundary layer is investigated through a simple 2D model.

2 Green’s representations of the displacement and

of the acoustic pressure

In this paragraph, we establish the Green’s representations of the displacement of
the plate and of the acoustic pressure field in Ωe and Ωi. For simplicity, we consider
the case of a clamped beam coupled to a semi-infinite fluid domain Ωe and excited
by an harmonic force f(x)e−ıωt acting in the direction parallel to the z-axis. The
displacement u(x) and the acoustic pressure pe(M) in Ωe are solution of the following
system of differential equations:



























































D
∂4

∂x4
u(x)− µω2u(x) = −f(x)− pe(x, 0), ∀x ∈ Σ

∆pe(x, z) + k2
epe(x, z) = 0, ∀(x, z) ∈ Ωe

u(x) = u′(x) = 0, ∀x ∈ ∂Σ

∂pe
∂z

(x, 0) = ρeω
2u(x), ∀x ∈ Σ

∂pe
∂z

(x, 0) = 0, ∀x ∈ baffle

Sommerfeld radiation conditions.

(1)

In this system, ∆ is the Laplacian calculated with respect the variables x and z, ke
denotes the acoustic wavenumber in the exterior domain (ke = ω/ce), ω is the angular
frequency.

The Green’s representation of the acoustic pressure in the semi-infinite domain
Ωe is given by the following integral:

pe(x, z) = −
ıω2ρe
2

∫ L

0

H0

(

ke
√

(x− x′)2 + z2
)

u(x′) dx′ (2)

The Green’s kernel Γ of the displacement of the fluid-loaded baffled plate is cal-
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culated by introducing the Green’s representation (2) into the system (1):


















D
∂4

∂x4
Γ(x)− µω2Γ(x)−

ıω2ρe
2

∫ L

0

H0 (ke|x− x′|) Γ(x′) dx′ = −δ(x), ∀x ∈ Σ

Γ(x) = Γ′(x) = 0, ∀x ∈ ∂Σ

Γ(x) = 0, ∀x ∈ baffle
(3)

The kernel Γ gives access to an expression for the displacement u of the fluid-
loaded baffled plate excited by the harmonic force of amplitude f . The displacement
u, which is solution of the system (1), takes the form of a convolution product between
the kernel Γ and the force f :

u(x) =

∫ L

0

Γ(x′) f(x− x′) dx′ = Γ ∗ f, ∀x ∈ Σ

= 0, ∀x ∈ baffle

(4)

The acoustic pressure field in the exterior domain is calculated by introducing the
displacement (4) in the Green’s representation (2).

This formalism extends to the problem of a plate coupled with both a semi-
infinite fluid domain and a fluid cavity. The acoustic pressure inside the cavity is
then calculated by the Green’s representation presented in [9].

3 Response of the plate to a space and time ran-

dom excitation

The excitation force f modeling the wall pressure fluctuations in a turbulent boundary
layer is a random field stationary up to order 2 with respect to the space and time
variables. The autocorrelation function Rf of the turbulent excitation f is defined as
follows:

Rf (x, t) = E [f(x′, t′) f ∗(x′ − x, t′ − t)] (5)

where z∗ denotes the conjugate of the complexe number z.

The function Rf possesses a 2D Fourier transform, denoted Sf , with respect to
the space coordinate x and the time variable t. This Fourier transform Sf is the
wavenumber-frequency power spectrum of the excitation force f :

Sf(kx, ω) =

∫

∞

−∞

∫

∞

−∞

Rf (x, t) e
ı(ωt−kxx) dx dt (6)

In formula (6), kx is the wavenumber in the direction x. This paper deals with the
comparison of the results obtained, in terms of the vibro-acoustic response of an elastic
panel, when the turbulent excitation is given by two different models of wall pressure
wavenumber-frequency power spectrum: The Corcos model [3] and the Chase model
[4].

The cross correlation function of the displacement Ru of the fluid-loaded plate is
stationary up to order 2 with respect to the time but not stationary with respect to
the space coordinate x. This function Ru is defined as follows:

Ru(x, x
′, t) = E [u(x, t′) u∗(x′, t′ − t)] (7)
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where x and x′ denote two points on the plate Σ. Introducing the expression (4) of
the displacement in the formula (7) leads to an integral representation of the cross
correlation function Ru:

Ru(x, y, t) =

∫

∞

−∞

∫

∞

−∞

∫ L

0

∫ L

0

γ(x− x′, t− t′)

Rf(x
′ − y′, t′ − τ ′) γ∗(y − y′, τ − τ ′) dx′ dy′ dt′ dτ ′

(8)

The function Ru possesses a time Fourier transform because both the Green’s
kernel γ and the autocorrelation function Rf possess a time Fourier transform. Per-
forming the time Fourier transform of the formula (8) leads to an expression of the
frequency cross spectrum of the displacement of the plate:

Su(x, y, ω) =

∫ L

0

∫ L

0

Γ(x− x′, ω) ST
f (x

′ − y′, ω) Γ∗(y − y′, ω) dx′ dy′ (9)

The function Γ which appears in the integral (9) is the time Fourier transform of
the Green’s kernel γ. The function ST

f is the frequency power spectrum of the random
excitation f . It is a power spectrum calculated with respect the time variable. The ex-
pression (9) of the frequency cross spectrum is used by Robert [8] and Bano & al. [10]
to calculate the vibro-acoustic response of a panel excited by a turbulent flow of fluid.

Recently, Chase [11] [4] [12] proposes a model for the wall pressure fluctuations
wavenumber-frequency power spectrum in turbulence. The Chase model consists
in an analytical expression of the wavenumber-frequency power spectrum presented
in the formula (6). It is valid for a turbulent flow of fluid at low Mach number.
The Chase model is not a frequency power spectrum as used in the integral (9).
When the turbulent excitation is given by the Chase model, it is clear that the
response of the plate can be calculated by performing an inverse Fourier transform of
the expression (6) with respect the wavenumber kx and by introducing this inverse
Fourier transform in the integral (9). But this is a great deal of computational power.
A few considerations can reduce this large amounts of calculus. The frequency power
spectrum ST

f is the inverse space Fourier transform of the wavenumber-frequency
power spectrum Sf defined by the formula (6):

ST
f (x− y, ω) =

1

2π

∫

∞

−∞

Sf(kx, ω) e
ıkx(x−y) dkx (10)

The formula (10), introduced in the expression (9), leads to:

Su(x, y, ω) =

∫

∞

−∞

U(x, kx, ω) Sf(kx, ω) U
∗(y, kx, ω) dkx (11)

where U(x, kx, ω) is the displacement of the plate, calculated at the angular frequency
ω, when the excitation force f reduces to the contribution of one wavenumber kx. The
function U(x, kx, ω) is calculated by solving the system (1) for an excitation force f
taken equal to eıkxx.

The frequency cross spectrum of the acoustic pressure at the points M and M ′ in
Ωe expresses in the same way:

Spe(M,M ′, ω) =

∫

∞

−∞

Pe(M, kx, ω) Sf(kx, ω) P
∗

e (M
′, kx, ω) dkx (12)
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where Pe(M, kx, ω) is the solution pe of the system (1) calculated when f(x) = eıkxx.

The expression (11) of the frequency cross spectrum is equivalent to the expression
(9). However, the formula (11) is more interesting that the formula (9). The first
advantage concerns the physical interpretation of the results. The function:

kx −→ U(x, kx, ω) Sf(kx, ω) U
∗(x, kx, ω) (13)

defines an instantaneous spectral density function [13]. This function represents the
response of the plate at the point x to one wavenumber kx. The function:

kx −→ U(x, kx, ω) U
∗(x, kx, ω) (14)

is a transfer function. It is a measure of the wavenumber filtering of the plate at the
point x. The functions (13) and (14) permit to represent the plate as a wavenumber
filter. The second advantage of the formula (11) is a numerical one: The formula
(9) imposes to perform a double integration of a function whose oscillations increase
when the difference x′−y′ tends to zero. Using the formula (9), the cross spectrum Su

is given by calculating a simple infinite integral of an oscillating function of constant
period. Moreover, this instantaneous spectral density function is maximum in at the
origin (kx = 0) (or in a region very close to the origin) and decreases very quickly as
the wavenumber |kx| increases. So, the integral (11) can be calculated with a good
accuracy by using a simple constant step integration pattern. In this paper, we use a
Gauss integration scheme.

4 Governing system of equations

The vibro-acoustic response of a 1D-plate coupled with a fluid cavity and with an
infinite fluid domain to a turbulent boundary layer is expressed by using the instan-
taneous spectral density function presented in the precedent paragraph. The cross
spectral density functions of the displacement of the plate and of the acoustic pressure
in the exterior domain are given by the formulas (11) and (12). The cross spectral
density function of the acoustic pressure inside the cavity is given by the following
integral:

Spi(M,M ′, ω) =

∫

∞

−∞

Pi(M, kx, ω) Sf(kx, ω) P
∗

i (M
′, kx, ω) dkx (15)

where Sf (kx, ω) is the wavenumber-frequency power spectrum of the wall pressure
fluctuations in the turbulent boundary layer. The functions U(x, kx, ω), Pe(M, kx, ω)
and Pi(M, kx, ω) are the responses of the physical system to the determinist excitation
eıkxx. These functions U(x, kx, ω), Pe(M, kx, ω) and Pi(M, kx, ω) are the solutions of
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the following system of differential equations:

D
∂4

∂x4
U(x, kx, ω)− µω2U(x, kx, ω) = −eıkxx

−Pe(M, kx, ω) + Pi(M, kx, ω), ∀M(x, 0) ∈ Σ (a)

U(x, kx, ω) = ∂xU(x, kx, ω) = 0, ∀x ∈ ∂Σ (b)

∆Pe(M, kx, ω) + k2
ePe(M, kx, ω) = 0, ∀M(x, z) ∈ Ωe (c)

∂Pe

∂z
(M, kx, ω) = ρeω

2U(x, kx, ω), ∀M(x, 0) ∈ Σ (d)

∂Pe

∂z
(M, kx, ω) = 0, ∀M(x, 0) ∈ baffle (e)

∆Pi(M, kx, ω) + k2
iPi(M, kx, ω) = 0, ∀M(x, z) ∈ Ωi (f)

∂Pi

∂z
(M, kx, ω) = ρiω

2U(x, kx, ω), ∀M(x, 0) ∈ Σ (g)

Pi(M, kx, ω) = 0, ∀M ∈ σ (h)

Sommerfeld radiation conditions.

(16)

where ki denotes the acoustic wavenumber inside the cavity (ki = ω/ci).

As a prelude to this study, a few comments are appropriate concerning the physics
of the problem. The experience pointed out that the vibro-acoustic response of a steel
plate coupled with an infinite fluid domain is mainly governed by the vibrations of
the structure. The influence of the fluid reduces to a perturbation of the vibratory
response of the plate. This perturbation can be large if we consider the case of a plate
coupled to a heavy fluid, and small in the case of coupling to a light fluid. Concerning
the acoustic coupling between a plate and a fluid cavity with rigid walls, it should
be mentioned that for very shallow cavities, the stiffness of even light fluids might be
comparable to the stiffness of the elastic structure.
As a consequence of these comments, in this paper, we analyse the relative per-
formances of high-order finite-difference schemes applied to the resolution of the in
vaccuo plate equation, and we compare the numerical results otained with two dif-
ferent methods for the interior domain acoustic coupling of this plate: A boundary
element method and a finite difference method.

5 Finite difference scheme for solving the plate

equation

A pragmatic approach has been used to investigate the relative performances of high-
order finite difference schemes applied to the computation of a plate equation. We
compute the solutions of an in vaccuo clamped plate on a fixed grid of N points
xj = j∆x (j = 0, 1, .., N − 1), with central finite difference schemes of the following
orders of accuracy: O(∆x2), O(∆x4), O(∆x6) and O(∆x12).

The equation of the displacement of an in vaccuo clamped plate excited by a
point harmonic force, applied at the abscisse ∆x, in the direction parallel to the
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z-coordinate, is:






∂4

∂x4
u(x)− µω2u(x) = δ(x−∆x)

u(x0) = u(xN−1) = u′(x0) = u′(xN−1) = 0
(17)

where u(x) is the normal displacement of the plate at the point x and where δ(x−∆x)
is the Dirac delta function at the point ∆x.

The central finite difference schemes of orders 2, 4, 6 and 12 approximating the
fourth-order derivative operator are presented in the appendix A. A study of the
truncation error analysis is presented, as an example, for the second order finite
difference scheme, in the appendix B.
For simplicity, the finite difference solution of the equation (17) is written for the
case of the use of an order 2 central difference scheme. The use of an upper order
differencing scheme brings more equations but no more theoretical difficulty.
The second order finite difference discretization of the equation (17) leads to a linear
system composed of N − 2 algebraic equations and N − 2 unknowns. This system
consists in N−6 equations for the displacement uj of the plate at the points xj (apart
from the boundary conditions):

D

∆x4
{uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2}−µω2uj = δ(xj−∆x) 3 ≤ j ≤ N−4 (18)

Four equations must be added to takes into account the boundary conditions. For
a clamped plate, these equations are obtained by “folding away” the differencing
scheme with respect the bounds of the plate:

j = 1 u(x = 0) = 0 ⇒ u0 = 0
∂u

∂x
(x = 0) = 0 ⇒ u−1 = u1

⇒
D

∆x4
{7u1 − 4u2 + u3} − µω2u1 = 1

j = 2 u(x = 0) = 0 ⇒ u0 = 0

⇒
D

∆x4
{−4u1 + 6u2 − 4u3 + u4} − µω2u2 = 0

j = N − 3 u(x = L) = 0 ⇒ uN−1 = 0

⇒
D

∆x4
{uN−5 − 4uN−4 + 6uN−3 − 4uN−2} − µω2uN−3 = 0

j = N − 2 u(x = L) = 0 ⇒ uN−1 = 0
∂u

∂x
(x = L) = 0 ⇒ uN = uN−2

⇒
D

∆x4
{uN−4 − 4uN−3 + 7uN−2} − µω2uN−2 = 0

(19)

The second order finite difference solution of the in vaccuo clamped plate equation
(17) consists in solving a linear system composed of the algebraic equations (18, 19).

Because of the practical constraints inherent in the memory implementation of
large-scale computing methods, the judgement of the efficiency of a finite difference
scheme must consider both the memory demands and the precision of the algorithm.
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Solving the in vaccuo plate equation (17) by performing a nth-order accurate central
finite difference method on a N points grid requires to inverse a N ×N matrix which
contains N(n + 3)− (n + 4)(n + 6)/4 non-zero real floating-point elements. The ac-
curacy of the solution is then O(∆xn). The interest of an high-order method is then
evident in terms of memory saving. The major restriction to the use of an high-order
finite difference scheme lies in the fact that the numerical dispersion increases when
performing an oversampling (in terms of points per elastic wavelength) of the struc-
ture.

A pragmatic approach is proposed to investigate the numerical dispersion of the
central finite difference schemes of orders 2, 4, 6 and 12 presented in the appendix A. A
representative test case as been computed. It consists in the numerical calculation of
the first resonance frequencies of an in vaccuo steel beam, clamped at its boundaries.
These resonance frequencies arise from the calculation of the local minimums of the
spectrum of the determinant of the linear set of algebraic equations outcoming from
the finite difference discretization of the system (17). For the case of a second-order
finite difference solution, it is the determinant of the system composed of the equations
(18, 19). These eigenfrequencies are compared to the natural frequencies of a clamped
in vaccuo beam calculated in an analytical way by Leissa [14]. The spectrum of
the determinant has been computed with a frequency step equal to 0.1Hz. The
mechanical properties of the structure for this test-case are the following:

Length : L = 1m
Thickness : e = 0.004m
Young’s modulus : E = 21011Nm
Poisson ratio : ν = 0.3
Mass per unit area µ = 7800 · e Kgm−2

Mesh-grid : N = 51 points

The results of this numerical study are presented in the following table:

Table 1. Numerical dispersion of order 2, 4, 6, 12 finite difference
schemes

sampling rate resonance frequencies Hz
mode (points per analytical finite difference

wavelength) calculation order 2 ordre 4 order 6 ordre 12
1 51 21.7 21.7 21.7 21.7 21.8
2 26 60.1 59.8 60.1 60.1 60.2
3 17 117.8 117.1 117.8 117.8 118
4 13 194.9 193 194.8 194.9 195
5 10 291.1 287.3 291 291.1 291.2
6 8 406.7 399.5 406.3 406.6 406.7
7 7 541.5 529.1 540.7 541.4 541.5
8 6 695.5 675.7 694.1 695.3 695.5
9 6 868.8 838.6 866.3 868.5 868.8
10 5 1061.4 1017.2 1057.1 1060.8 1061.4
11 5 1273.2 1210.7 1266.3 1272.2 1273.2
12 4 1504.3 1418.5 1493.6 1502.6 1504.3
13 4 1754.6 1639.5 1738.6 1751.8 1754.6
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The comparisons presented in the Table 1 point out that the second and fourth-
order finite difference schemes requires an heavy oversampling of the model to give an
accuracy of the order of 0.1Hz. More than 20 points per wavelength are required for
the second-order scheme and approximatly 10 points per wavelength for the fourth-
order scheme. The sixth-order finite difference scheme gives a good accuracy with a
sampling rate equal to 7 points per wavelength. The finite difference scheme of order
12 gives the exact values (with an accuracy of 0.1Hz) of the resonance frequencies
with a sampling rate equal to 4 points per wavelength. However, this 12th-order
scheme doesn’t match the analytical results when the sampling rate is greater than
10 points per wavelength. In the following of this article, all the numerical results are
relative the 12th-order finite difference scheme provided in the appendix A.

6 Numerical solution of the coupled problem

Returning to the complete problem, this paragraph presents a numerical solution of
the system (16) governing the vibro-acoustic response of a plate coupled with both an
infinite fluid domain and a fluid cavity. The plate equations (16.a, b) are discretized
with the 12th-order finite difference scheme provided in the appendix A. The acoustic
coupling with the exterior domain is ensured by the boundary element method pro-
posed by Mattei in [15]. The equations (16.f, g, h) governing the acoustic pressure
inside the cavity are computed in two different ways. The first method is the bound-
ary element method presented in [9]. The second one is a finite difference method
based on the second-order central differencing scheme for the second derivative oper-
ator presented in the appendix A.

The Green’s kernel of the Helmholtz equation in the half-space Ωe which satisfy
the homogeneous Neumann boundary condition on the plane of the plate and the
Sommerfeld radiation condition is:
G(x, z|x′, 0) =

lim
z′→0

[

−
ı

4
H0

(

ke
√

(x− x′)2 + (z − z′)2
)

−
ı

4
H0

(

ke
√

(x− x′)2 + (z + z′)2
)]

(20)

Using the Green’s kernel (20), the solution Pe of the system (16) is written in an
integral form:

Pe(x, z, kx, ω) = −
ıω2ρe
2

∫ L

0

H0

(

ke
√

(x− x′)2 + z2
)

U(x′, kx, ω) dx
′ (21)

Because the Hankel function is singular at the origin, the single layer potential (21)
is singular when calculating the function Pe on the plate. This singularity is treated
by performing an analytical calculation of the integral (21) on the small interval
[x − ǫ, x + ǫ] where the single layer potential is singular. The limit of this integral
when ǫ tends to zeros is:

∫ x+ǫ

x−ǫ

H0(ke|x− x′|)U(x′, kx, ω) dx
′ = ǫ

4ı

π
(ln(keǫ)− 1) 0 < ǫ ≪ 1 (22)

The Green’s representation of the function Pi is written by using the Green’s
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kernel (20):

Pi(x, z, kx, ω) = −
ıω2ρi
2

∫ L

0

H0

(

ki
√

(x− x′)2 + z2
)

U(x′, kx, ω) dx
′

+
ı

2

∫

σ

H0 (kirM,M ′)α(M ′) dσM ′ (23)

where rM,M ′ denotes the distance between the point M(x, z) inside the cavity and
the point M ′(x′, z′) on the boundary σ of the cavity, and where α(M) (M ∈ σ) is
the (unknown) density of the single layer potential (23). The integral (23) is singular
when z = 0. The contribution of this singularity to the integral (23) is calculated
analyticaly by using the formula (22).

7 Discrete Boundary Element Method for the in-

terior Dirichlet problem

This paragraph presents a solution of the system (16) based on the 12th-order finite
difference scheme provided in the appendix A for what concerns the plate equations
and the Green’s representations (21, 23) for the acoustic pressure fields in the two
fluid domains Ωe and Ωi. A boundary element method, which takes into account the
singularity of the single layer potentials, is used to transform the integral equations
(21, 23) into a linear set of algebraic equations. This boundary element method is
presented in the appendix C, it is based on the Simpson rules.

The boundary σ of the cavity is meshed with M points with the constant step
∆σ. Let us denote by Mj the mesh points of the grid. Solving the equation of the
displacement of the coupled plate (16.a) by using a nth-order finite difference scheme
amounts to solve a system containing N − n − 4 algebraic equations. In order to
simplify the expressions, a numerical solution is presented for the case of a second-
order finite difference discretization scheme of the plate equation. This scheme leads
to a system containing N − 6 equations for the displacements Uj at the points xj

(3 ≤ j ≤ N − 4):

D

∆x4
{Uj−2 − 4Uj−1 + 6Uj − 4Uj+1 + Uj+2}

− ω2
{

µ+
ıρe
2
Se +

ıρi
2
Si

}

Uj

−
ıω2ρe
2

N−2
∑

n=1

WnH0 (keRj,n)Un

−
ıω2ρi
2

N−2
∑

n=1

WnH0 (kiRj,n)Un

−
ı

2

M
∑

m=1

WmH0 (kirj,m)αm = −eıkxxj , 3 ≤ j ≤ N − 4

(24)

The constants Wm and Wn which appear in the equation (24) are the weights of
the Simpson’s integrals calculated with M points (m = 1, ..,M) and N points (n =
0, .., N − 1). The term rj,m denotes the distance between the point (xj, 0) on the
plate and the point Mm on the wall σ of the cavity. The term Rj,n denotes a distance

11



resulting from the numerical calculation of the singular integral (21). If j 6= n, Rj,n

is the distance |xj − xn| between two points on the plate, if j = n, Rj,j = ∆x. The
terms Se and Si, resulting from the analytical calculation (22), are provided in the
appendix C. They represent the contribution of the singularity in the single layer
potentials (21) and (23). αm is the density of single layer potential (23) at the point
Mm on the inner side of the cavity. The density αm is calculated by writing the
Dirichlet condition at each mesh point Mm:

Pi(Mm, kx, ω) = 0, 1 ≤ m ≤ M (25)

The Green’s representation (23) of the function Pi is introduced in the boundary
condition (25). A numerical calculation of the single layer potential (23) which takes
into account the singularity of the Hankel function at the origin is provided in the
appendix C. Writing the boundary condition (25) amounts to solve the following set
of equations:

ıω2ρi
2

N−2
∑

n=1

WnH0 (kirj,n)Un

+
ı

2

M
∑

m=1

WmH0 (kiRj,m)αm +
ı

2
ǫjSj = 0, 1 ≤ j ≤ M

(26)

In formula (26), rj,n is the distance between the point Mj on the wall σ and the point
(xn, 0) on the plate; Rj,m is a non-zero distance between two mesh points Mj and
Mm on the wall σ: If j = m, Rj,m = ∆σ. The term Sj is the contribution of the
singularity to the single layer potential 23. The value of the term Sj is given in the
appendix C. The term ǫj issues from the fact that the contribution of the singularity

at the bounds of the plate is half of its contribution elsewhere: If j = 1,M , ǫj =
1

2
,

if 1 < j < M , ǫj = 1.

The boundary conditions (16.b) for the displacement of the clamped plate is ob-
tained by replacing for each index j = 1, 2, N−3, N−2, the first line of the equation
(24) by the differencing schemes appearing in the formulas (19).

The numerical solution of the coupled system (16) brings to solve the equations
(24), with the boundary conditions (19), and the equations (26). This solution leads
to inverse a linear set of M+N−2 algebraic equations. The unknowns of this system
are N − 2 values Un of the function U(x, kx, ω) calculated at the mesh points xn on
the plate, and M values αm of the density α(M) calculated at the mesh points Mm

on the wall σ of the cavity. This system is solved by a classical LU method. The
solutions Un give access to a discrete expression of the frequency cross spectrum of the
displacement of the plate (11). The solutions Un and αm, introduced in the Green’s
representations (21, 23), give access to the functions Pe and Pi which appear in the
definitions (12, 15) of the frequency cross spectrum of the acoustic pressure in the two
fluid-domains. The spectrums Spe and Spi are calculated in a continuous way with
respect to the space variable.
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8 Finite Difference Method for the interior Dirich-

let problem

This section is dedicated to a numerical solution of the system (16) based on the
use of an order 12 finite difference scheme for the plate equations, coupled with a
boundary element representation for the exterior acoustic pressure field, and with a
second-order finite difference method for the interior Dirichlet problem.

The method proposed in this section implies that the mesh-grids of the plate and
of the fluid cavity coincide on the z = 0 line. Let us denote ∆z the sampling-step
of the z-dependency of the acoustic pressure inside the cavity. The coordinates of
the interior acoustic mesh point Mi,j are (i∆x,−j∆z) with 0 ≤ i ≤ N − 1 and
0 ≤ j ≤ M − 1. Because the x meshings of the plate and of the interior acous-
tic pressure field coincid, when the wavelength of the interior acoustic pressure field
is greater than the elastic wavelength (ie at high frequency), this method performs
an oversampling of the structure. According the results of the Table 1, when this
oversampling ecceds 10 points per elastic wavelength, a lower-order finite difference
method must be used to solve the plate equation. The results presented in this article
are relative to the case of an elastic wavelength greater than the acoustic wavelength.
This case is representative of the majority of the practical problems at low frequency.

In order to simplify the expressions, the numerical solution is presented for the
case of a second-order differencing scheme for the fourth-order plate operator. The
numerical solution of the equation (16.a) leads to the following N − 6 equations for
the displacement of the fluid-loaded plate (apart from the boundary conditions):

D

∆x4
{Uj−2 − 4Uj−1 + 6Uj − 4Uj+1 + Uj+2}

− ω2
{

µ+
ıρe
2
Se

}

Uj − Pj,0

−
ıω2ρe
2

N−2
∑

n=1

WnH0 (keRj,n)Un = −eıkxxj , 3 ≤ j ≤ N − 4

(27)

The boundary conditions for a clamped plate are given by four equations for the
displacements of the points xj , j = 1, 2, N − 3, N − 2. These equations are obtained
by replacing, for each index j, the finite difference scheme appearing in the first line
of the formula (27) by the differencing schemes written at the bounds of the plate in
the formula (19). The term:

−
ıω2ρe
2

{

N−2
∑

n=1

WnH0 (keRj,n)Un + SeUj

}

(28)

appearing the the system (27) ensures the exterior acoustic coupling. It results from
the numerical evaluation, presented in the appendix C, of the integral (21).

The acoustic coupling with the fluid cavity is ensured by the term Pj,0 = Pi(Mj,0)
which represents the interior acoustic pressure field, calculated on the plate, at the
point Mj,0 of coordinates (xj , 0). The interior acoustic pressure field P is the solution
of a system composed of the equations (16.f, g, h). The Helmholtz equation (16.f) is
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solved by using the second-order central finite difference scheme presented in appendix
C. The discretized form of the Helmholtz equation (16.f) is:

Pn−1,m − 2Pn,m + Pn+1,m

∆x2
+

Pn,m−1 − 2Pn,m + Pn,m+1

∆z2
+ kiPn,m = 0

2 ≤ n ≤ N − 3, 1 ≤ m ≤ M − 3
(29)

The second-order finite difference writing of the Dirichlet boundary condition on
the x = 0 and x = L walls of the cavity is given by writing the equation (29) for the
indexes n = 0, 1, N − 2, N − 1 with the following conditions:

n = 0 : P−1,m = −P1,m

n = 1 : P0,m = 0
n = N − 2 : PN−1,m = 0
n = N − 1 : PN−2,m = −PN,m

(30)

The boundary conditions in the bottom of the cavity results from the writing the
equation (29), for the indexes m = M − 2, M − 1, with the following conditions:

m = M − 2 : Pn,M−1 = 0
m = M − 1 : Pn,M = −Pn,M−2

(31)

The boundary conditions at the bottom corners of the cavity are obtained by
rewriting the equations (29) for each couple of indexes (m,n) satisfying m ∈ {M −
2,M − 1} and n ∈ {0, 1, N − 2, N − 1} with the conditions (30) and (31).

The interior acoustic coupling equation (16.g) is discretized with the second-order

central finite difference scheme for the operator
∂

∂x
provided in the appendix A:

Pn,1 − Pn,−1

2∆z2
= ρiω

2Un, 0 ≤ n ≤ N − 1 (32)

The boundary condition (32), introduced in the Helmholtz equation (29), leads to a
set of N − 4 equations for the coupling between the vibrations of the plate and the
interior acoustic pressure field:

Pn−1,0 − 2Pn,0 + Pn+1,0

∆x2
+
2Pn,1 − 2Pn,0

∆z2
−2

ρiω
2

∆z
Un+kiPn,0 = 0, 2 ≤ n ≤ N−3 (33)

Four equations must be added for the interior acoustic coupling at the bounds of
the plate. These equations are obtained by introducing the boundary conditions (30)
in the Helmholtz equation (33) written for the indexes n = 0, 1, N − 2, N − 1.

The finite difference method transforms the system of differential equations (16)
into a set of N(M+1)−2 algebraic equations containing the plate equations (27) with
the boundary conditions (19), the discrete Helmholtz equations (29) and (33) with
the Dirichlet boundary conditions (30) and (31). The unknowns of this system are
the N − 2 displacements Un of the points xn (1 ≤ n ≤ N − 2) and the MN acoustic
pressures at the points Mn,m (0 ≤ n ≤ N−1, 0 ≤ m ≤ M−1) inside the cavity. This
system is solved by a classical LU algorithm. The solution gives access to a discrete
evaluation the function U(x, kx, ω), appearing in the definition (11) of the frequency
cross spectrum of the displacement, and of the function Pi(M, kx, ω) appearing in
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the expression (15) of the frequency cross spectrum of the interior acoustic pressure
field. The frequency cross spectrums Su and Spi are thus evaluated in a discrete way
with respect to the space variables. The frequency cross spectrum (12) of the exterior
acoustic pressure field is calculated by the same method presented in the precedent
paragraph. It results from a numerical evaluation of the integral (21). The function
Spe is then calculated in a continuous way with respect to the space variables.

9 Turbulent boundary layer excitation of a plane

panel

The literature provides a large amount of models for the wall pressure fluctuations
in a turbulent boundary layer developed over a plane smooth surface. One of the
first model is the Corcos spectrum [3]. Corcos developed an empirical model in which
the cross-correlation function of the wall pressure fluctuations is approximated by an
exponential behaviour. The Corcos wavenumber-frequency power spectrum expresses
as follow:

S(kx, ky, ω) = Φ0(ω)
[

αβ (ω/uc)
2] /

{

π2
[

(kx − ω/uc)
2 + (αω/uc)

2] [k2
y + (βω/uc)

2]}

(34)
where kx and ky are the wavenumbers in the directions parallel to the x-axis and
y-axis. A broad band model of the point power spectrum Φ0(ω) is:

Φ0(ω) = a+ (1 + γ) ρeν
4
∗
/ω (35)

Let us remaind that more sofisticated larger band expressions for the point power
spectrum Φ0(ω) are provided in the literature [10]. The value of the constants in this
Corcos model are α = 0.09, β = 7α, a+ = 0.766 and γ = 0.389. The convective
velocity uc is taken equal to 0.7u∞, where u∞ is the speed of the fluid flow. The
friction velocity is simply given equal to ν∗ = 0.03u∞.

In 1980 Chase [11] proposed a more rigorous model for an incompressible fluid
which include higher subconvective wavenumbers. In 1987 Chase [4] reformulated this
model in order to include the effects of the compressibility. The Chase wavenumber-
frequency power spectrum is given as follows:

S(kx, ky, ω) = Sm(kx, ky, ω) + St(kx, ky, ω) (36)

where Sm represents the contribution of the mean shear to the wall pressure fluctua-
tions spectrum:

Sm(kx, ky, ω) =
CMρ2eν

3
∗
k2
x

[

(ω − kxuc)
2 / (hmν∗)

2 + k2 + 1/ (bmδ)
2](5/2)

and where St concerns the contribution of the pure turbulence to the wall pressure
fluctuations spectrum:

St(kx, ky, ω) =
CTρ

2
eν

3
∗
k2

[

(ω − kxuc)
2 / (htν∗)

2 + k2 + 1/ (btδ)
2](5/2)

The parameters of the Chase model are the thickness δ of the boundary layer and
the following constants: k2 = k2

x + k2
y , CT = 3rta+/2πht, CM = (ct + rm)/rt, hm =
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µmuc/ν∗, ht = µtuc/ν∗, rt = 0.389, rm = 0.611, a+ = 0.766, µm = µt = 0.176,
bm = 0.756, bt = 0.378. The contribution of the subconvective wavenumbers in the
Chase model are approximately of 20dB lower than those predicted by the Corcos
model. For a one-dimensional plate, the wavenumber-frequency cross spectrum of
the wall pressure fluctuations in the direction parallel to the flow are given by the
two-dimensional models (34) and (36) in which the transvers wavenumber ky is taken
equal to zero.

10 Numerical results

This section proposes two studies based on the numerical results obtained on a repre-
sentative test case: In a two-dimensional space, we consider a one-dimensional plate
coupled on one side with an infinite fluid domain and on the other side with a fluid
cavity. The numerical results consist in the power spectrums of the displacement
of the plate and of the acoustic pressure fields in Ωe and Ωi given by the formulas
(11, 12, 15) where x = y and M = M ′. These spectrums are calculated by solving the
coupled system of differential equation (16). The first study concerns the influence of
the method used to solve the interior acoustic problem. The second study focuses on
the influence of the model of turbulence on the vibro-acoustic response of the physical
system. The data for this test case are presented bellow:

1. Plate Σ:

• Boundary conditions: Clamped

• Length L = 1m (air) and L = 0.5m (water)

• Thickness e = 0.004m (air) and e = 0.005m (water)

• Young modulus E = 2 1011Nm

• Poisson ratio ν = 0.3

• Mass per unit area µ = 7800 · e Kgm−2

• Mesh-grid N = 60 points

2. Fluid cavity Ωi:

• Boundary conditions: Dirichlet

• Height H = 0.5m

• Mesh-grid N ×M = 60× 30 points

3. Exterior fluid domain Ωe: Flow velocity u∞ = 10m/s

4. Water

• Mass per unit volume ρe/i = 1000 Kgm−3

• Sound velocity ce/i = 1460m/s

5. Air

• Mass per unit volume ρe/i = 1.23 Kgm−3

• Sound velocity ce/i = 340m/s
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6. Measurement points

• Displacement: x = L/4

• Interior acoustic pressure: Mi = middle of the cavity

• Exterior acoustic pressure: Me = symetric of Mi with respect the plate

10.1 Comparison of the finite difference / boundary element
solutions of the interior Dirichlet problem

The numerical results presented in this section concern the Corcos spectrum (34) and
an acoustic coupling with air in ωe and Ωi. The results obtained with three numerical
methods are compared.

• FD-BEM: An order 12 finite difference method is performed to solve the plate
equations and coupled with a boundary element method for solving the interior
Dirichlet problem (see section 7).

• FD-FD: Two coupled finite difference methods of respective orders 12 and 2
for the displacement of the plate and for the interior acoustic pressure fields
(see section 8).

• BEM-BEM: We compare these curves with the results coming from the code
NOVALEA2D developed at the Laboratoire de Mécanique et d’Acoustique de
Marseille. NOVALEA2D uses a boundary element representation for both the
displacement of the plate and the acoustic pressure fields.

We must note that, in order to obtain a good accuracy with this NOVALEA2D code,
we need to use a sampling rate of 12 points per elastic wavelength.

The figure 1 presents the power spectrum of the acceleration of the plate at the
point x = L/4. The figure 2 provides the power spectrum of the acoustic pressure
in the exterior domain. Note that due to the symmetry, only the odd beam modes
generate high acoustic levels at this particular calculation point. The figures 1 and
2 present a good agreement between the 3 numerical methods. The figure 3 presents
the power spectrum of the acoustic pressure inside the cavity. On this last figure,
a difference appears between the results obtained with the finite difference and the
boundary element representations of the cavity. With the finite difference method
(FD-FD), we observe an acute peak located at the first resonance frequency of the
cavity. Because of the light-fluid coupling, this first resonance frequency is very close
to the first resonance frequency of a rigid cavity involving 3 Dirichlet conditions and a
Neumann condition in place of the plate. With the boundary element representations
of the interior acoustic pressure field (FD-BEM and BEM-BEM), no strong excitation
is evident around this cavity mode.

10.2 Influence of model of turbulence

The results presented in this section concern an acoustic coupling with water. We
focus on the differences arising when the turbulent wall pressure fluctuations are
modeled by the Corcos spectrum (34) and by the Chase spectrum (36). These Corcos
and Chase models are presented at the frequency 2000Hz on the figure 4. In the
subconvective region (ie for kx/ke < 100) these models differ by 20dB. The figure
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Figure 1: Acceleration of the plate at the point x = L/4 (air)
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Figure 2: Acoustic pressure in the exterior domain (air)
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Figure 3: Acoustic pressure inside the cavity (air)
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Figure 4: Models of turbulence (water)

19



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

−90

−80

−70

−60

−50

−40

−30

−20

frequency (Hz)

Po
w

er
 s

pe
ct

ru
m

 (d
B)

Chase 
Corcos

Figure 5: Acceleration of the plate (water)

5 shows the power spectrum of the acceleration of the plate. The figure 6 concerns
the interior acoustic pressure field. These two figures present the same behaviour:
The results obtained with the Chase model are 20dB under the predictions obtained
with the Corcos model. The results presented on figures 5 and 6 confirm the results
presented in [16] and calculated with the NOVALEA2D code. A study of this dif-
ference is presented in [5]: Because The transfer function of the displacement of the
plate (14) presents an important peak located at the origin (kx = 0), the intanta-
neous spectral density function (13) is maximum in the region of the subconvective
wavenumbers. So, the influence of the flow on the vibro-acoustic responses (11) (12)
and (15) arise mainly from the behaviour of the wall pressure fluctuations spectrum
Sf in the subconvective region. So, because the Corcos and Chase models differ by
approximately 20dB in the subconvective domain, the vibro-acoustic responses of our
physical system also differ by 20dB.

11 Conclusion

This paper presents a simple model for the vibro-acoustic responses of a plane panel
excited by a turbulent boundary layer. This model applies provided the wall pressure
fluctuations are given under the form of a wavenumber-frequency power spectrum.
The first interest of this model is that the (k-ǫ) formalism permits to take into account
the most recent advances in the modeling of turbulence. The second interest lies in
the greater computational performances of the wavenumber-domain integral (11) on
the space-domain double integral (9).
Our second aim in this article is to study the numerical efficiency of an high-order
finite difference method applied to the resolution of a plate equation. The Table 1
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Figure 6: Acoustic pressure inside the cavity (water)

and the figures 1, 2 and 3 show that an order 12 finite difference scheme is a very
efficient tool to solve a plate equation, particilarly adapted to small sampling rates
between 4 and 10 points per wavelength.
Concerning the advantages and the inconvenients inherent to the use of a boundary
element method or of a finite difference method to solve an interior acoustic problem,
the figure 3 shows that the difference concerns the behaviour of the physical system
at the resonance of the cavity : The finite difference method calculates a strong
peak whereas the boundary element method shows a very smooth peak. However, it
is not possible to discuss the validity of one of these two methods with the results
presented in this article. An experiment is necessary. Discussing the advantages and
disadvantages of the boundary element versus the finite difference approaches, we
can point out that the finite difference method can be quite memory consuming when
applied to large scale problems. On the other hand, the finite difference method
is perhaps more flexible. Local boundary conditions, irregular cavity shapes, and
non-constant beam parameters might be included.

APPENDIX A
Central finite difference schemes

This appendix presents the expressions of central the central finite difference

schemes for following the derivative operators:
∂

∂x
which appears in the discretization

of the coupling equation,
∂2

∂x2
used for the calculation of the Helmholtz equation and

∂4

∂x4
appearing in the plate equation.

Order 2 finite difference scheme for the first derivative

d

dx
f =

f(x+ h)− f(x− h)

2 h
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Order 2 finite difference scheme for the second derivative

d2

dx2
f =

f(x− h)− 2 f(x)− f(x+ h)

h2

Order 2 finite difference scheme for the fourth derivative

d4

dx4
f =

f(x− 2 h)− 4 f(x− h) + 6 f(x)− 4 f(x+ h) + f(x+ 2 h)

h4

Order 4 finite difference scheme for the fourth derivative

d4

dx4
f =

1

h4

(

−
1

6
f(x− 3 h) + 2 f(x− 2 h)−

13

2
f(x− h) +

28

3
f(x)

−
13

2
f(x+ h) + 2 f(x+ 2 h)−

1

6
f(x+ 3 h)

)

Order 6 finite difference scheme for the fourth derivative

d4

dx4
f =

1

h4

(

7

240
f(x− 4 h)−

2

5
f(x− 3 h) +

169

60
f(x− 2 h)

−
122

15
f(x− h) +

91

8
f(x)−

122

15
f(x+ h)

+
169

60
f(x+ 2 h)−

2

5
f(x+ 3 h) +

7

240
f(x+ 4 h)

)

Order 12 finite difference scheme for the fourth derivative

d4

dx4
f =

1

h4

(

−
713664

46142992981
f(x− 7 h) +

22426211628299

20930461616181600
f(x− 6 h)

−
19

1050
f(x− 5 h) +

643

4200
f(x− 4 h)−

4969

5670
f(x− 3 h)

+
4469

1120
f(x− 2 h)−

1769

175
f(x− h)

+
37037

2700
f(x)−

1769

175
f(x+ h) +

4469

1120
f(x+ 2 h)

−
4969

5670
f(x+ 3 h) +

643

4200
f(x+ 4 h)−

19

1050
f(x+ 5 h)

+
22426211628299

20930461616181600
f(x+ 6 h)−

713664

46142992981
f(x+ 7 h)

)

APPENDIX B
Troncation error analysis

In this appendix, we present the calculation of the truncation error made when
replacing the differential operator d4f(x)/dx4 by the following finite difference scheme:

f(x− 2 h)− 4 f(x− h) + 6 f(x)− 4 f(x+ h) + f(x+ 2 h)

h4
A2.1
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The truncation error e is given by the difference:

e =
f(x− 2 h)− 4 f(x− h) + 6 f(x)− 4 f(x+ h) + f(x+ 2 h)

h4
−

d4

dx4
f(x) A2.2

The functions f(x − 2 h), f(x − h), f(x + h) and f(x + 2 h) are expressed by the
following Taylor series:

f(x− 2 h) = f(x)− 2h
df(x)

dx
+ 2h2d

2f(x)

dx2
−

4h3

3

d3f(x)

dx3

+
2h4

3

d4f(x)

dx4
−

4h5

15

d5f(x)

dx5
+

4h6

45

d6f

dx6
(α)

where α is a real number between 0 and h.

f(x− h) = f(x)− h
df(x)

dx
+

h2

2

d2f(x)

dx2
−

h3

6

d3f(x)

dx3

+
h4

24

d4f(x)

dx4
−

h5

120

d5f(x)

dx5
+

h6

720

d6f

dx6
(α)

f(x+ h) = f(x) + h
df(x)

dx
+

h2

2

d2f(x)

dx2
+

h3

6

d3f(x)

dx3

+
h4

24

d4f(x)

dx4
+

h5

120

d5f(x)

dx5
+

h6

720

d6f

dx6
(α)

f(x+ 2 h) = f(x) + 2h
df(x)

dx
+ 2h2d

2f(x)

dx2
+

4h3

3

d3f(x)

dx3

+
2h4

3

d4f(x)

dx4
+

4h5

15

d5f(x)

dx5
+

4h6

45

d6f

dx6
(α)

Introducing these Taylor series in the formula (A2.2) leads to the expression of
the truncation error:

e =
3h2

18

d6f

dx6
(α) with: 0 ≤ α ≤ h

So, the order of accuracy of the finite difference scheme (A2.1) is O(h2).

APPENDIX C
Boundary element method

In this appendix, we present the numerical calculation of the single layer potential
(21) appearing in the expression of the exterior acoustic pressure field:

∫ L

0

H0

(

ke

√

(xj − x)2 + z2
)

U(x, kx, ω) dx A3.1

This integral becomes singular when calculating the acoustic pressure on the plate (ie
for z=0). Let us suppose that the singular point xj is not located at the bounds ∂Σ
of the plate. The singular integral (A3.1) is calculated by using the Simpson rules:

∫ L

0
H0 (ke |xj − x|)U(x, kx, ω) dx ∼

∑N−2
n=1 WnH0 (keRj,n)Un

−2Uj ∆xH0 (ke∆x) + Uj

∫ xj+∆x

xj−∆x
H0 (ke |xj − x|) dx

A3.2
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where Rj,n = |xj − xn| if j 6= n and Rj,j = ∆x, and where Wn are the weights of the
Simpson integral calculated with N points when the contributions of the first point
(index 0) and of the last point (index N-1) to this integral are known to be equal to
zero:

Wn = {4, 2, 4, 2, ...4, 2, 4, 2, 4} N-2 times

The first right-hand term appearing in the formula (A3.2):

N−2
∑

n=1

WnH0 (keRj,n)Un A3.3

is a Simpson estimation of the singular integral (A3.1) calculated when the value of
the Hankel function at the singular point xj is arbitrary taken equal to its values at
the points before and after xj :

H0(0) −→ H0 (|xj − xj−1|) = H0 (|xj − xj+1|) = H0 (∆x)

The term 2∆xUj H0 (ke∆x) substracts, in the Simpson integral (A3.3), the contri-
bution of the interval [xj −∆x, xj +∆x] containing the singular point xj . The con-
tribution of the domain [xj −∆x, xj +∆x] is reintroduced in the final result under
the following form:

Uj

∫ xj+∆x

xj−∆x

H0 (ke |xj − x|) dx A3.4

Writting the integral (A3.4), we suppose that the function U(x, kx, ω) has slow vari-
ations on the small domain [xj −∆x, xj +∆x]. Performing two changes of variables,
Y = xj − x and X = keY , and introducing the behaviour of the Hankel function at
the origin:

X ∼ 0 −→ HO(X) ∼
2 ı

π
ln(x)

leads to the following approximation for the integral (A3.4):

∫ xj+∆x

xj−∆x

H0 (ke |xj − x|) dx ∼
2

ke

∫ ke∆x

keǫ

HO(x) dx+
4ı

π
ǫ (ln (keǫ)− 1)

Let us denote Se the term introducing the contribution of the singularity of the Hankel
function at the origin when calculating the integral A3.1 over the plate domain:

Se =
2

ke

∫ ke∆x

keǫ

HO(x) dx+
4ı

π
ǫ (ln (keǫ)− 1)− 2∆xH0 (ke∆x)

The definition of Se contains an integral on the small interval [keǫ, ke∆x]. This integral
is calculated numericaly by the classical Simpson rules. This expression of Se gives
access to an approximation of the singular integral (A3.1) calculated on the plate:

∫ L

0

H0

(

ke

√

(xj − x)2
)

U(x, kx, ω) dx ∼ Se Uj +

N−2
∑

n=1

WnH0 (keRj,n)Un
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