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Abstract

Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious
outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to
reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical
interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a
model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully
recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this
dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the
mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may
significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low
overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning
of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone
communication traces may be a viable option to arrest contagious outbreaks.
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Introduction

There is great potential to deepen our understanding of disease

dynamics through the analysis of digital traces of individual and

collective behaviour [1–7]. This is because, traditionally, the

collection of how epidemics propagate in a population has been

based on individual self-reporting, known to be severely biased [8–

10]. The bias is documented both at the individual level, self-

reporting of symptoms, but also about the recollection of recent

face-to-face interactions that potentially lead to contagion [11].

Increasing awareness of personal data privacy are unlikely to

lighten this limitation in the near future [12].

We already have some examples in the digital epidemiology

direction which use large-scale digital traces for simulation. For

instance, a large-scale sociotechnological network based on

Facebook data was used to study the role of community structure

in disease dynamics [13]. Also, close proximity interactions (CPIs)

captured using wireless sensors were able to map the fine-grained,

face-to-face interactions of a community [14]. By studying the

CPIs on an American high school community and recovering the

contact network, new prevention strategies were designed with the

potential to be more effective than random immunization.

Infectious disease dynamics have been simulated focusing on the

temporal and heterogeneity aspects considering CPIs sensed over a

two day period at a conference using RFID tags [15].

While these previously investigated sources of digital sensing

(Facebook and CPIs from wearable badges) are advantageous in

that they capture large scale interactions in a continuous manner

giving a more complete estimate of human interactions in reality,

they also present some limitations. Online social networks

represent online social behaviours which differ from physical

proximity interactions whereby disease transmission occurs and

may fail to capture the fine-grained, face-to-face interaction

dynamics relevant for disease transmission [10]. CPI monitoring

using wearable badges is a costly and limited resource requiring

participants to wear an additional sensing device and therefore

cannot readily be extended to the population at large; CPIs may

not be readily extended to larger scales in the immediate future

(e.g. Salathé et al. consider one school day [14], Stehlé et al.

consider two conference days [15], and Isella et al. consider one

week [16]).

In this regard, mobile phones provide a promising resource as

they are ubiquitously carried by the population, irrespectively of

socio-economic status, and provide a much larger-scale, data-

driven opportunity for epidemiology. Further, mobile phones are

carried by people when they travel overseas, potentially serving as

a global physical proximity sensor. Its pervasiveness in countries

under development, where pandemic prevention is most critical,

makes then a viable option [17].

Our present effort focuses on exploiting these phone commu-

nication and interaction traces for epidemic simulation and

contact tracing [18]. Communication traces obtained by mobile

phones are known to be good proxies for the physical interaction

network [19–21], and therefore our goal is to consider how to

simulate a contact tracing model over mobile sensed interaction

data. We aim at exploring the potential of communication datasets
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to serve as a realistic cue for physical proximity interactions at

large.

We develop a model where the infection takes place over the

close-proximity physical network (which can never be fully

recovered in reality), and assume contact tracing occurs on a

differing network, in this case a communication (phone, sms)

inferred one. We explore the contact tracing model proposed in

detail, particularly focusing on tracing efforts on noisy networks,

representing a perturbed subset of the ideal network. Finally, we

simulate our proposed model over the real mobile phone

interaction data dynamics, demonstrating mobile phone interac-

tions are a promising tool for large-scale epidemic simulations, and

mobile phone communication logs can be used as a concrete

source for contact tracing reducing the effects of an epidemic. Just

as optimizing immunization strategies is of great interest if only

incomplete immunization is possible [14], optimizing contact

tracing is of great interest if tracing with incomplete or noisy

information is the only possibility. In this regard, we also consider

the complex relationship between physical and digital interaction

overlap and contact tracing effort. This study can inform health

policies aiming to use communication traces for contact tracing.

Methods

Contact Tracing
We consider a population of N individuals whose connections to

each other form a graph. The degree k of a node n is the number

of links between n and the other individuals in the population. The

mean degree of the network is represented by K~vk(n)w and in

random graphs, this degree distribution is Poissonian. Therefore,

we do not assume that all nodes have the same degree: the overall

node degree distribution forms a Poisson distribution. Individuals

can be in one of four different states, susceptible (S), infected (I ),

traced (T ), or recovered (R). The following state transitions are

then defined as in the contact tracing model by Tsimring and

Huerta [22], and the symbols are defined in Table 1. Following,

we summarize the contact tracing model.

Infection S?I. Initially, the whole population is susceptible

to infection. One node is subsequently randomly infected, which

then starts to infect its neighbours and may initiate an outbreak.

The probability that a susceptible node becomes infected is given

by aki(n)Dt, where ki(n) represents the number of infectious

neighbours of node n and Dt is a small time interval.

Tracing I?T. We assume there is no spontaneous recovery,

and individuals becomes traced for a certain period of time after

which recovery takes place and the individual becomes removed.

There are two types of tracing efforts to identify infected

individuals, random checking and contact tracing. Random

checking is done by choosing an arbitrary node with probability

brDt. Contact tracing of a node n is done with probability

btkt(n)Dt, where kt(n) is the number of neighbours of n which are

in the traced state T . For simplification, traced people can no

longer infect other nodes. Additionally, if an infectious individual

does not become traced, in the current model it remains infected.

An infected node cannot recover (or become removed) unless it is

traced.

Removal T?R. Traced individuals are transformed into the

removed state, or recovered state, and are unable to become

infected again. A node can recover from the traced state with a

probability given by cDt.

The contact tracing model can be summarized by the following

equations.

p(S?I)~aKi(n)Dt ð1Þ

p(I?T)~brDtzbtKt(n)Dt ð2Þ

p(T?R)~cDt ð3Þ

Dual Model for Contact Tracing
We first study a dual network topology which accounts for

differing edge formations between the infection and tracing

networks. Given the contact tracing model defined by equations

1–3, the underlying assumption traditionally is that Ki and Kt are

obtained from one network [22]. Here, we propose to extend this

assumption to introduce two networks, one in which disease is

spreading, used in equation 1, and one in which tracing occurs,

used in equation 2. Our proposed extension, which we refer to as

the dual model since it considers two differing networks, represents

a more realistic situation in practice which we simulate and

validate using a concrete data source from mobile sensed

interactions.

We define the network of physical interactions as Ni. This is the

network in which infection transmission takes place. It is also the

network from which the number of infected nodes in proximity

with node n, Ki(n), is obtained. In this paper, we assume that this

network can never be fully recovered due to, for example, people

Table 1. Dual model symbol description.

N population size

Dt a small interval of time.

a constant determining infection rate.

Ni the ideal network in which the epidemic is actually spreading.

Ki(n) the number of infected neighbours of node n in network Ni .

br constant determining random tracing rate.

bt constant determining contact tracing rate.

Nt the dual network which is used for contact tracing.

Kt(n) the number of traced neighbours of node n in network Nt .

c tracing-policy constant controlling the fading time for contact tracing.

doi:10.1371/journal.pone.0095133.t001
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forgetting whom they interacted with, contagion through strangers

and objects, or the impossibility of ever obtaining a complete

network of face to face interactions of a population at large [11].

We therefore assume the existence of a dual network, Nt, which is

a noisy subset of Ni. The derivation of Nt for simulation purposes

is described in section ‘‘Dual Network Topology’’. We assume Nt

can be obtained by concrete means since it is the network from

which tracing will take place. We consider a novel and automatic

means of obtaining Nt in this paper, by considering Nt to be taken

from ubiquitously sensed interactions obtained by people’s mobile

phones. The parameter Kt is taken from the dual network Nt,

which differs from Ni (in [22] Kt is taken from the same network as

Ki).

Next, we propose a formal method for obtaining Nt from Ni,

and later demonstrate the differences in simulating such a dual

network topology in comparison to an ideal topology. We then

demonstrate the successful use of contact tracing on the dual

network based on phone call history by simulating the dual

network topology over real interaction and communication

patterns obtained by a community’s mobile phone logs.

Dual Network Topology
We define below the process by which we generate the dual

network from the ideal network. By removing a portion of the

actual ties we simulate a scenario in which the communication

traces are only capturing a subset of the actual links. By adding

new ties, we simulate the case where communication traces

provide dyadic interactions that do not happen in the real world,

only in the digital realm. One important measure for our study is

the overlap between the two networks, which corresponds to the

proportion of links that are present in both networks. The dual

network topology is generated as follows:

1. First generate the physical proximity network, Ni, in which

disease is spreading.

N Generate the proximity network of N nodes. We assume

N~1000 in all of our simulated experiments.

N Generate N*K unique links, where K is the average outgoing

node degree. This results in N � K=2 bi-directional links, i.e.

the disease can propagate in both directions.

2. Second, generate the dual network, Nt, which is a noisy version

of the physical proximity network

N Remove N � Zrem links (and thus N � Zrem=2 bi-directional

links) from the network, where Zrem is the average number of

forgotten links (per node) which cannot be traced for some

arbitrary reason.

N Add N � Zadd new links which were not among the original

ones.

In the reported experiments we used Zrem~Zadd~Z. The first

motivation to having Zrem~Zadd is to be able to vary the overlap

between networks while keeping a constant size (number of links)

for the tracing network. We thus do not need to apply a corrective

factor the b parameters. The second motivation comes from the

observation that in real applications, Zadd can be either greater

than Zrem (e.g., if the contact tracing uses a highly connected

online social network) or less than Zrem (e.g., if we use meeting

agendas of people). Even if we use Zrem~Zadd~Z, we provide in

figure 1 an example of the impact of varying
Zadd

Zrem

in the case of an

overlap of 8%.

Note that Z is a noise factor parameter used to generate the

dual network. This parameter Z is related to the percentage of

overlap, C, between Ni and Nt using the following relation:

C~
(K{Zrem)

(KzZadd )
~

(K{Z)

(KzZ)
ð4Þ

These equations can be re-derived with the help of figure 2.

Dataset
We present the dataset that motivates our dual model, and

whose parameters, network structure, and dynamics is used in the

rest of this paper. The participants in the study represent 80% of

the total population of an undergraduate dormitory in a North

American university previously explored for other applications

[23]. The dataset consists of the mobile phone logs of 72

participants, roughly equally distributed across all four academic

years, and 54% male. The participants used Windows Mobile

devices for data collection as their primary phones with their

existing voice plans. Data was collected over a 9 month period

between October 2008– June 2009. The data used in this study

consists of 1,973,547 Bluetooth interactions, 10,992 phone call

records, and 9,432 SMS records. The study had IRB approval by

the Massachusetts Institute of Technology Committee on the Use

of Humans as Experimental Subjects (MIT COUHES) and

written informed consent from participants; further details of the

dataset can be found here [23].

We consider interaction data logged by the mobile phones.

Bluetooth sensors monitored the physical proximity interaction.

Other non-physical interactions were monitored by phone

Figure 1. Average maximum and total infected over Zadd

Zrem
.

Average maximum and total number of infected people for a network

overlap ~0:08, while varying the ratio Zadd

Zrem
between the number of

removed and added edges. The known network (used for contact
tracing) is supposed to be a noisy version of the real network (in which
epidemics spread), obtained by removing some edges and adding new
ones.
doi:10.1371/journal.pone.0095133.g001

Figure 2. Overlap illustration. Illustration of the overlap in terms of
links between the ideal network and the dual network depending on K ,
Zrem and Zadd . The intersection of the two networks, in blue, is of size
NK{NZrem and the union is of size NKzNZadd .
doi:10.1371/journal.pone.0095133.g002
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communication logs including phone calls and SMS activity. We

only consider phone communication and proximity interaction

with other study participants (known devices to the study). The

data has been previously studied in the framework of real-life

health and obesity diffusion [23,24], opinion diffusion [25], as well

as community relationship and interaction pattern analysis [26].

For each of the mobile phone proximity interaction (Bluetooth)

and communication (call and SMS) events sensed, we consider the

number of events (regardless of their duration), including missed

calls. Users correspond to nodes, and undirected edges to

interactions. The edges are weighed by the number of events.

By considering the number of events, we can readily combine the

two types of phone communication logs (calls and SMS). By

considering undirected interactions, the proximity interactions can

be easily compared to the communication data since phone

communication is directed but Bluetooth is undirected. The data is

therefore symmetrized, and we assume undirected links. The static

average daily networks for the phone communication and physical

proximity interactions can be seen in figure 3 (a) and (b),

respectively. Note, the nodes are consistent between the two

visualizations and the physical proximity represents a highly

connected network in comparison to the phone communication

network. In this paper (in section ‘‘Contact tracing with empirical

data in a dual network configuration’’), we show that simulating

the epidemic spread on network (b) though including its dynamic

nature and tracing only based on network (a) suffices in reducing

the effects of an epidemic, even given its sparse nature in this

dataset.

Next, we consider the overlap between the real physical

proximity and communication networks (figure 3 (a) and (b)) in

more detail. We obtain the percentage of overlap between the

communication network, A, and the physical proximity network,

B, in figure 4, representing a key parameter for our dual model.

For each participant, we compute the percentage of overlap within

their community, which can be found using the relation

\(A,B)=|(A,B). We plot the distribution of the average user’s

overlap on a log-log scale. In figure 4 (a), the overlap is considered

over an accumulated static network over the entire duration of the

study, whereas in (b) the monthly accumulated static networks are

considered. First we consider the overall networks. The maximum

overlap is 25:7%, meaning one user communicates by phone with

about a quarter of the people they interacted with in the

community over the duration of the study. There is never more

than 25:7% overlap between these networks. The minimum is no

overlap (0%), meaning some users never called anyone within the

community of people they interacted with. The overall network

overlap (in terms of common edges) between the mobile phone

network and the Bluetooth interaction network is 8:55%. We

consider this overlap between the two networks obtained by

mobile phone sensed data as an approximate realistic measure for

C, where we set C~0:08 as a lower bound of 8:55% to account for

additional measurement error. We can see from figure 4 (a), that

the probability of having less than 10% overlap is quite high, and

drops significantly for greater than 10% overlap. We do not

assume Ni to be equivalent to A, however, as Ni can never be fully

obtained in reality, we use the mobile phone data to obtain an

estimate of C. Our experimental results are presented over a range

of C, though C~0:08 is used as a data-driven approximation and

is the focus for the discussion.

In figure 4 (b) we plot the monthly variations in the overlap

between the phone and Bluetooth networks. We plot three curves:

(1) ‘overall’ is the mean overall average overlap between A and B

computed over the 9 months from (a), (2) ‘monthly’ is only

considering the interactions which occurred over the specified

Figure 3. Static network visualizations of the data. The static networks obtained by the overall average number of daily mobile phone (a)
communication (call and sms) and (b) physical proximity interactions.
doi:10.1371/journal.pone.0095133.g003

Figure 4. Real data-driven network overlap. (a) Distribution of %
overlap between the overall communication and Bluetooth networks
on a log-log scale. (b) Monthly variations in the % overlap between the
communication and Bluetooth networks averaged over all users.
doi:10.1371/journal.pone.0095133.g004
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month, and (3) ‘cum mo’ is the cumulative monthly, and is all the

interactions which occurred up until the specified month. We can

see in a specific month, the overlap between these networks is

much lower than the average. With the data we are using, we can

see that the cumulative monthly approaches the overall monthly

after about 6 months. This indicates that with our data we

approach the mean after about 6 months.

Simulation Results

Dual Networks
First we simulate the various network configurations to compare

the spread of infection characteristics over the full range of the

overlap parameter C. For simulation, we assume a population of

1000 nodes and plot results as averages over 1000 random trials.

The model parameters are as follows, br~0:1, c~0:5, and bt~0

to 2:5. We assume Dt~10{ . This corresponds to c{1
~2 days,

b{1
r ~10 days, and b{1

t ranging over 10 to 0 days and Dt is chosen

to be less than 1 second. These parameters correspond to a

familiar SIR-type model with rescaled parameters and similar

dynamics as in [22]. For comparison, the realistic infectious

periods for various infectious diseases can be found in Table 5.1 in

[27]. The optimal network case (considered in [22]) occurs at

C~1, representing 100% overlap between the infectious and

tracing networks. The minimal network overlap, C~0:08,
suggested by real data is also highlighted in the results. For every

simulation, there is one initial randomly selected infectious case. In

the theoretical simulations (not using the real data), we assume

K~10.

Impact of tracing and network overlap on the size of the

outbreak. Figure 5 presents how the peak of the epidemic is

affected by the overlap C, with a~0:1, br~0:1, c~0:5, K~10.

We are considering in figure 5 (a) the value of the peak of the

epidemic (i.e., the maximum value in curves such as in figure 6). In

general, the greater the overlap between the tracing and disease

spreading networks, the more effective contact tracing is. More

precisely, the maximum number of infected people decays

exponentially with the network overlap (linear slope in a log

scale). The intensity of decay increasing with the contact tracing

rate bt.

However, plots from figures 5 (c) and 5 (d) suggest that the total

number of infected people behaves differently from the peak value

of the epidemic. With a small network overlap (e.g., C~0:08), an
increased contact tracing rate only slightly changes the total

number of infected people. It is only with higher overlap (Cw0:5)
that the contact tracing rate becomes a key factor in reducing the

total size of the epidemic.

We are showing, in figure 5 (b), the time at which the peak of

the epidemic occurs. This peak occurs earlier when the contact

tracing rate is increased. This is due to the fact that the peak is

smaller and thus reached earlier. When the tracing rate is high

(btw1), we observe that an increased overlap tends to delay the

occurrence of the peak. This reflects the ability of contact tracing

(with strong overlap) to effectively slow down the spread of the

disease.

Temporal impact of contact tracing. The time-varying

nature of the epidemic can be seen in figures 6 and 7 where the log

of the average number of infected individuals is plot over time.

Figure 6 shows the case with full overlap (C~1) in comparison to

the case with C~0:08 overlap, which is the lower bound on the

actual average network overlap found in the real social interaction

networks (see figure 4). We can see that even with such a low

percentage of network overlap, contact tracing continues to be

effective as it notably reduces the outbreak of the epidemic. In

general, we observe that contact tracing becomes increasingly

effective as the number of infected cases increases. In many of the

cases there are two to three peaks in the epidemic and the number

of infected individuals over time. The differences between the two

network configurations C~1 (figure 6 (a)) and C~0:08 (figure 6

(b)) becomes increasingly apparent as the amount of tracing

increases whereby in reality, the more realistic network configu-

ration (b) shows even a decreased amount of tracing bt~0:25 may

result in fewer cases and a more optimal tracing scenario. This

occurs due to the fact that there is no second epidemic peak in this

scenario (bt~0:25), though with larger tracing effort, the epidemic

is reduced significantly rapidly, leaving a great deal of the

population susceptible for a second peak of infections.

In figure 7 we consider four cases of fixed bt to observe the

difference in the effects of the percentage of network overlap in

contact tracing. Again, a~0:1, br~0:1, c~0:5, K~10. We see

the worst case occurs for no contact tracing based on social

interactions (plot (a) where bt~0). Different amounts of contact

tracing have differing time-varying effects on the disease spread-

ing. For small amounts of contact tracing there is only one peak

((b) bt~0:25). However as soon as bt increases beyond that point,

there are two peaks ((c) bt~0:5, (d) bt~0:75). This is due to the

contact tracing becoming so effective that the number of cases

drops rapidly, resulting in tracing becoming less effective. Note,

this effect is much more attenuated in the dual network case

(figure 6 (a) versus (b)) which is the scenario closer to reality due to

incomplete network information. This is due to having a smaller

probability of tracing effectively (i.e. tracing an infected contact)

given the smaller number of infectious cases, whereas in an

optimal network case there is a higher chance of effective tracing

given a smaller number of infections.

Why does contact tracing work with such low

overlap?. Our results have shown that even with very small

overlap between the two networks, contact tracing was still

effective in limiting the peak size of the epidemic. With low overlap

this behaviour might be surprising. It is actually explained by a

simple fact: when using contact tracing, an increase in the number

of infected people causes an increase in the tracing effort. This

adaptation phenomenon is not present when only random tracing

is used. We aim here at quantifying whether it is still worth doing

contact tracing with a relatively small network overlap or if

increasing random tracing is preferable.

We measure the tracing effort defined as the sum of the effort

due to random tracing and the effort due to contact tracing:

eff~eff rzeff t

~

X

n[(I|S)

br z

X

n[(Neighbourt(T)\(S|I))

Kt(n)bt
ð5Þ

What the formula encodes is that the random tracing (with

intensity br) is done on the population of both infected and

susceptible nodes, as we cannot know in advance who is infected

when doing tracing. Similarly, the effort due to contact tracing

(with intensity bt) targets a population made of all the neighbours

(in the tracing network) of traced nodes that are still either

susceptible or infected.

In figure 8, we plot both the number of infected nodes and the

total tracing effort. Results are presented for the low network

overlap case, C~0:08, unless specified otherwise. The three dotted

curves represent the tracing effort profile when no contact tracing

is used. Considering the dotted blue curve with only random

tracing, br~0:20 and bt~0, the tracing effort starts at 200 (1000

Epidemic Contact Tracing via Communication Traces
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individuals times 0.20), and the number of infected nodes grows up

to 300 (not shown), then it decreases greatly at the end of the

epidemic. Generally, the tracing effort is smaller at the end of the

epidemic because the traceable (susceptible and infected) popula-

tion is reduced. Now, with the addition of contact tracing

(br~0:20 and bt~2), the tracing effort increases greatly as the

epidemic grows, however there is a significant reduction in the

number of infected cases (below 45 cases as opposed to 300).

Comparing the solid green curve (br~0:4, bt~2) with the

dotted red curve (br~0:6, br~0), figure 8 results show that it can

Figure 5. Theoretical epidemic simulations over varying tracing efforts and network overlap. (a) The maximum number of infected
individuals (representing the peak of the epidemic), (b) its time of occurrence, and (c)-(d) the overall number of infected individuals on log and non-
log scales, respectively; all plotted as a function of C, with br~0:1 and c~0:5. The legend shows the range of contact tracing effort, with bt~0 to 2:5.
We can see in (a) that contact tracing is effective in reducing the peak number of infected people with 5 to 10 times fewer maximum infected cases
between bt~0 and bt~2:5. We plot a line at C~0:08, representing a minimal network overlap which corresponds to the values suggested by the
analysis of mobile phone data (see figure 4). The greater the overlap between the tracing and disease spreading networks, the more effective the
tracing. At the ideal but unrealistic case of 100% overlap, a bt of 2.5 allows to get 10 times fewer maximum infected people in comparison to the case
with C~0. A low overlap such as C~0:08 has little effect on the size of the outbreak (the overall number of infected individuals does not decrease
much), but still the peak number of infected cases is lowered. With higher overlap, the peak of infections not only decreases in intensity but also gets
delayed (c).
doi:10.1371/journal.pone.0095133.g005

Figure 6. Time varying simulation results of the ideal network scenario and the proposed dual network topology. The infected
population plot as a function of time for (a) C~1 and (b) a network overlap of C~0:08, where a~0:1, br~0:1, c~0:5, K~10. Contact tracing is
always beneficial, even when there is a small overlap between Ni and Nt. We observe that contact tracing becomes increasingly effective as the
number of infections increases in both network topologies (a) and (b). However, contact tracing becomes decreasingly effective as the number of
infections decreases, particularly in the dual network topology case. This can be seen by the worsened effects of the second and sometimes third
peaks for the dual network case (e.g., with bt~2:5).
doi:10.1371/journal.pone.0095133.g006
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preferable to design a tracing policy that employs a lower random

tracing rate but that uses contact tracing (bt~2, even with an

overlap of C~0:08). There is a trade-off to consider in terms of

tracing effort over time, maximum tracing effort, and peak in

number of infected individuals. While at the peak of the epidemic,

the tracing effort does increase beyond the case with random

tracing alone, this increase in tracing effort is not constant. The

effort is less than for the random tracing effort alone at the start

and end of the epidemic. Further, the peak of the epidemic is

reduced when considering the addition of contact tracing with

reduced random tracing (br~0:4, bt~2 vs. br~0:6, br~0). A

similar trend is observed for varying the level of random tracing,

and considering a reduced random tracing with the inclusion of

contact tracing. In figure 8, the case of C~1 illustrates the positive

impact of having perfect knowledge of the spreading network. We

observe that better knowledge of the network highly reduces the

size of the outbreak down to 26, while allowing for very low

random tracing (br~0:05 instead of, e.g., br~0:20).

Figure 7. Time varying simulation results of our proposed contact tracing dual network topology while varying network overlap, C.
We observe the changing effects of the time-varying spread over bt. The difference in infectious spread over time becomes more apparent in the
cases with two peaks, where btw~0:5 particularly after the second peak, where an increase in network overlap results in fewer infected cases. Note,
the log scale employed to make the graphs easily comparable tends to attenuate the differences between curves within a graph.
doi:10.1371/journal.pone.0095133.g007

Figure 8. Average temporal evolution of the tracing effort and the number of infected people with or without contact tracing. Only
the last curve considers the case with complete network overlap (C~1) while all other curves are with C~0:08.
doi:10.1371/journal.pone.0095133.g008
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In general, contact tracing does not require a great effort at the

beginning of the outbreak, but rapidly becomes costly when the

epidemic evolves. However, it is effective in reducing the size of an

epidemic with low network overlap, as is random tracing alone. An

optimal solution to consider in future work may be to consider

varying the random and contact tracing efforts over time to

optimize costs as the epidemic evolves. A tracing policy including

contact tracing allows to both adapt tracing to the number of

infected people and exploit the known information about people’s

interaction. Such policies have the potential of reducing the

constant efforts required by random tracing and considering the

use of contact tracing at particular intervals while containing an

epidemic outbreak with minimal cost.

Relative proportion of contact tracing and random

tracing. We observed that one benefit of contact tracing over

pure random tracing is that it adapts the tracing effort to the

number of detected infections and thus has a varying effort (and

cost) over time. To further explore the role of contact tracing, we

consider a setup where we assume a fixed amount of tracing effort

is available. In such a case, we expect and observe that contact

tracing with a low overlap is not advantageous.

In the simulation, we allow a fixed tracing budget (400 units).

We allocate a fixed part of this budget to random tracing, the rest

goes to contact tracing. In practice, we continuously adapt the b

parameters to spread the tracing budget between contact tracing

and random tracing, in the desired proportions. A special case

happens at instants when no individual is in state T (traced after

being infected), mostly at the beginning of the epidemic. In this

case, the full budget goes to random tracing.

Figure 9 shows the average maximum (and total) number of

infected people depending on the part of the budget dedicated to

random tracing. We provide curves with two different network

overlaps (C~0:08 (left), C~1(right)). With complete overlap, we

clearly observe that contact tracing is strongly beneficial. Even

with this perfect knowledge of the network, results show that

spending more than half of the budget in contact tracing is not

providing improvement (nor degradation). With low overlap

(C~0:08), simulation results show that doing some contact tracing

is better than not doing any but that it soon becomes detrimental.

From these experiments we can conclude that, with low overlap,

the biggest cause of the previously observed positive impact of

contact tracing is actually the adaptive tracing effort.

Contact Tracing with Empirical Data in a Dual Network
Configuration
In this section, we consider experiments on the real data. We

apply the dual contact tracing model on the full empirical

interaction and communication dataset obtained by mobile

sensing. While the physical interactions obtained by Bluetooth

are not a complete picture of the interaction history, they do

represent a large portion of the interactions (subjects were

explicitly asked to leave their Bluetooth on all the time). We

consider two timescales over which the real interaction data is

aggregated, daily and weekly. The two timescales are chosen to

consider the time-specific nature of real data in our evaluation and

to simulate the dynamics from real data considering two easily

interpretable timescales. The results referred to as practice (as

opposed to theory), are simulated only considering the empirical

data (daily and weekly); the real interaction events occurring

within the community are used to model the dynamics of the

parameters Ki and Kt. The interactions obtained by the Bluetooth

physical proximity are aggregated over weekly and daily intervals

and used directly for Ki to simulate the epidemic. Similarly, the

interactions obtained by Bluetooth are first used directly to define

the tracing effort (i.e. to determine Kt) on weekly and daily

timescales in figure 10, considering the case where C~1. Next, the

tracing effort (Kt) is only determined by interactions occurring in

the phone communication network to determine the effects of

tracing from the phone communication network in figure 11. In

this case C&0:0855, which is the real overlap between these

networks inherent to the dataset. The interactions are weighed

according to the following equations. ki(n)~K � wi(n)=vWw,

where wi(n) represents the total number of interaction events

between node n and its infectious neighbours within the specified

time frame and vWw is the average weight over all connected

participants. K~10 in all simulation results presented. Overall,

Ki~vki(n)w (in equation 1) is the mean degree of the infectious

interaction network, which is a reweighing of K (used in the

theoretical simulations) according to the real data. Similarly,

kt(n)~K � wt(n)=vWw.

First, we evaluate the difference between using the physical

proximity data in an ideal network scenario in comparison to the

theoretical case by comparing the model outputs on this

community of 72 participants (note N~72 in this section). The

contact tracing model results obtained over the data-driven

proximity network are labeled as weekly data and daily data in

figure 12. For the case C~1, the interactions for Ki and Kt are

both taken from the physical proximity data since we are assuming

perfect network overlap. We assume bt~0 to remove the

additional effects of tracing in the comparison. What we refer to

as the theoretical case is the contact tracing model simulated

according to equations (1)-(3) without any real data for Ki and

Kt. For the theoretical case, the mean degree of the physical

proximity network is used to set the network weights;

ki(n)~kt(n)~KintdataVn[½1,72�, where Kintdata is the overall node

degree of the mobile phone proximity network (refer to figure S1).

Figure 9. Average maximum and total numbers of infected people against the amount of random tracing effort. Simulations consider
a network overlap of C~0:08 (left) and C~1 (right), when the total tracing effort is constant (400).
doi:10.1371/journal.pone.0095133.g009
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Figure 12 shows the difference between the theoretical case and

the contact tracing model run over the physical proximity

network. We observe the results considering the weekly aggregated

interactions are in close agreement with the theoretical case.

This confirms the Bluetooth interaction data collected for this

community considered on a weekly scale to be in good agreement

with the theoretical model, though not equivalent. The incorpo-

ration of daily interaction data results in almost an order of

magnitude difference in the peak of the epidemic illustrating the

models generally over estimate in theory due to less sparse weekly

interaction patterns in reality. Precise details of the simulation

scenario can be found in ‘‘Simulation Details’’ in File S1.

After making a comparison of the theoretical case with the data-

driven case, whereby only the physical proximity network is

considered in simulating infectious spread, we evaluate the

proposed dual network methodology entirely on the real dataset.

First we consider the single network case (with C~1) in figure 10.

Again, the real physical proximity interaction network is the

underlying network both for infection spread and contact tracing,

considering (a) weekly aggregated interactions and (b) daily

aggregated interactions. In these simulations, we are evaluating

the effect of tracing on Bluetooth physical proximity data which

could potentially be available for tracing by service providers. We

observe that contact tracing is very effective in reducing the effects

of the epidemic both on a weekly and daily rate. In figure 10 (a) we

observe an optimal tracing strategy occurs on this dataset for

bt~1:00, which demonstrates maximizing tracing efforts is not

always the best strategy, tracing efficiently is more important.

There is no significant difference in the number of infected cases

over time when bt~1:50 or bt~2:50, meaning this additional

effort is wasted in comparison to bt~1:00. The number of

interactions occurring on a daily scale diminishes in comparison to

the weekly case, and therefore the tracing effort reaches its lower

bound sooner (btv0:5). However, even on such a fine-grained

timescale of one day, contact tracing based on the Bluetooth

physical interactions captured by the mobile phone plays a

significant role in reducing the effects of the epidemic. Next, we

consider tracing based on only the phone calling records obtained

in the data collection.

Figure 10. Simulation of contact tracing over the empirical data with C~1. Only the real physical proximity interactions are used to obtain
Ki and Kt . The physical proximity interactions are obtained by the mobile phone Bluetooth data and are incorporated on (a) a weekly scale, and (b) a
daily scales.
doi:10.1371/journal.pone.0095133.g010

Figure 11. Dual network scenario simulated over the real mobile phone data. Bluetooth physical proximity is used for Ki , phone
communication logs are used for tracing, Kt.
doi:10.1371/journal.pone.0095133.g011
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In figure 11 we consider the dual network case on the mobile

phone data, where the infection spreads on the physical proximity

network, and the tracing occurs only on the phone communication

network. In figure 11 (a) the weekly aggregated physical proximity

and phone communication networks are considered and in (b) the

overall aggregated daily networks are considered. While we

demonstrate in figure 4 the overall average overlap between these

networks is C&0:0855, we see the effect of the epidemic is greatly

reduced by tracing using the phone call records of the mobile phone

users. These effects are less visible on the daily scale than the weekly

scale which is due to the small number of daily phone communication

traces made in the dataset (see figure S1 (a)). The results of tracing on

the phone communication records illustrate that a very small tracing

effort (bt~0:1) is sufficient in reducing the effects of the epidemic and

is further a concrete and easily obtainable source for tracing. Note,

the participants in this community are more likely to make fewer calls

to one another since they are living together in a dormitory. However

even given this challenging data collection, the results are still very

significant, particularly on a weekly scale, whereby tracing based on

users’ phone call records over a given week results in the reduction in

the effects of an epidemic outbreak.

Discussion

We explore a data-driven avenue for contact tracing in

epidemic prevention using social interaction data from mobile

phones. A medium-sized real communitys data is considered to get

insight into the relationship between physical interactions and

mobile phone communication, and whether the latter can be

exploited to perform contact tracing on the former. We explore

the effectivity of such a strategy using data-driven simulations with

realistic parameters extracted from the social network dataset, first,

and then the full dual realistic network model of physical and

communication interactions. Across multiple realistic scenarios for

contact tracing, we find that contact tracing is an effective means

for epidemic prevention, even when there exists a low overlap

between the physical and communication networks. When consid-

ering tracing effort, we observe that contact tracing is greatly

beneficial when the epidemic is starting, however, this effort will

increase greatly as the epidemic grows. With low overlap between

the physical and communication networks, we find that this effect is

mainly due to the automatic adaptation of the tracing effort to the

amount of infected people. We also uncover the relationship

between the network overlap and the proportion of effort spent in

random tracing versus contact tracing. The study thus gives insight

into what proportion of the effort should be spent in contact tracing

depending on the estimated network overlap (how much we trust

the communication network represents the interaction network).

While contact tracing is effective in reducing the number of infected

cases, a dynamic approach considering a time-evolving combina-

tion of random and contact tracing is most promising, and

optimization of costs as a function of varying random and contact

tracing efforts over time will be considered in future work. We are

also able to uncover the nonlinear relationship between overlap

(between physical and communication networks) and contact

tracing effort. This is important, as different communication

technologies, present and future, are likely to have a different link

to physical interactions. Quantifying how the overlap interacts with

the tracing effort can inform public health policies aiming to exploit

digital communication traces for epidemiology. Overall, we find

interactions sensed by mobile phones to be a promising tool for

epidemic simulation, particularly for future large-scale scenarios, for

example city-scale infectious disease transmission. This work

demonstrates mobile phone communication history to be a useful

data source in disease prevention by obtaining contact information

readily for epidemic contact tracing.

Supporting Information

Figure S1 Averaged user node degree per individual

days (or weeks) in the study. These node degree distributions

are plot on a daily basis (a)–(b) and on a weekly basis (c)–(d). The

node degrees averaged over the users and over the days (or weeks)

are used to simulate the epidemic in figure 12.

(EPS)

Figure S2 Number of events logged over time. We

observe that SMS activity is equally important to consider as call

activity in mobile phone communication data. Bluetooth interac-

tion data is highly dependent on time, more so than the phone

activity, which remains more constant over time.

(EPS)

Figure S3 Community’s overall network structure. The

average node degree as a function of the minimum edge weight for

(a) the communication network (call and SMS) and (b) the physical

proximity interaction network. Edge weight is defined as the

minimum number of events necessary for an edge to connect two

nodes in both networks indicating the tie strength between the pair

of nodes. The units in both cases are the number of events.

(EPS)

Figure S4 Node degree distributions. Accumulated node

degree distribution over the study duration for (a) the phone

network and (b) the physical proximity interaction network. Each

individual user’s node degree is obtained as an accumulation over

the 9 month period, and the distribution is plot given one overall

node degree per user. The node degree for the accumulated static

phone network is 7:3 and for the Bluetooth network is 67:25.

(EPS)

File S1

(PDF)

Figure 12. Theory versus practice. Considering the ideal network
scenario, we run the simulated contact tracing model with Kintdata set to
the average daily (and weekly) node degree of the data (see figure S1),
but consider a simulated network (labeled as Kintdata~7,8). Two data-
driven models are considered with the interactions taken from the
Bluetooth proximity logs. For all cases, C~1, and therefore Ni~Nt. The
real data is considered on weekly and daily scales, and Ki~Kt are the
real physical interactions logged by the community’s Bluetooth sensors.
doi:10.1371/journal.pone.0095133.g012
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