Dietary fibers reduce food intake by satiation without conditioned taste aversion in mice
Résumé
It is well known that intake of dietary fiber (DF) potently decreases food intake and feelings of hunger and/or promotes satiety ratings. However, the mechanisms explaining these effects are not well characterized. This work was performed to determine which of satiation and/or satiety mechanisms provoke the decrease of food intake induced by DF in mice. We tested in an intra-group protocol a low-viscosity (LV, fructo-oligosaccharide), a viscous (VP, guar gum) and a high-viscosity (HV, mixture of guar gum and fructo-oligosaccharide) preload. These were given to mice by intra-gastric gavage. It appeared that viscous preloads such as VP and HV reduced the daily energy intake by 14% and 21% respectively. The strong effect of HV was mainly due to a large decrease of meal size (by 57%) and meal duration (by 65%) with no effect on ingestion rate during the first 30 min after administration. Therefore, the DF-induced decrease of energy intake was due to a satiation mechanism. This is further supported by a 3-fold increased sensitization of neurons in the nucleus of the solitary tract as observed by c-Fos protein immunolabelling. No compensation of food intake was observed during the rest of the day, a phenomenon that may be explained by the fact that metabolic rate remained high despite the lower food intake. We have also shown that the DF-induced inhibition of food intake was not paired with a conditioned taste aversion. To conclude, this work demonstrates that DF inhibits food intake by increasing satiation during similar to 1 h after administration. (c) 2012 Elsevier Inc. All rights reserved.