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Abstract

The aim of this study was to present a deterministic model for approximat-

ing the vibrations and the acoustic pressure radiated when a thin elastic plate

is immersed in a low Mach number flow of fluid. As a prelude to this study, a

classical random model based on a wavevector integration technique was used. In

the case of a low Mach number turbulent flow, the numerical study showed that

the subconvective region of the turbulent excitation power spectrum contributes

importantly to the response of the panel. A deterministic approximate model

was developed, based on this behaviour of the system.

1 Introduction

In the free space IR3 consider the Cartesian set of coordinates (0,x,y, z). A plane elas-

tic rectangular panel Σ with length a, width b, and of constant thickness h is inserted

into a flat infinite plane baffle. The panel Σ occupies the domain [0, a] × [0, b] of the

z = 0 plane. For the sake of simplicity, it is assumed that the plate Σ is homogeneous

and isotropic and that its motion can be modeled using the Kirchhoff-Helmholtz thin

plate theory. The mechanical properties of this panel are a Young’s modulus E, a Pois-

son coefficient ν and a mass per unit surface m. Let us take ∂σ to denote the boundary

of the panel Σ. The plate/baffle system separates two domains, the domain z > 0,

denoted Ω, contains a perfect fluid characterized by a mass density ρ and a sound

wave speed c. The fluid in the domain Ω is moving with the constant speed V in the

direction parallel to the x-axis. A turbulent boundary layer develops at the interface

between the fluid and the plate/baffle system. The wall pressure fluctuations in this

turbulent boundary layer generate vibration in the plate and an acoustic radiation in

the fluid. As regards the interactions between the structure and the turbulent flow, the
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model proposed here is based on the hypothesis that one-way interactions occur: Since

the influence of the panel vibration on the boundary layer is neglected, the blocked

pressure induced by the turbulent boundary layer is used as the forcing function. It

is also assumed that when reaching the plate, the turbulent boundary layer is fully

developed, and that the acoustic wave propagation is not affected by the flowing fluid.

In order to simplify the expressions, the domain z < 0 is taken to be a vacuum, but it

is also possible to study a fluid at rest in z < 0.

One of the first models for the vibro-acoustic response of a plane rectangular panel

excited by a turbulent boundary layer was developed by Davies [1]. The latter author

proposed a space integration method to define the power density functions of the dis-

placement of the plate and of the radiated acoustic pressure. As the fluid in [1] was

a gas, the author proposed an usual modal method with some developments to take

advantage of the weak influence of the fluid on the vibration of the structure. In [2],

a wavenumber integration technique was developed to investigate the spatial filtering

characteristics of a rectangular menbrane. This technique was used to measure the

low wavenumber components of the turbulence, corresponding to a region where the

Corcos space-time correlation model did not give very good results. The authors of [3]

analysed the coupling between the structural modes and the wavenumbers of a turbu-

lent flow and proposed a wavenumber sensitivity function for a rectangular plate with

various boundary conditions. This study showed how sensitive a plane panel is to the

low wavenumber region of the turbulent boundary layer power spectrum. The flow
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induced noise inside an aircraft cabin was investigated by Graham in [4] and [5]. In

[4], the sound radiation from a flat elastic plate under boundary layer excitation was

determinated by performing a standard modal analysis and using a wavenumber inte-

gration technique. An estimate of the cabin noise was obtained by summing together

the incoming power contributions of all the fuselage panels. In [5], this model was

extended to take the wall acoustic treatment of the cabin into account. In [4] and [5]

it was clearly established that the coupling between the acoustic field and the elastic

structure is crucially dependent on the modal acoustic impedances. At higher Mach

numbers, the author of [6] determined the influence of the mean flow on the acoustic

radiation of the plate, and showed that the mean flow significantly reduces the fre-

quency at which a resonant mode become an efficient radiator. In [7], the suitability of

a model based on a wavenumber integration technique for predicting the vibro-acoustic

response of an elastic plate coupled on one side with a fluid cavity and on the other

side with a semi-infinite fluid domain and excited by a turbulent boundary layer was

investigated in the case of a simple two-dimensional example. In [7], the autors showed

the importance of the effects of the low wavenumber region of the turbulent boundary

layer power spectrum on response of the structure. Since the model presented in [7]

was two-dimensional, the influence of the transverse wavenumbers was neglected. A

complete framwork of this wavenumber integration method is given in [8], where it

is compared with the usual space interation method. To deal with cases where the

fluid surrounding the plate is a gas, the authors of [8] expanded the vibro-acoustic
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responses of the panel into series of fluid-loaded eigenmodes and performed a light-fluid

approximation to take advantage of the weak influence of the fluid on the vibration of

the system. This light-fluid approximation consists in expanding the eigenmodes and

eigenvalues of the plate/fluid system into series of a small parameter. Further details

about this singular perturbation technique are given in [9]. An experimental validation

of the method using both a space integration technique and a modal approach is pro-

posed in [10] and [11]. The results predicted using a wavenumber integration method

are compared with experimental data in [12].

In the present paper, the model presented in [7] is extented to a three-dimensional

geometry, and approximations are proposed for both the power spectrum of the dis-

placement of the plate and the power spectrum of the acoustic radiation, based on

an analytical wavenumber integration procedure. This analytical integration proce-

dure yields the definition of a turbulent force FTBL, which can be used as a forcing

function in a numerical model giving the vibro-acoustic responses of a panel excited

by a deterministic force. The aim of this paper is to show that the results obtained

with a deterministic model calculated from the forcing function FTBL match the vibro-

acoustic responses of a plate excited by a turbulent boundary layer. One advantage of

using the deterministic force described here is the CPU savings involved, due to the

fact that the wavenumber integrals are calculated in an analytical way. The second,

and possible most important advantage, is that as the model defines a deterministic

force FTBL as being equivalent to a random excitation, it becomes easy to calculate
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the vibro-acoustic response of a panel excited by both a random and a deterministic

force, since this amounts to simply merging two deterministic forces. As an example,

this model should be most helpful when calculating the response of a panel subjected

to both a turbulent flow of fluid and an acoustic noise.

This paper begins with the definition of a wavevector integration model for the vibro-

acoustic response of the fluid-loaded structure. The influence of the low wavenum-

ber region of the wavevector-frequency power spectrum of the turbulent excitation on

the vibro-acoustic response of the system is investigated in section 5 by defining two

functions, a wavevector transfer function and a wavevector density function. A deter-

ministic approximate model is proposed in section 6 under the assumption that the

response of the structure depends mainly on the low wavenumber region, or subconvec-

tive domain, of the turbulent boundary layer power spectrum. The predictions of this

deterministic model are compared to the results obtained with the classical random

approach.

2 Governing equations

Let us take u(M, t) to denote the displacement of the middle surface of the plate at

point M on coordinates (x, y), at time t, and p(Q, t) to denote the acoustic pressure

in domain Ω at point Q on coordinates (x, y, z > 0), at time t. Adopting the weak-

coupling assumption discussed in [4], functions u(M, t) and p(Q, t) solve the system of

equations presented in [4] and simplified below when there is no membrane tension and
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a one-sided fluid-loading process:

D∆2
Mu(M, t) +m

∂2u

∂t2
(M, t) =

−f(M, t)− p(M, 0, t), ∀M ∈ Σ, (a)

∆p(Q, t)− 1

c2
∂2p

∂t2
(Q, t) = 0, ∀Q ∈ Ω, (b)

ρ
∂2u

∂t2
(M, t) +

∂p

∂z
(M, t) = 0, ∀M ∈ Σ, (c)

∂p

∂z
(M, t) = 0, ∀M ∈ baffle, (d)

Boundary conditions for u onto ∂Σ, (e)

Radiation conditions for p. (f)

(1)

In the above system of equations, ∆2
M is the biharmonic operator calculated with

respect to point M which is presented in Appendix A, ∆ is the Laplacien operator

calculated with respect to variables x, y and z, D = Eh3/12(1 − ν2) and h are re-

spectively the bending rigidity and the thickness of the plate. Equation (1-a) is the

response of the fluid-loaded plate to the turbulent force f(M, t). The acoustic pres-

sure p(Q, t) obeys the homogeneous d’Alembert equation (1-b) in the fluid domain Ω,

the homogeneous Neumann boundary condition (1-d) on the baffle and a condition

involving outgoing waves (1-f) at infinity. The acoustic source in Ω is given by the

plate acceleration through Equation (1-c). The boundary conditions (1-e) for the dis-

placement of the plate are: Clamped boundary: u = 0 if M ∈ ∂Σ, ∂xu = 0 if

x ∈ {0, a}, ∂yu = 0 if y ∈ {0, b}. Simply supported boundary: u = 0 if M ∈ ∂Σ,

∂2
x2u = 0 if x ∈ {0, a}, ∂2

y2
u = 0 if y ∈ {0, b}. The excitation force f(M, t) due to the

turbulent boundary layer is a random field stationary up to order 2 with respect to
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the time and space variables. The system (1) has no time Fourier transform since the

random field f(M, t) has no time Fourier transform [13]. To solve the system (1), let

us introduce the Green’s kernel Γ(M,M ′) of the displacement of the fluid-loaded plate

as the solution to the following system of equations:

D∆2
MΓ(M,M ′)−mω2Γ(M,M ′) =

−δM ′(M)− P (M, 0), ∀M,M ′ ∈ Σ,

∆P (Q) + k2P (Q) = 0, ∀Q ∈ Ω,

∂P

∂z
(M) = ρω2Γ(M,M ′), ∀M,M ′ ∈ Σ,

∂P

∂z
(M) = 0, ∀M ∈ baffle,

Boundary conditions for Γ(M,M ′) when M ∈ ∂Σ,

Sommerfeld radiation conditions for P .

(2)

In system (2), P (Q) is the time Fourier transform of the acoustic pressure p(Q, t), ω is

the angular frequency, k is the acoustic wavenumber (k = ω/c), δM ′(M) is the Dirac

delta function at the point M ′ on coordinates (x′, y′): δM ′(M) = δ(x− x′)⊗ δ(y − y′),

where ⊗ is the tensor product. In order to simplify the equations, the variable ω will

be omitted from the name of the functions Γ(M,M ′) and P (Q). The time-dependent

Green’s kernel γ(M,M ′, t) of the displacement of the fluid-loaded plate is defined as

the inverse time Fourier transform of the Green’s kernel Γ(M,M ′):

γ(M,M ′, t) =
1

2π

∫

IR
Γ(M,M ′)e−ıωt dω. (3)



D. Mazzoni – Boundary layer excited panel 9

The kernel γ(M,M ′, t) gives access to an expression for the displacement of the fluid-

loaded plate excited by the random force f(M, t):

u(M, t) =

∫

IR

∫∫

IR2

γ(M,M ′, t− τ)f(M ′, τ) dM ′ dτ. (4)

The displacement u(M, t) defined by Formula (4) is a random field stationary up to

order 2 with respect to time.

3 Vibro-acoustic response of the turbulent bound-

ary layer excited panel

A classical spectral analysis of the random field u(M, t) defined by Formula (4) yields

the model proposed by Davies [1] in 1971 for the power spectrum St
u(M) of the dis-

placement of the turbulent boundary layer excited panel:

St
u(M) =

∫∫

Σ

∫∫

Σ

Γ(M,M ′)St
f (M

′ −M ′′)Γ∗(M,M ′′) dM ′ dM ′′.
(5)

In the above integral, the function Γ(M,M ′) is the Green’s kernel of the displacement of

the fluid-loaded plate defined by system (2), Γ∗(M,M ′) denotes the complex conjugate

of kernel Γ(M,M ′). The function St
f(M) occurring in integral (5) is the power spectrum

of the turbulent wall pressure fluctuations f(M, t). Since the random field f(M, t) is

stationary up to order 2 with respect to the space variables, its power spectrum St
f (M)

can be expressed as the inverse space Fourier transform of the wavevector-frequency

power spectrum Sf(K) defined by:

St
f(M) =

1

(2π)2

∫∫

IR2

Sf (K) eıKM dK,

K = (kx, ky), M =

(

x
y

)

·
(6)
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In Equation (6), M is the point-vector and K the wavevector. The components kx and

ky of the wavevector K are the dual variables of the coordinates x and y in a space

Fourier transform. When Formula (6) is introduced into the expression (5), the power

spectrum of the displacement of the fluid-loaded plate can be written in the form of

an integral over the wavevector K:

St
u(M) =

1

(2π)2

∫∫

IR2

U(M,K)Sf (K)U∗(M,K) dK. (7)

The function U(M,K) which occurs in Formula (7) is the displacement of the fluid-

loaded plate when the excitation force is reduced to the contribution of one wavevector

K. The function U(M,K) solves the following system of equations:

D∆2
MU(M,K)−mω2U(M,K) =

−e−ıKM − P (M, 0, K), ∀M ∈ Σ,

∆P (Q,K) + k2P (Q,K) = 0, ∀Q ∈ Ω,

∂P

∂z
(M,K) = ρω2U(M,K), ∀M ∈ Σ,

∂P

∂z
(M,K) = 0, ∀M ∈ baffle,

Boundary conditions for U onto ∂Σ,

Sommerfeld radiation conditions for P .

(8)

The power spectrum St
p(M) of the acoustic pressure in the fluid domain Ω can be

expressed in a similar mathematical form to that of Equation (7):

St
p(M) =

1

(2π)2

∫∫

IR2

P (M,K)Sf(K)P ∗(M,K) dK. (9)
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The function P (M,K) occurring in Formula (9) solves de system (8), it can be calcu-

lated by using the Green’s representation formula for the acoustic pressure:

P (M,K) = −ρω2

∫∫

Σ

G(M,M ′)U(M ′, K) dM ′, (10)

where G(M,M ′) is the Green’s kernel of the Helmholtz equation satisfying the homo-

geneous Neumann boundary condition on the z = 0 plane, which is obtained from

the Green’s kernel of the Helmholtz equation using an imaging method. The function

P (M,K) is the acoustic pressure radiated at point M when the plate is excited by a

single wavevector K.

In [7], the authors used a finite difference method to solve a beam equation coupled

with both a fluid cavity and a semi-infinite fluid domain. An other application of the

finite difference method to solving a plate equation can also be found in [14]. In the

present article, the system of equations (8) is solved by using the order 12 central finite

difference scheme given in Appendix A to compute the plate operator, and the integral

representation (10) to compute the acoustic pressure in the fluid domain.

4 The wall pressure fluctuations model

The literature provides a large amount of models for the wall pressure fluctuations in

a turbulent boundary layer developed over a rigid plane smooth surface. One of the

first models was developed by Corcos [15]. Corcos developed an empirical model in

which the cross-correlation function of the wall pressure fluctuations is approximated

by an exponential behaviour. The Corcos wavevector-frequency power spectrum can
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be expressed as follows:

Sf(K) = Φ0

[

αβ (ω/Vc)
2]

/
{

π2
[

(kx − ω/Vc)
2 + (αω/Vc)

2] [k2
y + (βω/Vc)

2]} .

(11)

A broad band model for the point power spectrum Φ0 is:

Φ0 = a+ (1 + γ) ρeν
4
∗/ω.

The value of the constants in this Corcos model are α = 0.09, β = 7α, a+ = 0.766

and γ = 0.389. The convective velocity Vc is taken to be equal to 0.7V . The friction

velocity is simply taken to be equal to ν∗ = 0.03V . Note that some more sophisticated

larger band expressions for the point power spectrum Φ0 are avialable in the literature

[11]. Several turbulent boundary layer models, with various levels of validity, have also

been drawn up in the wavevector-frequency domain [16, 17, 18, 19]. Their respective

effects on the vibro-acoustic response of an elastic panel are analysed in a paper by

Graham [20]. However, studying the turbulence model is not within the scope of the

present paper.

The test case presented in the present paper is representative of underwater acoustic

problems arising due to the flow induced noise on the antenna of a towed SONAR. The

structure is the elastic panel the characteristics of which are presented in Appendix

A. The fluid is water, ρ = 1000Kgm−3, c = 1500ms−1. The free-stream velocity is

V = 10ms−1. The Corcos model (11) used for this test case is plotted in Figure 2.
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5 Wavenumber filtering by a thin elastic plate

Wavevector integration models (7, 9) can be used to represent the plate in the form of

a wavevector filter. Let us define the wavevector transfer function of the displacement

of the plate at point M by:

HM : K −→ U(M,K)U∗(M,K). (12)

The function HM(K) gives the wavevector filtering effect of the plate. Now, let us

consider the wavevector density function of the displacement of the plate at point M ,

defined as follows:

DM : K −→ U(M,K)Sf (K)U∗(M,K). (13)

The function DM(K) gives the contribution of the wavevector K to the displacement

of the plate at point M . Figure 3 gives the wavevector density function DM(K) and

the transfer function HM(K) of the displacement in the middle of the plate at the

frequency 133 Hz, which for convenience have been plotted for ky = 0. The wavevector

transfer function of the displacement has a major lobe at the origin. This behaviour,

which is also shown in [2, 3, 8], indicates that the main contribution to the power

spectrum of the displacement of the plate (7) is due to the low wavenumber region of

the turbulent wall pressure fluctuations spectrum. From Figure 3, it can be seen that

the wavevector density function (13) shows a second peak in the region of the convective

wavenumbers. This peak can make a non negligible contribution to the vibro-acoustic

response of the plate at high flow speeds [20]. Figure 4 illustrates the importance of
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the effects of the low wavenumber region on the displacement of the plate. It gives

the power spectrum of the acceleration in the middle of the plate calculated using

Formula (7) when the wavenumber integration domain in the direction kx is increased

from the acoustic domain (kx = k = ω/c) to the convective domain (kx = ω/Vc) of the

turbulent boundary layer power spectrum Sf (K). Figure 4 shows that the wavevector

integral (7) converges rapidly and that the contribution of the wavenumbers kx greater

than 50 k in terms of their absolute value to the displacement of the plate is negligible.

Therefore, as far as subsonic applications are concerned, and for panels with similar

mechanical properties to that used in the present study, the effect of the wavenumbers

located in the region of the convective peak on the response of the structure can be

neglected. Similar results for the wavenumber filtering of the turbulent excitation by

a rectangular panel are presented in [8] in the case of a clamped plate.

6 Deterministic approximation of the randommodel

Computing the vibro-acoustic responses of the structure using Formulae (7, 9) involves

integrating the wavevector density function plotted in Figure 3. Since this function

oscillates rapidly, the calculation will be highly time consuming if one attempts to

compute an accurate integration. In this section, an approximate model based on

a deterministic approach is proposed. The function U(M,K) which features in the

definition of the power spectrum (7) is the displacement of the fluid-loaded plate when

the excitation force reduces to the contribution of one wavevector. Consider a simply

supported plate in vacuo. A classical modal approach yields an expression for the
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displacement U(M,K) in the form of a series of eigenmodes Wmn(M) of the in vacuo

simply supported panel:

U(M,K) =
1

D

N
∑

m=1

N
∑

n=1

(

Wmn(M), eıKM
)

λ4
mn − λ4

Wmn(M). (14)

In the above equation, N is the number of modes taking part in the response of the

structure, the value of which will be discussed below, λ2 =
√

mω2/D is an elastic

wavenumber, and λmn, fmn and Wmn(M) are respectively the eigenvalues, the eigen-

frequencies and the normalized eigenmodes of the simply supported panel in vacuo:

λ2
mn =

(mπ

a

)2

+
(nπ

b

)2

,

Wmn(x, y) =
2√
ab

sin
(mπ

a
x
)

sin
(nπ

b
y
)

fmn =
1

2π

√

D/m λ2
mn

(15)

When calculating the displacement of a plate in vacuo using Formula (14), some in-

ternal dissipation must be introduced into the model. This structural damping can

take the form of a small imaginary component in the bending rigidity of the plate

D = (1− ıη(ω))Eh3/12(1− ν2) where η(ω) > 0 is the material loss factor. Then, the

eigenvalues λmn become complex, and the sum (14) is always defined. In this study,

we never need to compute the modal series (14). In order to simplify the discussion,

details are therefore given for the case where η(ω) = 0. The modal excitation term is

equal to:

(

Wmn(M), eıKM
)

=

∫∫

Σ

Wmn(M)eıKMdM. (16)



D. Mazzoni – Boundary layer excited panel 16

When the series (14) is introduced into the power spectrum of the displacement (7),

one obtains:

St
u(M) =

1

(2π)2

·
∫∫

R2

∣

∣

∣

∣

∣

1

D

N
∑

m=1

N
∑

n=1

(

Wmn(M), eıKM
)

λ4
mn − λ4

Wmn(M)
√

Sf(K)

∣

∣

∣

∣

∣

2

dK.

(17)

The function occurring inside the modulus in Formula (17) is the wavevector density

function of the displacement defined by Formula (13), which is plotted in Figure 3.

Since this function decreases rapidly as |K| increases, the main contributions to the

double integral in Formula (17) are due the wavevectors which are in a region very close

to the origin. This behaviour of the function DM(K) makes it possible to transform

the infinite integral in Formula (17) into an integral over a bounded domain [kx1
, kx2

]×

[ky1 , ky2]. The values of the bounds kx1
, kx2

, ky1 and ky2 result from the study of the

function DM(K). A classical Riemann integration rule is used to express the double

integral in Formula (17) in the form of a double sum:

St
u(M) =

∆kx ∆ky
(2π)2

N
∑

i=−N

N
∑

j=−N

∣

∣

∣

∣

∣

1

D

N
∑

m=1

N
∑

n=1

(

Wmn(M), eıKijM
)

λ4
mn − λ4

√

Sf(Kij)Wmn(M)

∣

∣

∣

∣

∣

2

,

(18)

where the constants ∆kx and ∆ky are the integration steps in directions kx and ky.

The number N used in the discrete integration procedure (18) is taken to be equal to

the number of modes appearing in the response of the structure in Equation (14). In

[1] the author suggested that the displacement of the fluid-loaded plate may be mainly

governed by the wavevectors of the turbulent excitation which show a good match
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with the mode shapes of the plate. Under the same assumption, the wavevectors Kij

in Formula (18) are taken to be equal to the elastic wavenumbers appearing in the

definition (15) of the eigenmodes Wmn(M):

Kij =

(

iπ

a
,
jπ

b

)

i, j = −N, ...− 1, 0, 1, ..., N,

=⇒ ∆kx =
π

a
, ∆ky =

π

b
·

(19)

A few calculations, details of which are given in Appendix B, leads to the following

approximation for the modal excitation term (16):

(

Wmn(M), eıKijM
)

≃ −
√
ab

2
sgn(i) sgn(j)δm|i|δ

n
|j|, (20)

where δm|i| is the Kronecker delta symbol defined by δm|i| = 1 if m = |i| and δm|i| = 0 if

m 6= |i|. When the excitation term (20) is introduced into the series (18), the power

spectrum (18) can be approximated, as shown in Appendix B, in the following form:

St
u(M) ≃

∣

∣

∣

∣

∣

1

D

N
∑

m=1

N
∑

n=1
(

Wmn(M), 1
8

∑N

i=−N

∑N

j=−N

√

Sf(Kij)W|i||j|(M)
)

λ4
mn − λ4

Wmn(M)

∣

∣

∣

∣

∣

∣

2 (21)

The approximate power density function expressed in the above formula is equivalent

to the square of the modulus of the displacement of the in vacuo panel excited by the

following deterministic force:

1

8

N
∑

i=−N

N
∑

j=−N

√

Sf(Kij)W|i||j|(M). (22)

When calculating a broad-band response of the plate using the above deterministic

excitation force, the number N determining the number of wavevectors taking part in
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the turbulent excitation must be greater than the number of modes involved in the

response of the structure. However, since the error made in the excitation term (22),

due to the approximation (20), increases with the number N , it is worth including only

a small number wavevectors in Formula (22). The approach proposed in the present

study consists in using a weight function to reduce the influence of the wavevectors

that do not show a good match with the mode shape of the plate at the frequency of

interest. This weighted model for the turbulent excitation force is:

FTBL(M) =
1

8

N
∑

i=−N

N
∑

j=−N

e−
|f−fij|

σ

√

Sf(Kij)W|i||j|(M), (23)

where f is the frequency, fij is the eigenfrequency of the mode (i, j), and σ is a number

determining the number of wavevectors taking part in the turbulent excitation. In

the present numerical experiment, we used σ = 500, and since we consider a simply

supported panel, the fij are given by Formula (15).

Let us now consider a panel coupled with an infinite fluid domain. The eigenvalues and

the eigenmodes of the fluid-loaded plate can be calculated numerically, and as shown

in [22], these eigenvalues are complex and possess a negative imaginary part. However,

computing the complex eigenvalues and eigenmodes of a fluid-loaded plate is not an

easy task. The method proposed here for computing the numerical simulations is based

on the assumption that, as long as the mode shapes of the fluid-loaded panel are not

significantly different from the mode shapes of the in vacuo plate, which is true when

dealing with structures which are rigid enough, the model presented for an in vacuo

plate will apply when the plate is coupled with a fluid domain. The deterministic force
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(23) is now introduced into a time harmonic model solving the vibro-acoustic responses

u(M) and p(M) of an elastic panel coupled with a fluid domain. The governing system

of equations for this deterministic model is expressed below:

D∆2
Mu(M)−mω2u(M) =

−FTBL(M)− p(M, 0), ∀M ∈ Σ, (a)

∆p(Q) + k2p(Q) = 0, ∀Q ∈ Ω, (b)

∂p

∂z
(M) = ρω2u(M), ∀M ∈ Σ, (c)

∂p

∂z
(M) = 0, ∀M ∈ baffle, (d)

Boundary conditions for u onto ∂Σ, (e)

Sommerfeld radiation conditions for p. (f)

(24)

The approximate power spectrum for the displacement of the plate (7), which is given

by Formula (21), therefore reduces to:

St
u(M) ≃ |u(M)|2 (25)

The approximate power spectrum for the acoustic pressure radiated by the turbulent

boundary layer excited panel (9) can be expressed in the same mathematical form:

St
p(M) ≃ |p(M)|2 (26)

The functions u(M) and p(M) occurring in Formulae (25) and (26) are respectively

the displacement and the acoustic radiation of the fluid-loaded plate Σ subjected to

the deterministic force FTBL(M) defined by Equation (23). These functions u(M) and

p(M) can be calculated by solving the system of equations (24).
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7 Test cases

As a preamble to these test-cases, a grid refinement study was performed to ensure

that the plate equation used in both the exact (7-10) and approximate (23-26) models

was correctly solved. Figure 5 shows the displacement of the plate at point (0.33m,

0.33m), calculated by solving the plate equation (24-a) using the order 12 finite differ-

ence scheme given in Appendix A. The results obtained with both the [13× 19] and

the [25× 37] mesh-grids were identical and the two curves are superimposed, while the

curve obtained with the last mesh-grid, [7× 10] is slightly different. It can be clearly

seen from Figure 5 that, as far as the displacement of the plate is concerned, the mesh-

grid [13× 19] is satisfactory.

Three test cases were computed. In the first two cases, the influence of the fluid was

neglected: In the first case a simply supported plate in vaccuo was studied, and in the

second case a clamped plate in vaccuo. The third test case dealt with a heavy-fluid

loading: a simply supported plate is coupled on one side with a water domain.

Figures 6 and 7 give the power spectrum of the acceleration of the turbulent boundary

layer excited panel when the fluid loading is neglected. The displacement is calculated

at the point (0.33m, 0.46m) using the usual random approach (7) and using the deter-

ministic model (25) in which the turbulent excitation force is introduced in the form

of Formula (23) where the number N is taken to be equal to 50. Figure 6 gives the

results obtained in the case of a simply supported panel. Figure 7 gives the results

obtained in the case of a clamped plate. In this latter study, the eigenfrequencies fij of
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the clamped plate were estimated numerically using the method proposed in [21], and

the associated eigenmodes Wij(M) were approximated by the eigenmodes of the simply

supported panel defined by Formula (15). Apart from the anti-resonance frequencies,

the results of the deterministic model showed a very good match with those obtained

with the random approach. In particular, the amplitudes of the resonant peaks are

well described.

The deterministic model (23) for the turbulent excitation force was applied to the

calculation of the vibro-acoustic response of a panel immersed on one side in a semi-

infinite water domain. In this model, the eigenfrequencies fij of the fluid-loaded plate

are calculated by computing the minima of the spectrum of the determinant of sys-

tem (2) when ω ∈ IR and the corresponding eigenmodes Wij are approximated by the

eigenmodes of the simply supported plate in vaccuo which are defined by Formula (15).

In Figure 8, the approximation (25) of the power spectrum of the acceleration of the

simply supported panel is compared to the power spectrum calculated with the exact

model (7). Figure 9 compares the acoustic pressures at the point (0.33m, 0.46m, 0.5m)

obtained with both the deterministic approximation (26) and the exact random model

(9). Although the comparison between the displacements presented in Figure 8 were

satisfactory, excepted at the anti-resonance frequencies, the results presented for the

acoustic pressure in Figure 9 were less convincing. A second problem certainly arrises

due to the use of a high order finite difference method to solve the plate equation. The

meshing of the plate is therefore poor, and it follows that the integral (10) expressing
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the acoustic pressure was not estimated properly.

8 Conclusion

A deterministic model based on an analytical wavenumber integration procedure is pro-

posed here for predicting both the displacement and the acoustic radiation of an elastic

rectangular plane panel subjected to clamped or simply supported boundary conditions

and excited by a turbulent flow of fluid at low Mach number. The results obtained with

this deterministic model are compared with those obtained with the classical random

approach. In this numerical study, good agreement was observed between the results

obtained with the two approaches. The main advantage of this deterministic model lies

in the CPU saving to which it leads because the random approach involves solving a

large number of elasto-acoustic problems (8) per frequency in order to be able to calcu-

late the power spectrums given by the integrals (7) and (9); whereas, the deterministic

approximations of these functions given by Formulae (25) and (26) can be calculated

by solving a single fluid-structure problem (24) per frequency. Moreover, problems (8)

and (24) amount to approximately the same numerical effort because they differ only

in the excitation term: in (8), the excitation term is given by one wavevector, and

in (24) the excitation term contains several wavevectors. In the test case considered

here, the computation of the deterministic models (25, 26) makes for significant sav-

ings because it is approximatly 50 time faster than the random approaches (7, 9). The

behaviour assumed in the hypothesis that the subconvective region of the turbulent

wavevector-frequency power spectrum greatly affects the vibro-acoustic response of the
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system was confirmed in a numerical study on a low Mach number water flow. In [8],

similar behaviour was observed in a subsonic (Mach number ≃ 0.5) air flow, and there

is therefore no doubt that the deterministic model described in the present study also

applies in air.
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Appendix A

Order 12 finite difference scheme for the biharmonic operator

This appendix gives the order 12 central finite difference scheme for the biharmonic

operator. Since we did not want to restrict this scheme to certain aspect ratio of the

plate (Lx/Ly = α/β, with α, β ∈ IN), the finite difference scheme was computed with

different steps in the directions x and y. Let us take Ui,j to denote the displacement

of the plate at point (xi, yj) on the mesh-grid. The order 12 central finite difference

scheme for the biharmonic operator is expressed by the following formula:

∆2U =
∂4U

∂x4
+ 2

∂4U

∂x2∂y2
+

∂4U

∂y4
,

U(xi, yj) = Ui,j,

∆2Ui,j =

7
∑

m=−7

7
∑

n=−7

αm,nUi+m,j+n·

where the αm,n are constants given in the table below:
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α0,0 =
28231

1620

1

dx 2dy2 +
54613

3780

1

dx 4 +
54613

3780

1

dy4

α0,1 = −125173

12600

1

dx 2dy2 − 90281

8400

1

dy4 α0,2 =
36521

25200

1

dx 2dy2 +
222581

50400

1

dy4

α0,3 = − 6018

22680

1

dx 2dy2 − 247081

226800

1

dy4 α0,4 =
209

5040

1

dx 2dy2 +
31957

138600

1

dy4

α0,5 = − 31

6930

1

dx 2dy2 − 2077

55440

1

dy4 α0,6 =
1

4158

1

dx 2dy2 +
20137

4989600

1

dy4

α0,7 = − 59

277200

1

dy4 α1,1 =
3557

630

1

dx 2dy2 α1,2 = −361

450

1

dx 2dy2

α1,3 =
193

1350

1

dx 2dy2 α1,4 = − 47

2160

1

dx 2dy2 α1,5 =
17

7425

1

dx 2dy2

α1,6 = − 1

8316

1

dx 2dy2 α2,2 =
221

2520

1

dx 2dy2 α2,3 = − 1

90

1

dx 2dy2

α2,4 =
23

21600

1

dx 2dy2 α2,5 = − 1

18900

1

dx 2dy2 α3,3 =
1

1134

1

dx 2dy2

α3,4 = − 1

25200

1

dx 2dy2

The missing αm,n can be calculated by using the following rules:

α−m,n = αm,−n = αm,n, αm,n(dx , dy) = αn,m(dy , dx), if (m+ n) > 7 then αm,n = 0.

The numerical performance of this scheme was tested in terms of the accuracy with

which the eigenfrequencies of a simply supported rectangular plate in vacuo were de-

termined. The geometry and the mechanical properties of the panel tested were:

length : a = 0.5m
width : b = 0.75m

thickness : h = 0.005m
Young’s modulus : E = 21011Nm

Poisson ratio : ν = 0.3
mass per unit area : m = 7800 · e Kgm−2

mesh-grid : 13× 19 points

The following table compares the resonance frequencies of the simply supported plate

in vacuo calculated with the order 4, 6, 8, 10 and 12 finite difference schemes with the
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resonance frequencies obtained by performing a classical analytical calculation [21]:

Numerical dispersion of order 4, 6, 8, 10, 12 finite difference schemes
Y sampling resonance frequencies (Hz)

mode (points per analytical finite difference method
wavelength) calculation order 4 order 6 order 8 order 10 order 12

( 1, 1) 35 69.54 69.5 69.5 69.5 69.5 69.5
Error (%) 0 0 0 0 0
( 1, 2) 18 133.72 133.7 133.7 133.7 133.7 133.7

Error (%) 0 0 0 0 0
( 2, 2) 18 278.14 277.9 278.1 278.1 278.1 278.1

Error (%) 0 0 0 0 0
( 1, 3) 12 240.7 240.5 240.7 240.7 240.7 240.7

Error (%) ∼0 0 0 0 0
( 3, 3) 12 625.82 623.5 625.6 625.8 625.8 625.8

Error (%) 0.4 ∼0 0 0 0
( 1, 4) 9 390.47 389.4 390.4 390.5 390.5 390.5

Error (%) 0.3 ∼0 0 0 0
( 4, 4) 9 1112.57 1100.1 1110.4 1112.2 1112.5 1112.6

Error (%) 1.1 0.2 ∼0 ∼0 0
( 1, 5) 7 583.03 579.0 582.5 583.0 583.0 583.0

Error (%) 0.7 ∼0 0 0 0
( 5, 5) 7 1738.39 1694.1 1726.9 1735.2 1737.4 1738.1

Error (%) 2.5 0.7 0.2 ∼0 ∼0
( 1, 6) 6 818.38 806.9 816.3 818.0 818.3 818.4

Error (%) 1.4 0.2 ∼0 0 0
( 1, 7) 5 1096.52 1069.0 1089.8 1094.8 1096.1 1096.4

Error (%) 2.5 0.6 0.1 ∼0 0
( 1, 8) 4.6 1417.46 1359.4 1399.6 1411.7 1415.5 1416.8

Error (%) 4.0 1.3 0.4 0.1 ∼0
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Appendix B

Evaluation of the turbulent excitation term

In this Appendix, the turbulent excitation term involved in Formula (18) is calculated:

(

Wmn(M), eıKijM
)

=
2√
ab

(

∫ a

0
sin

(

mπ
a
x
)

eı
iπ
a
xdx

)

·
(

∫ b

0
sin

(

nπ
b
y
)

eı
jπ

b
ydy

) B1

The first term in brackets expands as follows:

∫ a

0
sin

(

mπ
a
x
)

eı
iπ
a
xdx =

∫ a

0
sin

(

mπ
a
x
)

cos
(

iπ
a
x
)

dx
+ ı

∫ a

0
sin

(

mπ
a
x
)

sin
(

iπ
a
x
)

dx.
B2

The real part of the above formula is equal to:

∫ a

0

sin
(mπ

a
x
)

cos

(

iπ

a
x

)

dx =
a

π

m

m2 − i2
[

1− (−1)m+i
]

δ
m

|i|, B3

where the symbol δ
m

i is defined by δ
m

i = 1 if i 6= m and δ
m

i = 0 if i = m. The imaginary

part of Formula (B2) can be written:

∫ a

0

sin
(mπ

a
x
)

sin

(

iπ

a
x

)

dx =
a

2
sgn(i) δm|i|, B4

where δmi is the Kronecker delta symbol. Formulae (B3, B4) yield an expression for

the modal excitation term (B1):

(Wm,n(M), eıKi,jM) = −
√
ab

2
sgn(i) sgn(j) δm|i| δ

n
|j| (a)

+
2
√
ab

π2

m

m2 − i2
n

n2 − j2
[1− (−1)m+i] [1− (−1)n+j] δ

m

|i| δ
n

|j| (b)

+ı

√
ab

π

m

m2 − i2
[1− (−1)m+i] sgn(j) δn|j| δ

m

|i| (c)

+ı

√
ab

π

n

n2 − j2
[1− (−1)n+j ] sgn(i) δm|i| δ

n

|j| (d)

B5



D. Mazzoni – Boundary layer excited panel 32

Assuming now that the response of the mechanical system is mainly due to the resonant

modes and that the resonance frequencies in the panel are widely separated, we are

interested in determining the value of the power spectrum of the displacement (18) at

the resonance frequency of a structural mode (m,n) satisfying (m < N) and (n < N).

Under the assumption that the vibro-acoustic response of the plate is mainly governed

by the wavevectors which show a good match with the mode (m,n), the summation

in Equation (B5) mainly involves the term (a) and the contribution of the terms (b),

(c) and (d) can be neglected. Therefore, the modal excitation can be approximated by

Formula (20). Introducing Equation (20) into the series (18) yields:

St
u(M) ≃

N
∑

i=−N

N
∑

j=−N

∣

∣

∣

∣

∣

1

4D

√

Sf (Kij)

λ4
ij − λ4

sgn(i) sgn(j)W|i||j|(M)

∣

∣

∣

∣

∣

2

· B6

The wavevector-frequency power spectrum of the wall pressure fluctuations satisfies

the following condition:

Sf(Kij) = Sf(Ki(−j)). B7

Under the assumption that the low wavenumber region of the wavevector-frequency

power spectrum of the turbulent excitation contributes mainly to the displacement of

the plate, in this region one can write:

Sf(Kij) ≃ Sf (K(−i)j). B8

Upon introducing Formula (B7) and assumption (B8) into Formula (B6), the power

spectrum of the displacement of the plate simplifies into:

St
u(M) ≃

N
∑

i=1

N
∑

j=1

∣

∣

∣

∣

∣

1

2D

√

Sf(Kij)

λ4
ij − λ4

Wij(M)

∣

∣

∣

∣

∣

2

. B9
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Since we calculated the power spectrum of the displacement at the resonance frequency

of the mode (m,n), and since the resonance frequencies of the panel are widely sepa-

rated, (m,n) is the only effective term in the summation (B9). Accordingly, the power

spectrum of the displacement can be approximated by:

St
u(M) ≃

∣

∣

∣

∣

∣

1

2D

N
∑

i=1

N
∑

j=1

√

Sf(Kij)

λ4
ij − λ4

Wij(M)

∣

∣

∣

∣

∣

2

, B10

The above formula includes only the wavevectors with positive components. The nega-

tive components of the wavevectors are re-introduced into the model (B10) by including

the assumptions (B7, B8). This yields the Formula (21).
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Figure 1 : Geometry of the structure.

Figure 2 : Corcos power spectrum in the plane ky = 0.

Figure 3 : Wavevector density and transfer functions of the displacement in the middle

of the plate in the plane ky = 0.

Figure 4 : Influence of the wavenumber integration domain on the displacement.

Figure 5 : Mesh-grid refinement study.

Figure 6 : Acceleration of the simply supported plate in vacuo at point (0.33m, 0.46m).

Figure 7 : Acceleration of the clamped plate in vacuo at point (0.33m, 0.46m).

Figure 8 : Acceleration of the simply supported fluid-loaded plate at point (0.33m,

0.46m).

Figure 9 : Acoustic radiation of the simply supported fluid-loaded plate at point

(0.33m, 0.46m, 0.5m).


