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ABSTRACT

In this paper, we investigate the influence of music on

human walking behaviors in a public setting monitored by

surveillance cameras. To this end, we propose a novel algo-

rithm to characterize the frequency and phase of the walk.

It relies on a human-by-detection tracking framework, along

with a robust fitting of the human head bobbing motion.

Preliminary experiments conducted on more than 100 tracks

show that an accuracy greater than 85% for foot strike estima-

tion can be achieved, suggesting that large scale analysis is at

reach for finer music/walking behavior relationship studies.

Index Terms— tracking, gait, bobbing estimation, en-

trainment to music

1. INTRODUCTION

In recent years there has been a growing interest in the video

analysis community to go beyond the typical surveillance sce-

narios (e.g., detection of violence or left luggage) and to de-

sign algorithms to analyze a wider range of behaviors, such

as group identification or characterization of interpersonal re-

lations like deception detection [1]. While such trends allow

sociologist to envision the study of human behavior “in the

wild” and thus in more ecologically valid settings, this also

creates challenges, since the quantities of interest for perform-

ing such analyses are usually hard to estimate. One can cite

for instance body and head orientation [2, 3] for social atten-

tion modeling, or the visual detection of voice activities [4].

Goal and motivation. We are interested in the influence

of music on human walking behaviors and propose video

processing as a method for automatically characterizing such

behaviors. This study is part of a wider investigation into

context-sensitive approaches to soundscape design as it per-

tains to safety, where music and/or sounds can contribute to

well-being, and to the fostering of social cohesion. It is a fol-

low on project in the Sounding Brighton series, designed and

initiated by Brighton and Hove City Council and the Noise

Abatement Society [5]. For this reason, whereas many exper-

iments use aversive sounds to try to repel people [6, 7], our

experiment made use of non-aversive, context-appropriate

Fig. 1. Camera view and results of the automated video anal-

ysis. The yellow lines illustrate the output of the tracking

algorithm. The red dots, resulting from the bobbing analysis

process, indicate frames where people are estimated to start a

new stride/footstep.

sounds in an attempt to test the scope of fostering more “per-

sonable” behavior through soundscape management. The fact

that soundscape interventions can be used in both exclusive

and inclusive ways points to a more general theoretical ac-

count of the role of sound in defining the environment [6, 7],

whereby sound is considered much more generally as a way

of defining social territory.

It is now firmly established that one of the more basic be-

havioral regulations that music can induce is “entrainment”,

where people will synchronize their activity to an external

rhythm. Relevant to the current study are the potential effects

of music intervention in the urban environment associated

with the previously documented, pro-social effects of syn-

chronized movement to music. Evidence suggests that syn-

chronized movement enhances the tendency in people to per-

ceive others as “more like self”, resulting in enhanced com-

passion [8] and results in improved cooperative ability [9].

This has been shown to occur not just in adults, but also in

children as young as four years old [10].

Approach and contributions. Using video to automatically

extract gait parameters is a promising approach to evaluate the

influence of music in the way people walk. Firstly, because it

is non-intrusive: people are not required to wear any sensor,

nor to walk along a pre-specified path. Secondly, because



this methodology allows gathering a substantial number of

samples, which might be difficult to obtain in lab settings.

Existing methods for gait analysis from video typically

require foreground segmentation [11], side cameras [12] or

more complex articulated human body analysis [13]. Recent

approaches [14] exploit the correlation of head motion and

walking motion; nonetheless they mostly rely on video cap-

tured in lab settings.

In this paper we propose a gait characterization approach

based on walking frequency and phase. Frequency is a clue

to the walking speed, whereas phase is a clue for entrainment

analysis. These parameters are estimated from the upper-

body oscillatory motion resulting from walking: in this work,

we use the term bobbing for this motion. Although similar in

spirit to [14], our approach is shown to work in surveillance

settings rather than in the lab, without foreground segmenta-

tion, and can be applied to multiple people at the same time.

Paper plan. Section 2 describes the experimental set-up.

Section 3 present the walking analysis algorithm. Finally,

section 4 presents preliminary results obtained from both an-

notated and automatically extracted data.

2. EXPERIMENTAL SETUP

Our analysis is conducted in a tunnel (located in Brighton,

UK) that separates a busy nightclub area from the beach. We

installed a sound system with a wall-mounted loudspeaker in

the northern and southern ends of the tunnel, and three CCTV

cameras as per Figure 2. Along the floor we placed white

stripes made of durable duct tape; these occurred every 210

cm. We focused the video analysis on camera 1, marked with

an X in Fig. 2. The camera’s field of view is shown Fig 1.

To test the capacity of music to induce entrainment and

modulation of walking speed at varying tempos, we took three

instrumental pieces of music from contrasting genres (clas-

sical, swing jazz, and ambient electronica) and digitally ad-

justed their tempos (without altering the pitch), so that each

was presented in a 106 bpm (a pace slightly faster than a

normal walking, but still easy to walk in step with) version

and a version that was 10% faster. This resulted in set of

6 music conditions, complemented by a silence condition.

Note that the above procedure enabled us to unambiguously

control for the change in tempo by keeping the style con-

stant; this approach differs substantially from the Milliman

experiments[15][16], where the fast tempo vs slow tempo mu-

sic were not identical music pieces differing only in tempo,

but were also distinct in character and style. Another differ-

ence, when compared to the Milliman study, is that there was

no primary purpose other than traversing the length of the tun-

nel.

3. VIDEO PROCESSING

To perform automatic gait characterization in a surveillance

setting, we propose an original approach which consists in

the following steps:

Fig. 2. Schematic diagram of the tunnel. Our team in-

stalled several electronic units: W. A locked cubby with 240

VAC mains power, housing the digital video recorder, power

amp and music presentation system. The following locations

are marked on the diagram: X. Camera 1 (North-facing) +

speaker. Y. Camera 3 (South-facing) + speaker. Z. Camera 2

(Southeast-facing) + microphone for ambient noise.

Human detection: we use the deformable parts model

(DPM) detector proposed in [17]. Specifically, we use a

single mixture trained on full-bodied pictures of people [18].

Tracking by detection: Detections across frames are associ-

ated so as to form tracks identifying the walking trajectories

of people. A brief description of the tracking approach is pro-

vided in Section 3.1.

Motion Estimation. Estimating bobbing could be conducted

by analyzing the oscillating sequence of position of body

parts like the head. However, this is highly dependent on

localization accuracy, which at that resolution can be easily

affected by self-occlusion or the presence of texture or peo-

ple behind the body. Instead, motion, that contains similar

bobbing information, is less affected by such inaccuracies

since computing motion on different support regions around

a given body part produces similar estimates, esp. when a

robust estimation method is used. Thus, in this paper, we rely

on a robust multi-resolution motion estimation method [19]

to estimate an affine motion model using as support region

each of the detected body parts of a given human detection.

Bobbing estimation: Using the available detections and vi-

sual motion for each track, we estimate bobbing. Details are

provided in Section 3.2

3.1. Tracking approach

We follow the method of [20, 21], in which multi-object

tracking is formulated as a labeling problem. Namely, given

a set of detections R = {ri}i=1:Nr

within a video sequence,

the aim is to assign an identity label to each of them, so that

all detections of the same object have the same label. In other

words, the goal is to obtain the label field L = {li}i=1:Nr

such that when detections ri and rj represent the same ob-

ject, then li = lj , and li 6= lj otherwise. To that end, we

extract for each detection ri its pixel position Xi and its



Fig. 3. Parts’ estimated motions capture bobbing information.

Bounding boxes represent the detected upper body parts and

arrows show the estimated motion.

Fig. 4. Sinusoid Fitting. Dotted blue line: time series ob-

tained from head motion vectors, after fitting first order poly-

nomial. Solid red line: fitted sinusoid. Note that the DC com-

ponent has been removed for visualization purposes.

multi-resolution color histogram hi, as well as its time of

occurrence ti. These descriptors are used to measure pair-

wise similarities and dissimilarities between detections. The

labeling task is cast into a CRF formulation [20, 21], where

we directly model the posterior probability of the label field

given all the observations.

3.2. Bobbing estimation

Walking locomotion generates an ”up and down” and ”left

to right” motion in human subjects. In this work, bobbing

refers to this motion. Our hypothesis is that this motion can

be characterized by sinusoidal functions whose frequency and

phase are correlated with the walking speed and phase.

For each track, we rely on the set of motion vectors vi
t to

estimate a pair of sinusoidal functions modeling bobbing:

fx(t,Λx) = Ax +Bx sin(2πCxt+Dx)
fy(t,Λy) = Ay +By sin(2πCyt+Dy)

(1)

where coefficients Λ = {A,B,C,D} are the parameters (off-

set, amplitude, frequency and phase) that define the bobbing.

Although any detected part could be used, in this work we

limit ourselves to the head region. Let us assume that given

a time interval [t − Tb + 1, t], we have a set of head motion

estimates vx = {vx(t0), . . . , vx(tn), . . . , vx(tN − 1)}, vy =
{vy(t0), . . . , vy(tn), . . . , vy(tN − 1)}, where tn ∈ [t− Tb +

1, t]. Note that we can have missing samples, i.e., N is lower

or equal than the maximum number of samples that can be

observed in the interval Tb . The proposed bobbing estimation

method treats the x and y components independently.

Sinusoid fitting. For each of the time series of a visual mo-

tion component, the method proceeds as follows. First, we

fit a first order (linear) polynomial to the time series and then

subtracted it from the original time series. This step effec-

tively compensates perspective issues of motion estimation in

the image plane. Alternatively, we tried adding the first order

polynomial as part of the sinuoidal bobbing model of Eq. 1.

However, in practice, most of the fitting error is then due to

the main slope of the time series, and the fitting process then

result in poor estimates of the sinusoid parameters.

Second, we fit the sinusoid model of Eq. 1 to the corrected

data using non-linear least squares [22]. Due to noise, estima-

tion errors and bad initial guesses, such optimization might

get stuck in local minima. Fortunately, prior knowledge on

the average walking speed of humans can be used to robustly

fit the model Λ on the data vx,vy . Note that the x compo-

nent motion frequency is close to 1Hz whereas the vertical

component one is typically closer to 2Hz. We can thus initial-

ize C with the aforementioned values to conduct and initial

optimization. To improve robustness, we reduced this initial

guess through a geometric progression of ratio β = 0.9, and

performed an optimization run for each of the obtained value.

At the end of this process (we typically use 10 runs), we keep

as estimates the parameters with minimum fitting error.

Foot strike estimation. We formulate the hypothesis that foot

strikes occur at the local maxima and minima of the fx(t,Λx)
function. Accordingly these instants are defined as:

t̂j = {tj |
d

dt
fx(t,Λx) = 0}. (2)

4. EXPERIMENTATION

We ran a first round of data collection and annotation and we

thus provide here the preliminary results that we obtain.

4.1. Collected dataset

To conduct the analysis, a first dataset was collected. It con-

sisted of 47 short video clips (less than 2 minutes) of pedes-

trian traffic through the tunnel, gathered with motion-sensitive

CCTV recordings (see Fig. 2). To study entrainment, these

clips were selected under two music conditions, using the

same music genre under two different tempos.

We applied automated footfall data tracking to this

dataset, and kept only the tracks of pedestrians traveling

towards the camera, resulting in a total of 109 people track

samples. In a second step, we manually annotated these tracks

in two ways. First, we noted the frames when a person’s body

was crossing the 4th and 1st white lines (see Fig.1), allowing

us to measure the average speed of the person for crossing the



tunnel. Secondly, we performed the footfall information an-

notation by noting the frame number corresponding to subject

heel strikes, discounting obscured footfalls. We subsequently

compared the list of frame numbers tracking footfalls against

the automatic data collected upon the same variable.

4.2. Tracking results

When comparing the footfall data from the automated analy-

sis with data from manual analysis, we found that only 11%

(12 tracks) were incoherent. All 97 other tracks were prop-

erly following the persons and exhibited no ID switches and

no fragmentation. These tracks were however not covering

the full tunnel length, with missing parts far from the camera

(low resolution) and very close (high distortion). The length

of the tracks was still sufficient to estimate the bobbing. Two

instances of duplicate tracks (2 tracks for one person) were

also observed.

4.3. Bobbing analysis

The bobbing estimation allows us to automatically extract

foot strike frames. To evaluate this process, we use the heel

strike annotations. As these annotations do not contain oc-

cluded heel strikes, we augmented them by interpolation to

get the missing heel strikes. A total of 1367 heel strikes were

present in the 109 people tracks. Most of the inter-strike times

are between 12 and 15 frames in the annotations.

The evaluation is done by matching detected foot strikes

with annotated heel strikes, with each strike being used at

most once. The evaluation accepts a match if the annota-

tion and the detection instants are at most k frames apart.

We noted (and compensated for it) that we had a consistent

1 frame difference between the annotation and the automatic

detection. This offset can be explained by the fact that the heel

hits the ground slightly before the whole foot. With k = 2
(allowing an error of 2 frames), we obtain 77.4% of accuracy

(precision and recall). With a stricter criteria, k = 1, this ac-

curacy drops to 56.4% which can be due partly to imprecise

annotations. With k = 3, the accuracy reaches 86.7%.

4.4. Entrainment

Research has shown that unconscious entrainment is very

widespread. [15] was able to demonstrate that background

music of different tempos played in a supermarket signif-

icantly modulates customer velocity. Slower tempo music

was consistently associated with slower in-store traffic flow

and greater total sales volume versus faster tempo music.

Similarly, Milliman demonstrated that background music of

different tempos altered the “eating time” of restaurant din-

ers. Faster music was shown to produce faster turnover of

tables, yet slower tempo was associated with slower eating

and more spending at the bar [16]. More recent research

has also indicated that music acts as a far more effective

means of modulating walking speed than simply providing a

background metronome, suggesting that the broader features

Fig. 5. Difference in walking speed during a fast and slow

tempo version of the same musical excerpt.

of music itself, rather than a simple external tempo, play a

significant role [23]. In our study, using manual annotations,

the same piece of music at two contrasting tempos (all other

variables held constant) resulted in significantly different

walking velocities. Faster tempo music consistently made

people travel quicker through the tunnel (Fig. 5, mean veloc-

ity = 1.27m/sec, n = 52) than did slower tempo music (mean

velocity = 1.19 m/second, n = 53, unpaired T-test: P < 0.05).

These conclusions are particularly intriguing in view of

[15] investigation into the effects of ambient/background mu-

sic on shopper behavior. The difference we observed in walk-

ing speed between high and low tempo music is in agreement

with Milliman’s findings; however, whereas Milliman found

higher tempo music was associated with higher customer ve-

locity than no music, we found that both high and low tempo

music decreased walking velocity through the tunnel. This di-

vergence might either be ascribed to Milliman’s more extreme

tempo variations or to our stricter controls for tempo, elimi-

nating style and (other) variables, or alternately it may sug-

gest that music’s behavioral effects are highly context sensi-

tive. Furthermore, this general decrease in the speed of those

walking through the tunnel when music was deployed might

reflect a greater sense of security, and thus a preliminary indi-

cator of the potential for music to support safer environments

[5] [7] [6]

5. CONCLUSION

For the automatic image processing based estimation of walk-

ing velocity and phase in a soundscape experiment in order to

assess walking entrainment to 6 music conditions, this first

iteration of our model yields broad correlation (87%) with

manual footfall analysis. We find this promising as an ap-

proach to automated analysis of large video data sets, gath-

ered passively in the wild with close circuit video cameras.

Our investigation will continue with further iterations of the

model to finalize the automatic speed estimation from the ex-

tracted tracks and improve accuracy, and further data collec-

tions for finer music entrainment analysis.
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