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Assessing gene expression noise in order to obtain mechanistic
insights requires accurate quantification of gene expression on
many individual cells over a large dynamic range. We used a unique
method based on 2-photon fluorescence fluctuation microscopy to
measure directly, at the single cell level and with single-molecule
sensitivity, the absolute concentration of fluorescent proteins pro-
duced from the two Bacillus subtilis promoters that control the
switch between glycolysis and gluconeogenesis. We quantified cell-
to-cell variations in GFP concentrations in reporter strains grown on
glucose or malate, including very weakly transcribed genes under
strong catabolite repression. Results revealed strong transcriptional
bursting, particularly for the glycolytic promoter. Noise pattern para-
meters of the two antagonistic promoters controlling the nutrient
switch were differentially affected on glycolytic and gluconeogenic
carbon sources, discriminating between the different mechanisms
that control their activity. Our stochastic model for the transcription
events reproduced the observed noise patterns and identified the
critical parameters responsible for the differences in expression
profiles of the promoters. The model also resolved apparent contra-
dictions between in vitro operator affinity and in vivo repressor
activity at these promoters. Finally, our results demonstrate that
negative feedback is not noise-reducing in the case of strong tran-
scriptional bursting.

B. subtilis | central carbon metabolism | promoter activity |
stochastic gene expression | gene expression control

Gene expression and regulation exhibit a high degree of sto-
chasticity when studied at the level of individual cells. Even
in genetically identical cell populations exposed to a uniform
environment, gene activity levels and their phenotypic conse-
quences are subject to random fluctuations that generate cell-
to-cell variations and eventually lead to alternative cell fates. This
stochastic “noise” in gene expression is thought to be a critical,
biologically relevant property of genetic circuits in both microbial
and eukaryotic cells (1-3). Noise in gene expression primarily
originates from bursting of mRNA production and mRNA trans-
lation into proteins. Gene promoters stochastically switch
between “off” states with no mRNA produced and sharp produc-
tion during “on” states. The burst size and frequency are thus two
key parameters of stochastic protein expression at the single cell
level (4-6). At the molecular level, the specific mechanisms of
transcription and translation and, if relevant, the associated reg-
ulatory mechanisms, generate different patterns and levels of
noise. Gene expression noise patterns are thus expected to be
under selection by evolution. Several indirect and direct lines
of evidence for counterselection of noise in expression of genes
important for cell growth have been reported (7, 8), and a quan-
titative estimation of the general deleterious effect of noise has
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been recently proposed (9). However, elevated expression noise
is advantageous in the context of particular biological processes
such as development (10) or for specific classes of genes (11). In
the context of environmental changes, expression noise enabling
stochastic phenotype switching can be used by cells or cell popu-
lations as effective adaptation strategies (12, 13). Expression
noise can also provide insights into gene function (14) or critical
aspects of the molecular mechanism that control the expression
of a particular gene.

In the present work we investigated gene expression noise
patterns in a natural coherent genetic system in bacteria and a
simple adaptation process—namely, the central carbon metabo-
lism (CCM) in the model Gram positive bacterium Bacillus
subtilis and a switch in carbon source. At the molecular level, we
focused on the transcription initiation step of the genetic expres-
sion process. Within the CCM network, we characterized pro-
moter activity at main control points in the physiological switch
between glycolysis and its reverse pathway, gluconeogenesis,
which allows for growth on noncarbohydrate carbon sources. In
B. subtilis, this switch involves two glyceraldehyde 3-phosphate
dehydrogenases, GapA and GapB, that catalyze opposite reac-
tions, and the phosphoenolcarboxykinase, PckA, that catalyses
another irreversible gluconeogenic reaction under physiological
conditions (Fig. 14) (15, 16). The auto-repressed gapA operon,
encoding its repressor CggR, GapA as well as four other central
glycolytic enzymes, is induced under glycolytic conditions upon
binding of fructose-1,6-bis-phosphate (FBP), a metabolite of
glucose, to CggR (17). The operator site for CggR is located
downstream of the transcription start site and upstream of the
translation initiation region (RBS), and hence CggR is thought
to function as a roadblock to the transcribing RNA Polymerase
(RNAP) (17, 18). The GapB and PckA enzymes are both re-
quired for the utilization of gluconeogenic carbon sources, such
as malate, but their expression is deleterious under glycolytic
regimes (15, 16, 19). CcpN is the repressor responsible for the
very strong catabolite repression of the gapB and pckA promoters
in the presence of glucose or other glycolytic substrates (16). It
plays a dominant role in the control of carbon fluxes through
central metabolic pathways in B. subtilis and is obligate for opti-
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Fig. 1. (A) Schematic of the central carbon metabolism showing the switch
between glycolysis and gluconeogenesis controlled by the repressors CggR
and CcpN. Important metabolites are in squares, regulatory proteins are
ellipses, and the genes coding for the enzymes are in small italic letters.
When glucose is available for cell growth, fructose-1,6-biphosphate (FBP)
accumulates and blocks the repressive action that CggR exerts on the tran-
scription of gapA and four other central glycolytic genes (pgk, pgm, eno,
and tpi). Because CggR is transcribed from the same gapA operon that it
represses, it is also an autorepressor. Inversely, when cells are grown on
malate or other nonglycolytic carbon sources, the CcpN repressor is inhibited
by an unknown mechanism involving YqfL, allowing expression of the essen-
tial gluconeogenic genes gapB and pckA. (B) Schematic of 2psN&B experi-
ments. A stack of 50 raster scans of agarose immobilized live cells of
B. subtilis expressing gfpmut3 are recorded using infrared (930 nm) laser
excitation and a dwell time of 50 ps at each pixel (faster than GFP diffusion);
full scale of fluorescence intensity (F) is 10 photon counts/pixel/50 ps laser
dwell time. The fluorescence fluctuations relative to the mean at each pixel
are used to calculate the pixel-based maps of the true (shot noise corrected)
molecular brightness (e, full scale 1 photon/molecule/50 ps dwell time)
and the number (n,;,) of the fluorescent particles detected in the 2-photon
excitation volume (vole, = 0.07 fL inside B. subtilis); a 3D surface plot of npi
is shown for the white-delineated area of the above intensity panel. Bottom
right: Cartoon representation of the individual cells auto-detected using
PaTrack (40) and showing the 50% central pixels used for averaging the
particles number in each cell (n.); the full scale for the ny; and nc; maps
is 180 molecules/voley.

mal growth under glycolytic conditions (16, 19). CcpN activity is
linked to the energy charge of the cell (20) and is also negatively
controlled by the coexpressed regulatory protein, YqfL (16). The
CcpN operator site overlaps the promoter region of the gapB
gene, but the bound repressor does not hamper RNAP binding.
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Rather, CcpN is thought to act on transcription initiation by pre-
venting promoter escape by RNAP (20, 21).

Assessing noise in gene expression in order to obtain molecu-
lar mechanistic insights concerning its physical origins requires
accurate quantification of expression levels in hundreds of indi-
vidual cells over a large dynamic range, under repressing as well
as inducing conditions, and in particular at very low levels of ex-
pression where stochastic effects are expected to be most promi-
nent. The fluorescent protein intensity measurements provided
by the standard approaches typically used in such studies yield
only fluorescence intensity values which are related to concentra-
tion by an unknown scaling factor. Moreover, the sensitivity of
such measurements is restricted by the relatively high auto-fluor-
escence of the bacterial cell cytoplasm. Hence, measuring the
activity of weakly transcribed genes using fluorescent protein
reporter systems is usually not possible (2). Although recent
approaches extend the range of the intensity-based methods to
the single-molecule level (22-24), they remain indirect and suffer
from uncertainty in molecular brightness and background fluor-
escence. Here we applied a modified version of two-photon scan-
ning (true) number and brightness (2psN&B) (25, 26), in which
the intensity fluctuations at each pixel in a series of rapid raster
scanned images of bacteria are used to deconvolve the average
intensity (counts/s) into the molecular brightness (counts/s/
molecule) and absolute number (molecules) of fluorescent pro-
teins diffusing inside individual bacterial cells (Fig. 1B) (27). Thus
unlike standard imaging techniques, which yield fluorescence
intensity, SN&B provides absolute concentrations and can be
carried out using confocal microscopy, although with more auto-
fluorescence and photo-bleaching (Fig. S1) than with the
2-photon excitation used here.

Using this approach, our primary objective was to focus on
promoter activity. We sought to directly measure in single cells
transcriptional activity of key regulated promoters in their re-
pressed and derepressed states to characterize any heterogeneity
among the cell population and to understand how cells are
prepared for environmental changes. Moreover we sought to mea-
sure transcriptional bursting and to reveal how control mechanisms
at these different promoters affect the frequency and the size of the
transcriptional bursts during the switch between inactive and active
states. Finally, we asked whether, using stochastic models of the
molecular control mechanisms of the studied promoters, we could
correlate the operative mechanistic physical features with specific
characteristics of the noise patterns.

Results

Absolute Quantification of Expression Levels Under Permissive and
Repressing Conditions. Using N&B analysis we measured the
absolute concentration of green fluorescent protein (GFP) in
individual cells expressing gfpmut3 (encoding a very bright, fast-
maturing and stable GFP variant) (28) from four promoters of
interest, Pegor (gapA operon), Pyyp, Pperas and Py, (Fig. S2)
grown at steady state under glycolytic (glucose) or gluconeogenic
(malate) conditions. Fluorescent particles number maps and
histograms of the distributions in the bacterial populations
(Fig. 2 4 and B) were calculated as described in detail elsewhere
(27) (SI Text). Large differences in the expression levels and cell-
to-cell variations were observed for the different strains depend-
ing on the carbon source used for growth. The P grgfp fusion was
strongly expressed on glucose but poorly repressed on malate, ex-
hibiting an induction level of only sevenfold, in good agreement
with bulk population measurements using gfpmut3 (Fig. S3) or
other reporter systems (17). Expression from the P gz promoter
was visibly heterogeneous for the cell population grown on ma-
late (Fig. 24). The number of fluorescent particles detected in
our 2p excitation volume inside the bacterial cell, vol,, (approxi-
mately 0.07 fL) ranged from 30 to over 250 (Fig. 2B). In contrast,
transcription from both Py,,p and P,y was very strongly re-
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Fig. 2. Cell-by-cell quantification of catabolite regulation in B. subtilis by 2psN&B. (A) Pixel-based fluorescent particles number maps of B. subtilis cells ex-
pressing gfomut3 transcriptional fusion from P g, Pgapp (results are similar for P,ca; not shown), and P,y Cells harvested from liquid cultures containing
0.5% glucose (G) or 0.5% malate (M) as the sole carbon source were immobilized on agarose pads for 2psN&B analysis as described in Fig. 1B. The full scale is
360 molecules/volg,. (B) Cell-based particles number (n.) distributions for the indicated promoter-gfpmut3 fusion strains grown on glucose (black) or malate
(gray). Inset in the first panel shows the expanded histogram of the probability density function P(n.;) measured in malate for P g4 Insets in panel 2 and 3
show the expanded histogram of the probability density function P(n.) observed in glucose for the Py, and P, promoters in black, and that observed for

the background BSB168 strain in gray.

pressed on glucose and induced over 40-fold on malate (Fig. 2 4
and B, middle panels). For these promoters under repressing
condition, we were able to determine a population average of ap-
proximately 3.5 GFP molecules (per vol.,) above the background
of dim fluorescent particles observed in the reference BSB168
receiver strain (Fig. 2B, insets of panel 2 and 3). This corresponds
to a population average concentration of approximately 80 nM
or around 30-50 total GFP molecules in the bacterial cells,
depending upon their size. For the strain carrying the gfpmut3
fusion with the weak and constitutive P,y promoter we mea-
sured rather low GFP concentrations, averaging approximately
1 pM on both carbon sources.

Changes in Noise Pattern Parameters During Nutrient Shifts. The
coefficient of variation (COV), one of the metrics used for quan-
tifying noise in gene expression, is the ratio of the standard de-
viation in the number of proteins (/vole,) over the mean, ¢, /(n),
for distributions in a population of bacteria (i.e., Fig. 2B). For all
three regulated promoters (Pegor, Poapps and Pperq), the COV is
very large (approximately 60—100%) for the repressed promoters.
The increase in the average number of GFP molecules under
permissive conditions is accompanied by a drastic decrease in
o,/ (n) (Fig. 34) but remains above the experimental uncertainty
inherent to our method (approximately 0.05) (27). For the unre-
gulated P,y promoter, we observed no significant change in
the o, /(n) value upon the shift of carbon source. We note that
a small coefficient of variation does not necessarily mean that
the noise is small; this is particularly true for skewed and lepto-
kurtic histograms, such as that observed for P g, and which are
usually associated with bursting (2, 5, 29).

Two other key parameters of stochastic gene expression can
be extracted from the average and variance of GFP molecules
in the cell population histograms: the apparent frequency of
protein production burst per cell cycle (a = (n)?/5,?) and the
average number of protein molecules produced per burst, related
to the Fano factor (b = 6,2/(n)) (5). Thus, for a repressible pro-
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moter, the mean expression level, (n) = ab, can be decreased by
reducing a or b or both. We note that in our system, differences
in bursting characteristics from one promoter fusion to another
and from one condition to another only emanate from transcrip-
tional bursting. Indeed, in all our constructions, the gfpmut3 gene
is under identical translational signal, insensitive to the different
physiological conditions examined here. As expected for the
constitutive promoter, P,y little variation is observed in either
the values of a or b upon a switch in carbon source. In contrast,
examination of the variations in these parameters for the glyco-
Iytic and gluconeogenic promoters on different carbon sources
(Fig. 3B) reveals dramatic differences between their noise pat-
terns. Indeed the parameters, a and b, are very dynamic and
discriminative of the behavior of the two types of promoters,
providing strong evidence that the major contribution to the
observed cell-to-cell fluctuations is intrinsic to the regulatory
circuitry. The gluconeogenic promoters (Pgy,p and Ppy) show
a strong relative decrease of both burst size and frequency upon
repression under glucose, whereas upon repression of Py, under
malate, a decreases significantly while b actually increases
slightly. Large bursts under repression by CggR are thus respon-
sible for the heterogeneity observed in this population (Fig. 24).
Our findings reveal two distinct noise signatures associated with
the glycolytic as opposed to gluconeogenic promoters.

Modeling the Expression Patterns of P .oz and Py,,z During the Nu-
trient Shift. We modeled the kinetics of the transcription events
from the P g,z and Py,,p promoters with a unique realistic scheme
inspired from a generic model for prokaryotic gene expression
(30) (Fig. 4 A-B and Table S1). An in-depth justification for fixed
parameter values and fitting procedure is given in SI Methods.
Our model included repressor binding and dissociation from
the operator DNA, k,°" and k,°, respectively. The main contri-
bution to the fluctuations of mRNA production and of the other
downstream variables arose from dissociation of the repressor,
which justifies a two-state operator model. Transcription initia-
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Fig. 3. Changes in promoter activity levels and noise patterns upon a switch
of carbon source. (A) The average number of GFPmut3 molecules per vole,
({n)gfp €xpressed in micromolar concentration) and its coefficient of variation
(the standard deviation over the mean, 6,47,/(n)gs,) in the cell populations
grown on glucose (black bars) or malate (gray bars), estimated from the
cell-based particles number distributions shown in Fig. 2B and considering
a fixed auto-fluorescence background contribution as determined in the
BSB168 receiver strain under identical experimental conditions. (B) Effect
of nutrient switch on promoter activity noise patterns. The parameter of
stochastic gene expression, the Fano factor b (azgfp/(mgfp), related to GFP
production burst size is plotted against a ((n)zgfp/azgfp) related to the GFP
production burst frequency for the activity of the indicated promoters on
glucose (black square) or malate (gray diamonds). The single arrows indicate
the sense of repression for the regulated promoters.

tion was assigned rate constants k, or &, and the transcribing
polymerase (tRNAP) was considered to synthesize the mRNA
leader region containing the RBS with rate constants k3 (30, 31)
or k%, depending on whether the operator DNA is free or bound
by repressor. A switched, first order reaction of rate constant ky
was used to model dissociation of the elongation complex, thus
reducing jamming of stalled polymerase molecules in the repres-
sor-bound operator state for P.er. We pooled several states
(29, 31, 32) related by rapid transitions and consider that RBS
gives rise directly to the ribosome elongating the protein chain
(EIRib) then to the matured GFP (MdGFP). All reactions past
RBS synthesis are considered to be identical for the promoters
under study. We adjusted the parameters of the model to fit the
experimental expression histograms.

The model reproduces well the observed behavior of Py,p
and P g,r (Fig. 4C and Table S1). Testing key parameters for their
uniqueness revealed significant constraints on their values (S/
Methods and Fig. S4). The promoters function in a regime where
k,° /i, °[R] is small for all conditions and promoters; the prob-
ability, 1 — p, that the repressor, R, is bound to the DNA remains
large, and repression does not vanish even under permissive
conditions, in good agreement with genetic data showing consti-
tutive overexpression of these promoters in repressor knockout
strains (15, 16). The nutrient switch affects repression mainly
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at two levels: affinity of the repressor for the DNA (k,°%) in
the case of Pgr and concentration of active repressor and hence
the burst duration and size (1/k,°"[R]) in the case of P,,,z. Good
fits for these two promoters were constrained by the modification
of these two parameters, respectively. At Pz, a decrease in
the concentration of active repressor is consistent with the pro-
posed sequestration of CcpN by YqfL under malate, although the
total CcpN concentration is not thought to change (16). The
change of k,° is minimal upon induction, and hence K, values
are constant and in the range of 0.8 nM, in reasonable agreement
with the 8 nM affinity measured in vitro (33, 34). For CggR,
operator affinity is high under repression, Kp = 0.1 nM, and
decreases about 10-fold upon induction (k,°f increases), in rea-
sonable agreement with the in vitro operator affinity (<0.5 and
10 nM) of CggR in absence and presence of inducer (35, 36). The
model reconciles as well this high in vitro affinity with moderate
repression by CggR in vivo (15). The position of the CggR opera-
tor site between the promoter and the RBS allows unhindered
RNAP binding and initiation and hence passage of multiple poly-
merase molecules while the repressor is dissociated, leading to
large amplitude bursts. Indeed, the large bursts for P, under
repression cannot be modeled otherwise. Moreover, the enzymes
of the CCM must be produced in large quantities when needed,
and hence we must assume strong promoters in order to insure
this strong production in the derepressed state. The price to pay is
that strong promoters favor transcriptional bursting. In addition,
strong bursting under repression for P is favored by the fact
that CggR is a self-repressed promoter, and hence the concentra-
tion of repressor is lower under repressive, relative to permissive,
conditions.

Discussion

Our N&B data provide reliable measurements of absolute gene
expression levels and fluctuations from metabolic promoters
implicated in catabolite repression under both permissive and
repressive conditions. The activity of the strongly repressed glu-
coneogenic promoters has been undetectable at the single cell
level by other methods. Indeed, combined two-photon excitation
and raster scanning considerably reduce both the auto-fluores-
cence from the bacterial cytoplasm and photo-bleaching of the
GFP molecules, thereby achieving the single-molecule detection
limits required for single cell quantification of gene expression
levels from these strongly repressed promoters. Moreover, fluor-
escence fluctuation-based methods such as N&B analysis do not
require calibration of the light intensity signal and therefore allow
for the direct counting of fluorescent reporter proteins diffusing
in the excitation volume.

Our measurements, due to their absolute nature, reveal dis-
tinct noise patterns for the glycolytic and gluconeogenic promo-
ters, which inform on the adaptive strategy selected by evolution.
For Pger, 2psN&B allowed us to demonstrate significant cell-to-
cell heterogeneity, in particular the existence of a subpopulation
of cells expressing GFP under the repressed state at levels as
high as half the average level of induced cells. This heterogeneity
does not correspond to bistability that would provoke a bimodal
distribution of the expression levels as reported for other bacter-
ial regulation systems (37), instead of the skewed unimodal dis-
tribution observed here. Rather it arises from strong trans-
criptional bursting from this promoter under repression, which
itself has two origins. First, Pg,p is intrinsically a strong promoter,
a required feature for the enzymes of the central carbon meta-
bolism which must be produced in large quantity in the induced
state. Secondly, the repressive mechanism of CggR, rather than
competing with RNA polymerase for promoter binding, as in the
case of the lactose repressor for example, acts as a roadblock to
elongation. Hence multiple RNAP molecules can accomplish
transcription during repressor dissociation episodes. While the
affinity of CggR for its operator is quite high in vitro (35, 36), it
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Fig. 4. Model of gene regulation by CggR and CcpN. (A) Scheme describing the architecture of the B. subtilis P4z and Py, promoter region (boxed —10 and
—35 RNAP recognition sequences) and tandem operator sites (black or gray upward triangles) for the CggR or CcpN repressors. Under glycolytic conditions,
CcpN is thought to prevent promoter clearance by the RNA polymerase whereas under gluconeogenic conditions CggR acts as a roadblock to the transcribing
polymerase when bound as a compact tetramer. (B) General model of prokaryotic gene expression and regulation applied to both repressors. RNAP-D is the
RNAP-bound DNA, R the active repressor, tRNAP the elongating transcription complex, RBS the ribosome binding site on the transcribed mRNA, EIRib the
elongating translation complex, and MdGFP the folded and matured green fluorescent protein. According to the above mechanistic models of regulation,
besides changes in DNA affinity constants (Kd; = k,° /k,°"), CcpN repression affects primarily kj, the rate at which the elongation complex is formed, whereas
CggR would affect the transcription rate in the mRNA leader region (k3), thereby increasing the dissociation rate of the (paused) polymerase (k). In the
gfpmut3 reporter system used in this study, all steps past RBS production are identical for all promoter constructs and all conditions. The GFPmut3 variant
has been shown to be fast-maturing (within a few minutes) and slow degrading (stable for several hours) in B. subtilis (3), therefore the degradation rate kyeq
corresponds to slow dilution whereas the lifetime of the mRNA is much shorter (i.e., k5 > kqeq)- (C) Results of the model compared to the experimental data for
the stochastic expression of Py,,5gfp and P.44rgfp transcriptional fusions under glucose (red) or malate (blue). Lines correspond to the continuous distributions
obtained from the model parameters reported in Table S1. The histogram from the Pg,,;9fp promoter fusion data was not corrected for the BSB168 back-
ground contribution, as the deconvolution cannot be done reliably for experimentally reasonable dataset sizes; instead, a Gamma random variable having the
same first two moments as the background contribution has been added to the model predictions.

exhibits moderate repressor activity in vivo (17), as it is subject to
strong transcriptional bursting. Although transcriptional bursting

case of the gluconeogenic promoters, because derepression
under glycolytic conditions greatly impairs growth (16, 19), strict

has been observed, albeit rarely, in prokaryotes (2, 38), quantita-
tive and mechanistic insights into the process, such as those pre-
sented here, have been lacking. Significant activity for the Pgr
promoter in a subpopulation of cells grown on malate enables
them to respond more rapidly when glucose becomes available,
thereby conferring a competitive advantage to the clonal popula-
tion. The high level of noise for this promoter may have been
selected for implementing such a bet-hedging adaptation
strategy.

As often invoked (39) one is inclined to expect that negative
feedback reduces noise. Our results provide the experimental de-
monstration that this property is not valid in the strong bursting
regime of the self-repressed Pr promoter. Indeed, the burst
size scales with the lifetime of the active state of the operator,
which for a self-repressed promoter, scales inversely with the
concentration of repressor and is smaller under permissive con-
ditions when the feedback is weak. In contrast to the strong tran-
scriptional bursting observed for the glycolytic promoter, in the
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control by CcpN and limited noise are essential. Hence, the re-
pressive mechanism of CcpN has evolved to limit bursting in
the repressed state by impairing promoter escape by the RNAP,
leading to very strong catabolite repression.

In conclusion, our study demonstrates that N&B analysis can
be applied for direct and absolute quantification of promoter
activity and noise in bacterial populations upon changes in con-
ditions. The highly quantitative nature of our approach, coupled
with its sensitivity and broad dynamic range render 2psN&B
particularly well suited to the study of promoter activity. Here
it allowed us, in a natural bacterial system, to associate expression
noise patterns with specific features of molecular mechanisms of
transcriptional repression, to demonstrate transcriptional burst-
ing and to show that negative feedback control does not neces-
sarily reduce noise. Hence, 2psN&B offers broad perspectives
for the quantitative characterization of a wide range of gene reg-
ulatory networks in both prokaryotes and eukaryotes.
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Materials and Methods

Bacterial Strains, Cultures, and Sample Preparation. Strains of Bacillus subtilis
carrying transcriptional fusions with the gfpmut3 reporter gene were con-
structed using the pBaSysBioll plasmid designed for high throughput analysis
of promoter activities by Live Cell Arrays (3) (http://www.basysbio.eu). (See
Fig. S2 and S/ Text for more details.) Microscopy samples were prepared with
cells from exponentially growing cultures and immobilized on 1.5% agarose
pads as described in S/ Text and in ref. 27.

Two-Photon Scanning Microscopy. In scanning N&B analysis the number and
molecular brightness of the diffusing fluorescent molecules are calculated
from the fluctuations in fluorescence intensity at each pixel in a series of ras-
ter scanned images, in which the laser dwell time is small with respect to the
diffusion time of the molecule. Fluorescence fluctuations from the average
intensity arise from Brownian diffusion into and out of the very small two-
photon excitation volume (vol,, = 0.07 fL) focused inside the bacterial cells.
The pixel-based temporal average and variance images were calculated from
50 raster scans, then the true (shot noise corrected) molecular brightness, e,
was determined at each pixel. The average true molecular brightness (¢) was
determined for all of the cells in the field of view using only those central
pixels for which the vol,, is encompassed within the cells. This spatially aver-
aged true molecular brightness for each field of view allowed for the calcu-
lation of the number of molecules, ny,(/vole), at each pixel. Then for each
cellin the field of view, n;, was averaged over the pixels situated in an ellipse
representing the central 50% of the cell area, yielding nc. The averaged
intracellular concentration of GFPmut3 molecules ((n),s,) and their intrinsic
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brightness ((e) ¢,) for a population of cells under a particular set of conditions
were obtained by correcting the average values obtained from the distribu-
tion for background fluorescence from the BSB168 receiver strain bearing no
gfp. More details on our 2psN&B method are given in S/ Text and ref. 27.

Modeling. The model of stochastic gene expression is described by the set of
biochemical reactions given in Fig. 4B and Table S1. We used Gillespie direct
simulation accelerated by cycle averaging (29) to compute the stationary so-
lutions of the chemical master equation. The model predictions were com-
pared to the experimental histograms for the cggR and gapB promoters,
under two nutritional conditions, glycolytic (glucose) and gluconeogenic
(malate). Parameter values were approximated using analytical approxima-
tions for the first two moments of the predicted expression distribution and
then refined by minimizing the distance between predicted and observed
histograms. Further description of the genetic switch modelling is available
in S/ Text.
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