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Abstract Freezing is one of the most serious abiotic

stress factors that affect cool-season legumes. It limits

species geographic distribution and causes severe

yield losses. Improving tolerance to freezing has long

been a main concern for legume breeders. Medicago

truncatula Gaertn. has been selected as a model

species for legume biology. Various studies have

shown significant macrosynteny between M. trunca-

tula and agronomically important crop legumes. A

major freezing tolerance quantitative trait locus

(QTL), herein referred to as Mt-FTQTL6, was previ-

ously identified on M. truncatula chromosome 6. The

physical location of this QTL was determined in this

study and its corresponding chromosomal interval was

enriched with additional markers. Markers were first

developed using the draft sequence of M. truncatula

euchromatin (release versions Mt3.0 and Mt3.5).

Because Mt-FTQTL6 was found to coincide with an

assembly gap, the Glycine max (L.) Merr. genome

sequence was also used to generate markers. Five Mt-

FTQTL6-linked markers were found to be common to

a region on Pisum sativum L. linkage group VI

harboring a QTL for freezing damage. A subset of

markers was tested for transferability across 11

additional legume species. This study lays the ground-

work for identifying the molecular basis of Mt-

FTQTL6. Cross-legume markers will be useful in

future efforts aiming to investigate the conservation of

Mt-FTQTL6 in cool-season legumes and subsequently

the existence of common mechanisms for response to

freezing between M. truncatula and crop legumes.

Keywords Freezing tolerance � Quantitative trait

locus (QTL) � Synteny � Medicago truncatula �
Glycine max � Pisum sativum

Introduction

The Fabaceae (Leguminosae) family is the third largest

family of flowering plants, comprising more than 700

genera and 20,000 species. It ranks second to Poaceae

in terms of economic importance. Most important food

and feed legumes belong to the subfamily Papilionoi-

deae. Species that originated from tropical regions are

referred to as warm-season legumes; those from
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temperate regions are designated as cool-season

legumes (Doyle and Luckow 2003; Gepts et al. 2005).

Due to better moisture availability and longer

growing season, fall-sown annual cool-season

legumes are superior to spring types in grain or total

forage yield (Sadeghipour and Aghaei 2012; Chen

et al. 2006; Fırıncıoğlu et al. 2009). However, harsh

winter conditions in predominant production regions

greatly limit the use of fall-sown annual crops. Winter

stresses also have a crucial impact on the cultivation of

perennial cool-season legumes (Bélanger et al. 2006).

Improving winter hardiness is expected to expand

cultivated areas and increase productivity and yield

stability of cool-season legumes.

Winter hardiness of legumes is a complex trait due

to its quantitative inheritance and the existence of

genotype 9 environment interactions (Kahraman

et al. 2004; Klimenko et al. 2010; Castonguay et al.

2009). Freezing tolerance has often been used to

predict winter hardiness. It is commonly defined as the

potential of plants to minimize freezing effects upon a

period of exposure to low non-freezing temperatures,

known as cold acclimation, during which diverse

physiological, molecular and metabolic modifications

are induced (Guy 1990). Freezing tolerance is the most

determinant factor affecting winter survival across a

wide range of environments and genetic evidence of

this statement has been provided from different

legume species by reporting the co-localization of

freezing tolerance quantitative trait loci (QTL) with

QTL for winter hardiness (Brouwer et al. 2000;

Kahraman et al. 2004; Dumont et al. 2009).

The cool-season legume, M. truncatula, has been

chosen as a model molecular-genetic system for

legume biology (Cook 1999). A draft sequence of its

euchromatin, comprising approximately 94 % of all

genes, is currently available (assembly version Mt3.5;

Young et al. 2011). Three QTL for freezing tolerance

at the vegetative stage were identified in M. truncatula

after a cold acclimation period using the F83005-

5 9 DZA045-5-derived population (LR3 population;

Komlan et al. 2013). They were mapped on chromo-

somes 1, 4 and 6. The major QTL on chromosome 6

(Mt-FTQTL6) accounted for 40 % of the freezing

tolerance variation. The simple sequence repeat (SSR)

marker MTIC153, derived from an expressed

sequence tag (EST) with a Bcl-2-associated athano-

gene annotation (Julier et al. 2003), was reported as the

peak marker for this QTL but its sequence could not be

located on the M. truncatula chromosome 6 pseudo-

molecule. In parallel, a QTL related to freezing

damage was detected on P. sativum linkage group

(LG) VI under both field (WFD 6.1; Lejeune-Hénaut

et al. 2008) and controlled conditions (FD164.c;

Dumont et al. 2009) using the Champagne 9 Terese-

derived population (Pop2 population). M. truncatula

chromosome 6 and P. sativum LG VI were reported to

share conserved macrosynteny (Aubert et al. 2006;

Bordat et al. 2011). However, no common molecular

markers were available to determine whether Mt-

FTQTL6 and WFD 6.1/FD164.c are located on

corresponding genomic regions.

‘‘The objectives of the present study were to: (1)

place Mt-FTQTL6 on the M. truncatula genome

sequence; (2) enrich the QTL interval with markers;

(3) compare the chromosomal location of Mt-FTQTL6

with that of P. sativum WFD 6.1/FD164.c; and (4)

provide cross-species markers that would permit the

examination of Mt-FTQTL6 conservation in other

legume species.

Materials and methods

Marker development

Bacterial artificial chromosome (BAC)-derived

markers

Two markers from the integrated genetic map of M.

truncatula chromosome 6 (University of Minnesota

2006; http://www.medicago.org/genome/map.php),

004F08 and h2-166b10a, were transferred to the LR3

genetic map. These markers mapped on both sides of

marker MTIC153 (Komlan et al. 2013). The 21 BAC

clones spanning the interval between 004F08 and h2-

166b10a on M. truncatula genome assembly version

Mt3.0 were used to generate primer pairs for candidate

BAC-derived markers. With the release of the Mt3.5

genome assembly version and thus updates of BAC/

contig order and orientation, the interval was extended

to include 11 additional BAC clones located down to

mth2-9p17 [National Center for Biotechnology Infor-

mation (NCBI) GenBank accession (GB acc.)

AC146307]. Coding sequences from target BAC clones

were submitted to BLAST (Basic Local Alignment

Search Tool; Altschul et al. 1990) searches against the

NCBI M. truncatula nucleotide and high-throughput
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genomic sequence (HTGS) databases to avoid redun-

dancy. Selected non-redundant sequences were sear-

ched for highly similar EST/messenger RNA from other

legume species. Homologous sequences were aligned

using MultAlin (Corpet 1988). Primers were designed

on conserved exonic, preferentially intron-spanning,

regions. When no primers for candidate gene-based

markers could be obtained, markers were developed

on non-repetitive intergenic microsatellite-flanking

sequences. Microsatellite motifs were identified using

Perfect Microsatellite Repeat Finder (http://sgdp.iop.

kcl.ac.uk/nikammar/repeatfinder.html). The minimum

number of repeats was set to 5.

Synteny-based markers

MTIC153-corresponding EST (GB acc. AL369679) and

coding sequences from BAC clones encompassing the

boundaries of Mt-FTQTL6 were used as BLAST queries

to identify similar sequences in the G. max genome.

Candidate regions syntenic to Mt-FTQTL6 could thus be

located on G. max chromosomes 5, 9, 10, 16, 17 and 20. In

M. truncatula, homoeologous regions to Mt-FTQTL6

could be located on chromosomes 1 and 5 following M.

truncatula–M. truncatula and M. truncatula–G. max

BLAST and reverse BLAST searches. Among all blocks

syntenic to Mt-FTQTL6 in G. max and M. truncatula,

genes from the Mt-FTQTL6-containing region exhibited

the highest similarity to those on G. max chromosomes 9

and 16. Both G. max regions are homoeologous and

derived from the G. max lineage-specific paleotetraplo-

idization (ca. 13 million years ago; Schmutz et al. 2010).

Protein sequences from target G. max regions were used

to search for putative homologous M. truncatula EST,

HTGS, or nucleotide sequences using TBLASTN. NCBI

legume EST databases and the Lotus japonicus (Regel)

K. Larsen genome sequence (http://www.kazusa.or.

jp/lotus/blast.html) were also regularly searched for

highly similar counterparts ([85 % sequence identity).

All homologous sequences obtained by BLAST searches

were translated in silico (ExPASy Translate Tool; http://

web.expasy.org/translate), aligned and used for phylo-

genetic tree construction (phylogeny.fr; Dereeper et al.

2008). Orthologous sequences to those from G. max

chromosomes 9 and/or 16 that were identified by the

phylogenetic method were retained for primer design.

In all cases, primers were designed using the Primer3

tool (Rozen and Skaletsky 2000) with default parameters.

Maximum product length was generally limited to

500 bp. Degenerate nucleotides were included in some

primer sequences to ensure cross-species amplification.

The PrimerSearch tool, available at http://www.legoo.org

, was used to check the specificity of the generated primer

pairs for PCR amplification in M. truncatula.

Plant material

Markers developed in this study were first scored on

recombinant inbred lines (RIL) from M. truncatula

LR3 and P. sativum Pop2 populations. The LR3

population (178 F2:5 RIL) was developed by single-

seed descent from a cross between the French freezing-

tolerant line F83005-5 and the Algerian freezing-

sensitive line DZA045-5 (INRA, UMR AGAP, Mont-

pellier, France; http://www1.montpellier.inra.fr/BRC-

MTR). This population was used to map QTL for

freezing tolerance under controlled conditions (Kom-

lan et al. 2013). Total genomic DNA of the 178 RIL

from the LR3 population was provided by Dr. Marie-

Laure Pilet-Nayel (INRA, UMR IGEPP, Rennes,

France). The Pop2 population (164 F2:8 RIL) was

derived from a cross between P. sativum lines Cham-

pagne and Terese (Loridon et al. 2005). QTL related to

freezing damage were identified in this population both

under field and controlled conditions (Lejeune-Hénaut

et al. 2008; Dumont et al. 2009).

Large M. truncatula and P. sativum populations

were used to determine the order of co-segregating

markers on LR3 and Pop2 linkage maps, respectively.

A population comprising 454 M. truncatula F6 plants

was produced from the self-pollination of two residual

heterozygous lines (RHL): 76-06 (237 plants) and

76-11 (217 plants). The parental lines 76-06 and 76-11

are sisters of LR3 RIL#76. All three have residual

heterozygosity in the chromosomal segment harboring

Mt-FTQTL6 and are largely homozygous throughout

the rest of the genome (based on genotype data from

3–6 evenly-spaced microsatellite markers per chro-

mosome). A P. sativum population of 1,438 individuals

was obtained from the self-pollination of 132 parental

plants heterozygous for WFD 6.1/FD164.c. These

latter were selected among 189 total plants obtained

from crosses between line Eden and eight progenies of

a two-backcross plant that are heterozygous at WFD

6.1/FD164.c. The two-backcross plant was derived

from a cross between Eden (female, recurrent parent)

and Pop2 RIL#38 (male, donor parent). RIL#38 carries

alleles from Champagne at WFD 6.1/FD164.c. Large
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populations were grown in the greenhouse at an

average temperature of 18/14 �C (day/night) and a

16/8-h light/dark photoperiod.

Eleven legume species belonging to the hologale-

gina, phaseoloid/millettioid and genistoid clades of the

Papilionoideae subfamily (Doyle and Luckow 2003)

were used for marker transferability tests (Online

Resource 1), with one or two cultivars/accessions per

species. Seeds were spread on wet filter papers

contained in Petri dishes and left to germinate at room

temperature in the dark.

Leaflets from the M. truncatula RHL-derived

population and entire seedlings from the set of eleven

legume species were collected on 1-month-old and

7–10-day-old plants, respectively, frozen in liquid

nitrogen and stored at -80 �C until DNA extraction.

Stipules from 1-month-old P. sativum plants were

lyophilized and kept at -20 �C.

DNA isolation, PCR amplification and PCR

product sequencing

Total genomic DNA extraction was performed using a

Nucleospin 96 Plant II kit (Macherey Nagel, Düren,

Germany) according to the manufacturer’s instruc-

tions. Buffer PL1 was used for cell lysis. Elutions were

performed with 2 9 100 lL of pre-warmed ultrapure

water (70 �C). DNA quality and quantity were

assessed by agarose gel electrophoresis.

PCR amplification and sequencing were carried out as

described in Online Resource 2. Briefly, PCR reactions

were performed in a final volume of 15 lL with 10 ng of

genomic DNA template. Two different thermal cycling

protocols were employed and are referred to as touch-

down or three-step protocol. PCR products were

sequenced using BigDye Terminator v3.1 chemistry

(Applied Biosystems, Foster City, California, USA) on a

3130xl Genetic Analyzer (Hitachi/Applied Biosystems).

M. truncatula and P. sativum marker sequences are

provided in FASTA format in Online Resource 12.

Polymorphism identification and genotyping

techniques

Polymorphism tests were run using 8–16 individuals

including parental lines and segregating progeny.

Lines with residual heterozygosity in chromosomal

segments containing Mt-FTQTL6 and WFD

6.1/FD164.c were particularly valuable as they

brought direct evidence for the linkage of markers to

target regions. SSR and insertion/deletion (indel)

polymorphisms were detected and genotyped using

either agarose or capillary gel electrophoresis, depend-

ing on parental allele sizes. Detection of single

nucleotide polymorphisms (SNP) was performed

using a high-resolution melting technique (HRM).

Genotyping of SNP markers was conducted either by

HRM or competitive allele-specific PCR chemistry

(KASPar; KBiosciences, Hoddesdon, UK) for larger-

scale genotyping. Allele-specific and common primers

for markers genotyped by KASPar are provided in

Online Resource 8. Additional method details are

given in Online Resource 2.

Linkage analysis and QTL mapping

The genetic linkage map of the LR3 population was

described in Komlan et al. (2013) and that of the Pop2

population was described in Loridon et al. (2005) and

Aubert et al. (2006). The framework map of M.

truncatula chromosome 6, used in this study, comprises

four SSR, five random amplified polymorphic DNA

(RAPD) and five amplified fragment length polymor-

phism (AFLP) markers (Online Resource 3a). Markers

genotyped in the P. sativum Pop2 population were

mapped on an 18-loci framework map of LG VI [nine

SSR, four RAPD, one AFLP and three gene-based

markers] (Loridon et al. 2005; Aubert et al. 2006).

Markers having names starting with ‘‘NT’’ together with

P. sativum markers MTIC153 and Ps92K09T were

developed in this study. Marker Cabb was previously

used by Bordat et al. (2011) to genotype multiple P.

sativum segregating populations. A new primer set for

Cabb was used in this study: forward primer

50-TGTTCATTTGTTGTGTTTGAAGC-30 and reverse

primer 50-AAATTATAGCTTTTGCCTTAACACG-

30. Full information regarding genetic distances between

different M. truncatula markers is given in Online

Resource 3. As described above, large M. truncatula and

P. sativum segregating populations were derived from

parental lines showing heterozygosity at Mt-FTQTL6

and WFD 6.1/FD164.c, respectively. They were thus

treated as F2 populations and used to construct

high-resolution linkage maps for target regions. In all

mapping analyses, the goodness-of-fit to expected
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segregation ratios, 1:1 or 1:2:1 accordingly, were

assessed by the Chi squared test implemented in

JoinMap 4.1 software (Van Ooijen 2006). Similar to

MTIC153, BAC-derived and synteny-based markers

developed in this study all exhibited distortion from the

expected 1:1 segregation ratio (significant at P \ 0.01)

within the LR3 population showing a higher DZA045-5

allele frequency. No segregation distortion was noted

for new markers in the other mapping populations. The

grouping of markers into LG was evaluated using

independent logarithm of odds (LOD). The map order

was estimated using JoinMap 4.1 with the regression

mapping algorithm (RM; default parameters: recombi-

nation frequency \0.4, LOD[ 2) and the Kosambi

mapping function (Kosambi 1944). For comparison,

maximum likelihood mapping (MLM) was also used. In

all cases, the marker order was the same with both

algorithms. Linkage groups were drawn using Map-

Chart software 2.2 (Voorrips 2002).

QTL mapping analyses were performed using

interval mapping implemented in MapQTL 6 software

(Van Ooijen 2009). Freezing tolerance data, scored on

the LR3 population by Komlan et al. (2013), were

considered. For the Pop2 population, phenotypic data

obtained under field experiments (Lejeune-Hénaut

et al. 2008) and those from controlled conditions

(Dumont et al. 2009) yielded the same QTL position.

Only the LOD profile for data scored under controlled

conditions is shown in this paper. LOD thresholds for

QTL detection on M. truncatula chromosome 6 and P.

sativum LG VI were estimated using permutation tests

with a P value of 0.05 and 10,000 permutations.

Results

Location of Mt-FTQTL6 on M. truncatula

chromosome 6 pseudomolecule

Twenty-five primer pairs for candidate gene-based

(SNP/indel; 21 primer pairs) and intergenic SSR-

flanking (four primer pairs) markers were designed

based on full sequences of 16 M. truncatula BAC

clones from eight different contigs (see Materials and

Methods). Seventeen markers originating from 14

different BAC clones were found to be polymorphic

between F83005-5 and DZA045-5 (Online Resource 4).

All BAC-derived markers mapped close to marker

MTIC153 in an 8.3-centiMorgan (cM) interval

(Online Resource 3b). The resulting genetic order is

not completely concordant with the position of related

BAC clones either in M. truncatula assembly version

Mt3.0 or Mt3.5 (Online Resource 5). It agrees more

closely with the BAC contig order/orientation pro-

posed by version Mt3.5 for the upper part of the region

containing Mt-FTQTL6; however, it agrees with the

Mt3.0 version in the lower part. The orientation of

BAC contigs could not be resolved due to the absence

of recombination events. Interval mapping confirmed

previous results regarding Mt-FTQTL6 position with

marker MTIC153 as the closest marker to its peak. The

95 % confidence interval of Mt-FTQTL6 was located

between markers NT6001 and NT6019, and thus

between BAC clones mth2-156d20 (GB acc.

AC157779) and mth2-48m20 (GB acc. AC225497)

[Online Resources 5 and 6].

Construction of a gene-based linkage map for

Mt-FTQTL6 using synteny between

M. truncatula and G. max

The Mt-FTQTL6 confidence interval, bracketed by

markers NT6001 and NT6019, coincides with an

assembly gap on the M. truncatula chromosome 6

pseudomolecule (Online Resource 5). A synteny-

based approach using G. max as a reference genome

was carried out in order to develop close markers to

Mt-FTQTL6. Candidate orthologs for genes underly-

ing Mt-FTQTL6 were assumed to exist among genes

contained in an approximately 867-kb genomic region

on G. max chromosome 16 (35.17–36.04 Mb)

between Glyma16g31930 and Glyma16g32950 and/

or in its homoeologous region on chromosome 9

(Glyma09g26080-Glyma09g28090; 32.33–35.09

Mb). Glyma16g31930 and Glyma16g32950 have their

M. truncatula counterparts directly adjacent to gene/

BAC sequences corresponding to markers NT6001

and NT6019. Primer pairs corresponding to 17 distinct

genes yielded successful amplification from F83005-5

and DZA045-5 while primers corresponding to five

other genes did not produce any amplification (Online

Resource 7). Twelve markers were found to be

polymorphic between F83005-5 and DZA045-5 and

mapped within a 2.1-cM interval around MTIC153

(Online Resource 3c). Six BAC clones could be

identified as having potentially originated from the

Mt-FTQTL6-containing region based on markers

located within or in contiguous clones. These include
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two distinct unanchored BAC clones [mth2-154j21

(GB acc. AC146807) and mth2-53l24 (GB acc.

AC229695)] and four others forming a single contig

that was formerly placed nearer the distal end of M.

truncatula chromosome 6 (clone name, GB acc.:

mth2-12e18, AC229727; mth2-15l5, AC130804;

mth2-172p22, AC146818; mth2-50m10, AC174372).

Synteny between Mt-FTQTL6 and P. sativum

WFD 6.1/FD164.c

Twenty-nine BAC-derived and synteny-based mark-

ers originating from 26 distinct genes yielded positive

amplification in P. sativum lines, Champagne and

Terese, nine of which were polymorphic (Online

Resources 4 and 7). Seven markers were mapped in the

WFD 6.1/FD164.c region while two others, viz. BAC-

derived markers NT6039bis and NT6044, mapped

approximately 40 cM apart at the top of P. sativum LG

VI (Fig. 1b). Five anchor markers were obtained

between Mt-FTQTL6 and WFD 6.1/FD164.c corre-

sponding genomic regions, revealing QTL synteny

(Fig. 1). MTIC153 and co-segregating markers

NT6067, Ps92K09T and NT6092Ps are located at

0.3 cM from markers NT6012, NT6011 and Cabb, and

at 2.6 cM from marker NT6032 (Fig. 1b).

In order to develop additional markers in the upper

part of WFD 6.1/FD164.c, new primer pairs were

designed in conserved genes between the upper region

of Mt-FTQTL6 and corresponding G. max regions

(Online Resource 7). Out of nine markers with positive

amplification from Champagne and Terese, NT6083

and NT6078 were found to be polymorphic and to co-

segregate with other synteny-based markers (Fig. 1b).

Colinearity between M. truncatula, P. sativum

and G. max

To enable high-resolution comparative analyses,

markers linked to M. truncatula and P. sativum

syntenic freezing tolerance QTL-containing intervals

were used to screen large segregating populations,

comprising 454 and 1,438 plants, respectively. The

marker order on M. truncatula and P. sativum LGs was

found to be almost identical to that of the correspond-

ing genes on G. max chromosome 16, indicating a high

level of colinearity between the three species (Fig. 2).

A unique local rearrangement in marker/gene order

was observed between P. sativum and G. max. This

concerned markers NT6078 and NT6083 (Online

Resource 9). Data concerning the comparison of M.

truncatula and P. sativum LGs with the orthologous

region on G. max chromosome 9 are provided in

Online Resource 9.

Cross-legume transferability of synteny-based

markers

In addition to M. truncatula and P. sativum, the

transferability of 27 synteny-based markers was

evaluated across 11 legume species (Online Resource

1). Online Resource 10 summarizes the results of PCR

amplification. Seventeen to 24 markers (63–89 % of

the total tested markers) yielded positive amplification

from each cultivar/accession. Thirteen markers were

transferable across all tested species, among which

eight have been shown above to be located close to

Mt-FTQTL6 and/or WFD 6.1/FD164.c. In contrast to

markers targeting exons, intron-spanning markers

exhibited differences in product sizes across species

with seven out of 16 markers showing size variations

exceeding 100 bp (Online Resources 10 and 11).

Discussion

Synteny as a potential tool for circumventing

difficulties in M. truncatula genome assembly

With the advent of sequencing technologies, large

genomic resources are being developed from a wide

variety of plant species including legumes. Besides

genome sequencing and assembly efforts in M.

truncatula, the gene-rich genomic regions of the

model legume L. japonicus (Sato et al. 2008) and the

crop legume Vigna unguiculata (L.) Walp (Timko

et al. 2008) together with the whole genomes of the

economically important warm-season crop legumes

G. max (Schmutz et al. 2010) and Cajanus cajan L.

(Varshney et al. 2012) have been sequenced and

assembled. Since Mt-FTQTL6 was found to coincide

with an assembly gap, it was thus possible to turn to

other sequenced legume species for marker develop-

ment. The gene-space sequence from L. japonicus and

whole-genome sequence from G. max were consid-

ered here. Macro- and microsynteny have already been

reported between M. truncatula and L. japonicus

(Choi et al. 2004a; Cannon et al. 2006; Young et al.

Mol Breeding

123



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Tayeh, N., Bahrman, N., Devaux, R., Bluteau, A., Prosperi, J.-M., Delbreil, B. (Auteur de

correspondance), Lejeune-Henaut, I. (2013). A high-density genetic map of the Medicago truncatula
major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing

damage on Pisum sativum linkage group VI. Molecular Breeding, 32 (2), 279-289.  DOI : 10.1007/s11032-013-9869-1

2011) as well as between M. truncatula and G. max

(Choi et al. 2004a; Mudge et al. 2005; Schlueter et al.

2008; Shin et al. 2008; Joseph et al. 2009; Young et al.

2011). The most similar genes to those from the target

region on M. truncatula chromosome 6 were identified

on L. japonicus chromosome 2 and G. max chromo-

somes 9 and 16. Because the assembly of the Mt-

FTQTL6 putative orthologous region in L. japonicus

is not complete, marker development was conducted

using only G. max as a reference genome. High

conservation of gene content and order between M.

truncatula and G. max was observed based on the

number of Mt-FTQTL6-linked markers that could be

obtained and their order on the genetic linkage maps

constructed using either the LR3 or the RHL-derived

population. These results extend previous observa-

tions on synteny conservation between M. truncatula

and G. max and are particularly important since they

concern M. truncatula chromosome 6, reported to be

the shortest among all eight M. truncatula chromo-

somes, the most heterochromatic (Kulikova et al.

2001) and the richest in nucleotide-binding site–

leucine-rich repeat genes (Zhu et al. 2002). Taking

into account the effectiveness of this strategy, it can be

argued that similar efforts may be helpful to provide

markers linked to other residual gaps in the M.

Fig. 1 Anchor markers between M. truncatula and P. sativum
genomic regions harboring freezing tolerance-related QTL:

Mt-FTQTL6 on M. truncatula chromosome 6 (a) and FD164.c

on P. sativum linkage group VI (b). Solid red lines link anchor

markers (in bold) between QTL-containing regions. The

M. truncatula and P. sativum common marker, NT6044, is

underlined on both linkage groups. It mapped outside the

FD164.c confidence interval (41.3 cM distant from marker

NT6083 or other coincident markers) to the top of P. sativum
linkage group VI. For the sake of clarity, some of the tightly

linked or co-segregating markers on the M. truncatula
chromosome 6 were excluded from the figure (see Online

Resource 3 for full information). Horizontal axes show LOD

values. Dashed black lines correspond to the significance

thresholds estimated by permutation tests (LOD = 1.8 for M.
truncatula chromosome 6 and LOD = 2 for P. sativum linkage

group VI). Maximum LOD scores for Mt-FTQTL6

(LOD = 17.21) and FD164.c (LOD = 3.45) were obtained

for both MTIC153 and co-segregating markers
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truncatula genome and, as shown in this study, may

help assign unanchored BAC clones to their corre-

sponding genomic regions. The current M. truncatula

genome assembly version (Mt3.5) still comprises 273

physical gaps and 146 unanchored BAC/BAC pools

(Young et al. 2011).

Conservation of Mt-FTQTL6 in crop legumes

The conservation of genomic regions responsible for

quantitative traits has been reported between different

plant species and for multiple traits comprising, for

instance, QTL for resistance to Pyricularia grisea

between Hordeum vulgare L. and Oryza sativa L.

(Chen et al. 2003), bud burst QTL in Quercus robur L.

and Castanea sativa Mill. (Casasoli et al. 2006) and

fruit quality QTL among Fragaria 9 ananassa and

Malus or Prunus populations (Zorrilla-Fontanesi et al.

2011). It is often assumed that genes with conserved

functions may underlie syntenic QTL. Colinearity

between chromosomal regions harboring grain protein

content QTL in H. vulgare and Triticum turgidum L.

ssp. dicoccoides suggested orthologous NAC tran-

scription factors as responsible for the trait variation in

both species (Distelfeld et al. 2008). In legumes,

syntenic QTL have been identified among different

species. In fact, one of the first evidences for plant

orthologous QTL was provided by Fatokun et al.

(1992) who reported that conserved regions of Vigna

radiata (L.) Wilczek and V. unguiculata genomes

contain seed weight QTL. These QTL from V. radiata

and/or V. unguiculata were later reported to be

conserved in P. sativum (Timmerman-Vaughan et al.

1996), G. max (Maughan et al. 1996), Cicer arietinum

Fig. 2 Comparative linkage groups for M. truncatula (a), G.
max (b) and P. sativum (c) showing conservation of marker/gene

order on orthologous chromosomal segments. The G. max-

corresponding linkage group represents the gene order on G.
max chromosome 16 according to the genome assembly version

1.01. It was constructed using physical distances between

different genes with 250 kb being equivalent to one scale unit.

For presentation clarity, exceptions to gene spacing were made

for Glyma16g28170 and Glyma16g28980 (dotted bar).
Glyma16g28170 and Glyma16g28980 are located at 3.01 and

2.23 Mb from Glyma16g31860, respectively. Solid red lines
link markers from M. truncatula and P. sativum linkage groups

to corresponding G. max genes. Dotted red lines are used in the

case of co-segregating markers (where no certainty for order

conservation with G. max genes exists at present)
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L. and L. japonicus (Gondo et al. 2007). A genomic

region responsible for the variation in days to flow-

ering was suggested to be conserved in six legume

species including Vicia faba L., L. japonicus, P.

sativum, Lupinus angustifolius L., C. arietinum and M.

truncatula, based on synteny between corresponding

chromosomes (Cruz-Izquierdo et al. 2012). Almost at

the same time, D’Erfurth et al. (2012) have shown that

syntenic chromosomal regions containing seed weight

QTL on M. truncatula chromosome 5 and P. sativum

LG I harbor orthologous subtilisin-like proteases

responsible for the QTL effects.

The present study provided the first evidence for

Mt-FTQTL6 conservation in P. sativum. Colinearity

between the genomic regions containing Mt-FTQTL6

and P. sativum WFD 6.1/FD164.c (Lejeune-Hénaut

et al. 2008; Dumont et al. 2009) was determined based

on five common gene-based markers. Attempts to

compare Mt-FTQTL6’s position with that of QTL for

winter hardiness and/or freezing tolerance from Tri-

folium pratense L. (Klimenko et al. 2010), Lens

culinaris Medik. (Kahraman et al. 2004) and V. faba

(Arbaoui et al. 2008) were not successful. This is

mostly due to the genomic markers used for linkage

map construction in the respective studies not being

suitable for comparative mapping. A survey of the

literature yielded potentially important data from a

study on Medicago sativa L. subsp. sativa. Caston-

guay et al. (2010) have reported that a sequence-

related amplified polymorphism marker whose

sequence matches M. truncatula BAC clone mth2-

9p17 (GB acc. AC146307) is associated with freezing

tolerance in recurrently selected populations of M.

sativa subsp. sativa improved for their response to

freezing. The fact that marker NT6016 developed

from the mth2-9p17 sequence immediately flanks the

Mt-FTQTL6 confidence interval (Online Resource 3b-

c) and that the genomes of M. truncatula and M. sativa

are highly syntenic (Julier et al. 2003; Choi et al.

2004b) make Castonguay et al.’s finding potentially

important in the context of the present work.

Cross-legume markers (Online Resource 10) are

useful to: (1) investigate whether the aforementioned

freezing tolerance loci from M. truncatula and M.

sativa subsp. sativa reside in corresponding genomic

regions; (2) further examine Mt-FTQTL6 conserva-

tion in mapping populations and germplasm collec-

tions of agronomically important cool-season legumes

by studying the association of markers with

phenotypic variation for freezing tolerance; and (3)

assist the assembly of genomic contigs originating

from Ft-MtQTL6 orthologous regions in different

sequenced legume species allowing comparative

genomic sequence analysis. In addition to synteny-

based markers, some of the BAC-derived markers

would also be successfully transferable across legumes

and similarly used for the above-mentioned purposes.

Finally, in the light of the above results and

discussion, it appears that one of the primary goals

of future molecular studies on legume freezing

tolerance should be to investigate the orthology of

the genes underlying Mt-FTQTL6 and syntenic loci

from different species. In line with this, and as a first

step forward, fine mapping and map-based cloning of

Mt-FTQTL6 are currently ongoing taking advantage

of the markers reported here.
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providing P. sativum RNA-seq data, Cécile Godé for
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Delbreil B, Morin J, Petit A, Devaux R, Boilleau M,

Stempniak JJ, Thomas M, Lainé AL, Foucher F, Baranger
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