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Abstract. The current interest in accurate dependency parsing make it
necessary to build dependency treebanks for French containing both pro-
jective and non-projective dependencies. In order to alleviate the work of
the annotator, we propose to automatically pre-annotate the sentences
with the labels of the dependencies ending on the words. The selection
of the dependency labels reduces the ambiguity of the parsing. We show
that a maximum entropy Markov model method reaches the label accu-
racy score of a standard dependency parser (MaltParser). Moreover, this
method allows to find more than one label per word, i.e. the more prob-
able ones, in order to improve the recall score. It improves the quality
of the parsing step of the annotation process. Therefore, the inclusion
of the method in the process of annotation makes the work quicker and
more natural to annotators.

1 Introduction

Dependency-based methods for syntactic parsing have become increasingly pop-
ular in natural language processing in recent years [1]. Most proposed approaches
for dependency parsing are data-driven and require large sets of manually anno-
tated sentences, called treebanks. Needless to say, annotating such data is very
costly and time consuming. One usual way to alleviate the burden of manual
annotation is to automatically pre-annotate the data, so that annotators only
have to validate pre-annotated sentences.

Available treebanks for French are constituency treebanks that were con-
verted into dependency ones, e.g. [2]. While the conversion method that was
used is able to generate non-projective dependency structures [3], constituency
trees are always projective. It is then not surprising that converted dependency
trees do not reflect non-projective relations. As a consequence, data-driven de-
pendency parsers trained on these converted treebanks fail to produce non-
projective dependency structures. Developing a French treebank that contains
non-projective trees is therefore necessary for improving parsing accuracy.

A relevant work in this direction is that of Dikovsky [4] who proposed a frame-
work for jointly constructing a treebank and a grammar for French (CDGFr).



The result of this work is a treebank consisting of 3030 sentences annotated with
dependency structures (projective and non-projective) along with an annotation
environment called CDG Lab [5].

In CDG Lab, annotating a sentence is a three-step process. The first step is
the manual pre-annotation of the sentence. It consists of selecting either a gram-
matical class or a dependency label for each word through a selection form. The
computational time of the second step, the dependency analysis, is exponentially
proportional to the number of selected labels per word. So, the selection of one
label per word restrains the search space of the grammar-based analysis and
then make the analysis practical. The last step is a manual validation.

Filling the selection form is a tedious task for the annotators. In this paper,
we propose to automatize the sentence pre-annotation step in order to alleviate
the work of the annotator through the building of large dependency treebanks.
We replace the selection form by a method using a maximum entropy Markov
model to provide dependency labels and selecting one or more dependency labels
for each word depending on their probability score. The method reaches the label
accuracy scores of a standard data-driven parser, MaltParser [9], in addition to
providing more than one label per word. Moreover, this number can be controlled
to impact positively the grammar-based dependency parsing. Then, the parsing
step becomes a trade-off between the preservation of a high recall score and
acceptable parsing time in order to reduce the error correction rate and therefore
the whole time of the annotation process. Finally, the use of the automatic label
pre-annotation tool facilitates and speeds up the creation of new large French
dependency treebanks containing both projective and non-projective trees.

The rest of this paper is organized as follows. In Section 2, we first review
the related work on methods for building dependency treebanks. In Section 3,
we present the background of dependency parsing and describe the process of
annotating a sentence in CDGLab. Then, we detail our automatic pre-annotation
method in Section 4 and examine the results in Section 5. Finally, we discuss the
benefit of the pre-annotation process in the building of dependency treebanks in
Section 6 and conclude.

2 Related Work

Dependency treebanks are now available for many languages [6]. Depending on
the available tools and resources, sentences may be fully or partially annotated
with Part-Of-Speech tags and dependency relations.

On the one hand, conversion methods can be applied to convert constituency
treebanks to dependency ones. The converted treebanks require no or very few
corrections after conversion due to the quality and quantity of the syntactic and
grammatical information given by the original constituency treebanks. Such kind
of method has been applied to French and also to English through the building
of the Penn Treebank [7].
On the other hand, the development of large treebanks requires several auto-
matic and manual steps. The automated steps occur on various levels of analysis



(segmentation, POS-tagging, parsing) and require the validation of the annota-
tors. The benefit over the conversion methods is to be independent from other
formalisms like the constituent one. For example, the annotation process of the
Prague Dependency Treebank [8] includes its own level of analysis (e.g. morpho-
logical, analytical, tectogrammatical). Furthermore, many tasks on treebanks
building exploit the performance of a data-driven dependency parser, such as
the MaltParser [9] : this is the case for various work (e.g. for Indonesian [10],
Latin [11], Turkish [12]) to pre-annotate their data.

An example of a dependency treebank built from scratch is the speech de-
pendency treebank for French. Here, Cerisara and al. [13] perform a manual
segmentation step before the tagging and parsing steps. Nevertheless, in our
work, we do not want to use a converted treebank to train a model because it
does not include non-projective trees. And, in order to provide trees consistent
with the CDGFr, we do not use a data-driven parser.

The automatic pre-annotation process often includes POS-tagging. In the
case of non-projective dependency parsing, Alfared and al. [14] showed that
the upstream disambiguation of POS-tagging is not sufficient to disambiguate
the grammar-based parsing. Our annotation process uses a pre-annotation step
which selects one or more dependency label for each word as well as the POS.
The spirit of this particular task is in the way of supertagging [15]. But, here
we want to predict a single information, the dependency label rather than a
complex structure like a type (Categorial Grammar) or an elementary tree (Tree-
Adjoining Grammar). The complexity of this task is halfway between POS-
tagging and supertagging.

3 Annotation Framework

3.1 Background

The dependency representation allows to represent both projective and non-
projective relations existing in natural languages. A dependency tree containing
at least one non-projective dependency is called non-projective. For a depen-

dency h
l
−→ d the label l represents the function binding the head h with the

dependent d. Such a dependency is non-projective if at least one word located
between the head and the dependent of the dependency does not depend on the
head. Figure 1 presents an example of a non-projective dependency tree where
the non-projective dependency connects a verb with a distant clitic.

The categorial dependency grammar of French [4], used to build the trees, has
116 different dependency labels. All dependencies with the same label describes
specific information about the syntax of French. Most of the dependency labels
can be gathered into larger syntactic groups describing more general information.
For example, objects are separated into 7 dependency labels differentiating the
grammatical cases (dative, accusative, etc.). Most of the dependency labels (89)
are exclusively associated with projective dependencies. But some of them can
be associated both with projective and non-projective dependencies. Among the
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Fig. 1. Dependency tree for the sentence “Y avez-vous pensé ?” (“Did you think about
it ?”). The clitic “y” (“it”) depends on the verb “pense” (“think”). It refers to the
indirect object of the verb (dative case).

23 dependency labels that can be combined with non-projective dependencies,
the most frequent ones are clitics, negatives, objects, reflexives and copredicates.
Four dependency labels are exclusively associated to non-projective dependen-
cies, they are particular cases of aggregation, copula, comparison and negation.

The categorial dependency grammar of French, the non-projective depen-
dency treebank and the parsing and treebank development environment that we
use in this study is not yet publicly available, we have recovered them directly
from the authors. In our work we use a treebank made up of sentences of various
grammatical styles. A large part of these sentences (64%) were initialy used to
develop the grammar of French. The whole corpus gathers several corpora com-
posed of sentences from newspaper, 19th and 20th century literary works and
plain language. We will call the joining of these treebanks the CDG Treebank.
It is composed of 3 030 sentences (42691 words). Each sentence is paired with a
dependency tree. The number of non-projective trees reaches 41.2% of the CDG
Treebank. But, among all the dependencies, the non-projective ones represent
3.8% of all dependencies. The rate of non-projective dependencies varies from
1.3% to 4.9% according to the corpus1.

⚓
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Il ferme les yeux , aveuglé .

Fig. 2. Dependency tree for the sentence “Il ferme les yeux, aveuglé.” (“He closes
his eyes, blinded.”). The modifier “aveuglé” (“blinded”) depends on the subject “il”
(“he”).

1 The sentences that were used to develop the grammar were choosed to cover all the
syntactic phenomenon of French including the non-projective ones. Consequently, the
rate of non-projective dependencies is more significant in the development corpus.



3.2 Annotation Process

The annotation process we propose includes four steps :

– sentence segmentation;
– automatic label prediction;
– dependency analysis;
– validation of the dependency tree.

The sentence segmentation is performed through a segmentation module which
selects the longer lists of tokens recognizable by the lexical version of the CDGFr2.
Here, we focus on the second step for which the role is to select the proper de-
pendency label of each word3. Here, we call “the label of a word” the label of
the dependency coming from the head to the word that is the dependent of the
dependency. These labels correspond to the grammar’s categories. For example,
the labels of the words for the sentence used in Figure 2 are shown in Figure 3.

Il ferme les yeux , aveuglé .
pred S det a-obj cm modif fs

Fig. 3. The corresponding labels of the words for the sentence “Il ferme les yeux,
aveuglé.”.

Each word is also associated with a set of possible grammatical classes. The
grammatical classes are extended tags (compared to classical part-of-speech tags)
used by the CDGFr to categorize the words. The possible labels depend on
the set of the possible classes of a word. Among these given possibilities, our
goal is to select one or more labels for each word that are consistent with the
categorial dependency grammar.The automatic procedure of this particular step
is explained in detail in Section 4.

This pre-annotation step reduces the ambiguity of the next step, the grammar-
based dependency analysis. Here, a CKY-based algorithm is applied to find all
the possible dependency trees for the sentence. With the label pre-annotation,
the analyser only considers the rules in adequacy with the selected categories
(labels). This way, the number of generated dependency tree candidates greatly
decreases. For example, the analysis of the sentence presented in Figure 2 gen-
erates 1518 (projective or non-projective) dependency trees without restrictions
on labels. Selecting the proper labels reduces the number of possible dependency
trees to 2.

Finally, the fourth step of the annotation process is validation. The task of
the annotator involves annotating positively or negatively the dependencies of

2 A recognizable list of tokens is a list constituting a lexical unit and not included in
a black list which excludes some frequent errors of concatenation.

3 We call words the possible combination of tokens that form a lexical unit. For in-
stance, “Président Bill Clinton” has three tokens but corresponds to one word.



the resulting dependency tree and selecting the proper label and segmentation
of the words for which a wrong label or segmentation was selected. Afterwards,
a new analysis (iteration step) is performed taking account the annotations to
approach the correct dependency tree (consistent with the grammar). This step
can be performed as often as necessary and can include again the different steps
of the pre-annotation process.

4 Sentence Pre-Annotation

Automatic label pre-annotation is the core of our annotation process and requires
information about words and their grammatical context. Accordingly, we start
by tagging the Part-Of-Speech tags.

4.1 POS-Tagging

The categorial dependency grammar makes use of 18 grammatical classes to
categorize the words (e.g. noun, verb) and 10 for punctuation marks (e.g full
stop, semicolon). The disjunction of some classes (e.g punctuation, particular
verb types) is not necessary from a tagging point of view and can be ambiguous.
Moreover, this tagset is not in adequacy with the tagset standardly used in
French POS-taggers. Thus, in order to use a standard POS tagger and a tagset
standardly used by the (French) community, we decided to convert our tagset
into the TREEBANK+ tagset. This tagset consists in 28 tags extended from
the classical tags used by the French Treebank [2], known to be efficient for
parsing [17]. Furthermore, this tagset is used by MElt, a well studied French
POS-tagger that achieves more than 97% accuracy on French [18].

Most of the grammatical classes correspond to TREEBANK+ tags, but some
classes (e.g expletives, collocations, partitives) have no equivalent tags. These
ones would make a direct conversion ambiguous. Therefore, we decided to con-
duct a mixed conversion. First, we tag automatically the whole corpus with
the MElt tagger. Second, we correct the tags using basic rules for correction
referring to the (non-ambiguous) original grammatical classes annotated in the
CDG Treebank. The rate of correction on the tagset conversion reaches 6%. The
most frequent errors are due to the ambiguity existing with adjectives acting as
common nouns or past participle verbs acting as adjectives. Furthermore, some
errors appear because of the differences between the sentences of the training
corpus, a variant of the French Treebank [2], used by the MElt tagger and the
sentences of the CDG Treebank 4. The newly converted data are used in the
label tagging experiments.

4 One of the problems is that the training corpus contains very few imperative sen-
tences and the CDG Treebank contains significantly more. Then, MElt is not able to
find most of the imperative verbs. A lot of imperative verbs are tagged as indicative
verbs. Others are tagged as nouns because this conjugated form are often located at
the start of sentences with a first capital letter. and often tags the personal pronoun
“tu” (“you”) as a verb because “tu” is also a conjugated form of the verb “taire”
(“keep quiet”).



4.2 Label Pre-Annotation

Here, the goal is to find the labels but not the dependencies associated with the
words. This automatic step should alleviate the work of the annotators. We need
to use a rapid method to conduct the tagging. The parsing methods, trying to
find both the label and the dependency, achieve equivalent scores (label accu-
racy) to these obtained by a method dedicated to tagging. However, we want to
produce, for each word, a restricted list of the best labels with their probability
scores. Therefore, among the probabilistic graphical models we choose the max-
imum entropy Markov model (MEMM) [19] to achieve this task because of its
speed and the fact that the words are tagged independently5.

To predict the labels, we try different combinations of features and test re-
sults. The features result in a combination of information from the lexical and
grammatical context (a window size of 7 around the words and of 11 around the
POS-tags). Then, we retrieve the 20 best labels for each word from the tagging.
The list of labels is pruned from the labels which are not in the list of possible
labels.

4.3 Label Sorting

Our model allows to keep control over the number of labels assigned to each
word. In order to reduce the ambiguity, we want to eliminate the bad labels (i.e.
the less probable ones) from the list of possible labels while preserving a high
recall score. Each label (associated with a word) gets a probability score from the
pre-annotation step. So, for a word, the idea is to eliminate the labels for which
the probability score pmax is lower than α.pmax where pmax is the probability
of the best label (the more probable one) and α ∈ [0, 1].

5 Experiments and Results

5.1 Experimental Settings

To evaluate the label pre-annotation process, we conduct a 10-fold cross-evaluation
on the CDG treebank. Each experiment is performed on sentences POS-tagged
with Melt.

To estimate the results, we calculate the precision of the label pre-annotation
at rank one. It means, we calculate the percentage of words for which the first
assigned label (i.e. the more probable) is the correct label. This precision cor-
responds to the label accuracy (LA) calculated on the output of a dependency
parsing. Furthermore, we want to find a trade-off between increasing the recall
on label accuracy and preserving a small number of labels per word. So, we eval-
uated the interest of the label sorting by varying the α parameter and connecting
the recall with the number of labels assigned to each word.

5 We use the software Wapiti [20] which is able to deal with a large tagset.



5.2 Results of the Label Pre-Annotation

Table 1 presents the results of the label pre-annotation. The scores do not reach
the scores of projective dependency parsing of French that achieve more than
88% label accuracy. Actually, the scores are not comparable because of the con-
stitution of the treebanks exploited in standard work. These commonly exploited
French dependency treebanks, in addition to being projective, contain more sen-
tences and use a smaller label set. Thus, to establish a baseline, we trained a
transition-based parser, the MaltParser [9], on the sentences of the CDG Tree-
bank. To exploit the potential of MaltParser we tested its available algorithms
for non-projective dependency parsing. The best scores result from the use of the
covnonproj algorithm and optimized features. Our label pre-annotation scores
are slightly better than the label accuracy obtained from the data-driven depen-
dency analysis.

Table 1. Evaluation of the label pre-annotation comparing our method with the per-
formances of MaltParser.

Label accuracy Sentence accuracy

All Proj. Non-proj. All Proj. Non-proj.

Our method 84.7 84.9 78.6 24.4 26.4 22.1
MaltParser 83.0 83.6 69.2 24.3 26.3 21.7

An interesting question is whether the non-projectivity affects the results.
Table 1 also shows the accuracy of the label pre-annotation on the words for
which a projective dependency ends on, in the original dependency tree, and for
which a non-projective dependency ends on. The accuracy on words associated
with a non-projective dependency achieves a lower score than for the words
associated with a projective dependency. But, we note that our method achieves
a better score than the MaltParser, on the words originally attached with a
non-projective dependency. However, due to the small number of non-projective
dependencies in the treebank (4%) the global score is weakly affected. The lower
scores for words associated with non-projective dependencies can be explained
by the fact that they are often attached by distant dependencies. This is not the
case of current negation or clitization but some labels such as the aggregation or
co-predication commonly attach distant words. Moreover, the context of distant
dependents greatly differs from a sentence to another and thus cannot be learnt
by the model.

Table 1 shows as well the accuracy on the sentences for both projective and
non-projective ones. The non-projective dependencies do not represent a large
part of the dependencies but are spread on many sentences (40%). So the effect
of the non-projectivity on the accuracy on sentences is important.

A closer look shows that the best scores of accuracy among the different
labels are achieved by the most frequent labels. They cover the most general



syntactic function of French as subject, accusative object, determiners, modifiers,
genitive prepositions. Likewise, the less frequent labels, describing very particular
syntactic roles, are often subcategories of more general functions as the copulas,
the auxiliaries, the object, etc. There are 34 labels appearing less than 20 times
in the corpus which represents almost one third of the labels. These rare labels
are not found at high ranks. This problem shows the importance of the label
sorting. It allows to reach the second or more probable label for each word
according to a given threshold. Figure 4 presents the results of the label sorting
method as described in section 4.3. It highlights the progression of the recall
according to the average number of more probable labels retrieved per word. For
this experiment, the α parameter varies from 1 to 5.10−5.
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Fig. 4. Evaluation of the recall depending on the average number of labels found ap-
plying a sorting based on the probability scores.

5.3 Benefits of the Label Pre-Annotation on the Parsing Step

We evaluate the effect of the label pre-annotation on the parsing step of the an-
notation process (i.e. parsing with categorial dependency grammar). We present,
in Table 2, the best parsing score we could obtain and the parsing time induced.
The evaluation is performed on the CDG Treebank. The attachment scores are
computed on the best dependency tree of each parses6.

The first experiments are performed using the values of α indicated on Fig-
ure 4. For each experiment, the α parameter is fixed for the whole corpus. The
last experiment is performed varying the α parameter according to the length
of each parsed sentence. The longer the sentence, the higher (restrictive) α is.

6 The best dependency tree is the tree having the most correct dependencies



The first threshold starts with α = 0.006, allowing high recall scores for short
sentences (< 10 words). Then, intermediate floors are defined until the last one
(α = 0.9) which preserves a small number of labels per word in order to parse the
longest sentences (> 50 words) in reasonable time. Overall, defining progressive
floors allows to find a trade-off between the parsing time and the attachment
scores on the whole corpus. The goal is to conduct both a pre-annotation and a
dependency parsing which are both accurate and not to long, in order to speed
up the annotation process and alleviate the work of the annotator.

Table 2. Evaluation of the dependency parsing using the pre-annotation tool to as-
sign one or more labels to each word. We present the best labelled attachment score
(LAS) and the best unlabelled attachment score (UAS) that could be reached with this
method.

Label sorting Labels/words
Scores

Time (sec./sentence)
LAS UAS

Fixed α

1.01 77.62 83.59 0.3
1.17 81.10 86.47 0.8
1.45 87.40 91.34 2.3
1.95 91.94 94.62 7.2

Progressive α 2.04 90.16 92.89 3.0

We notice that the attachment scores increase slowly while the parsing time
increases exponentially using a fixed α. The parsing time is decent for short
sentences but explodes for long sentences when the number of pre-annotated
labels per word is too large. The use of a progressive α is an interesting alternative
which increases the attachment scores for short sentences (i.e. better chances to
get the correct dependency tree increasing the label recall) and decreases the
parsing time for the long ones (allowing to build at least one tree in a reasonable
time).

6 Discussion about the Annotation Process

In order to estimate the impact of the pre-annotation step in the development of
a dependency treebank we propose to annotate a small set of sentences from the
different sub-corpora of the French treebank Sequoia [21]. We evaluate qualita-
tively the annotation process for two methods. The first one is the method using
our automatic pre-annotation process, and the second one is the manual anno-
tation process that uses word’s label selection form. For a fair comparison of the
methods, the annotation is performed on equivalent sentences (i.e. equivalent
lengths).

The annotation of the sentences shows that our methodology is more suitable
for the annotators. An advantage of the automatic pre-annotation is to skip the



fastidious step of pre-selecting the labels. The annotators only have to validate
the dependency trees. The benefit of the pre-annotation process is concrete on
sentences of average and small length (<35) but minor on very long sentences.
But overall, the average time saved with the first method is around half of the
second.

Moreover, the assessment of the annotation highlights that some sentences
of the Sequoia treebank are non-projective. The dependency annotation reveals
the distant relations and the non-projective constructions that the constituent
can not reveal. Around 28% of the annotated sentences have at least one non-
projective dependency.

7 Conclusion and Future work

We show that the scores of a label tagging method using a maximum en-
tropy Markov model are equivalent to the label accuracy scores obtained with
a standard data-driven dependency parser. These scores do not reach the scores
reported in works on projective dependency parsing because finding the non-
projective dependencies is a difficult task. However, the method reaches inter-
esting recall scores which allow to retrieve the right labels while keeping control
over the ambiguity reduction. Consequently, this automatic pre-annotation tool
included in the whole annotation process relieves the work of the annotators.
Part of the time is saved and the annotation process is more accessible. Avoid-
ing the pre-annotation step is greatly appreciated even if the validation step
requires some corrections.

Moreover, the evaluation of dependency parsing using the pre-annotation tool
shows that we could obtain good scores on non-projective dependency parsing.
We plan to improve the sorting of the dependency trees in order to propose
a complete parser which is able to deal with non-projective constructions and
reach appropriate scores.
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