
HAL Id: hal-01003871
https://hal.science/hal-01003871v1

Submitted on 10 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy Conscious Web Apps Composition
Aurélien Faravelon, Éric Céret

To cite this version:
Aurélien Faravelon, Éric Céret. Privacy Conscious Web Apps Composition. IEEE Research Challenges
in Computer Science (RCIS) 2014, May 2014, Marrakech, Morocco. pp.1-1. �hal-01003871�

https://hal.science/hal-01003871v1
https://hal.archives-ouvertes.fr

Privacy Conscious Web Apps Composition

Aurélien Faravelon

SIGMA team

Grenoble Informatics Lab – 41 rue des Mathématiques

38041 Grenoble Cedex 9, France

aurelien.faravelon@imag.fr

Eric Céret

Grenoble Institute of technology

Grenoble Informatics Lab – 41 rue des Mathématiques

38041 Grenoble Cedex 9, France

eric.ceret@imag.fr

Abstract—So called “apps” are widespread today on the

Internet. Most of them allow users to extend the range of

functionalities their websites offer. However, they potentially

jeopardize the privacy of users. Indeed, they collect, store and

process personal pieces of information. Recent studies show that

users feel they lack control over information. They also show that

users distrust apps providers and would rather turn to their

friends or family when they choose apps. In this paper we

propose a model-driven approach to empower end-users with an

extended control over their information. Our work is

implemented as a web-based tool to compose apps and manage

end-users privacy requirements. Our work showcases the

unexploited possibilities of current web protocols and

technologies in terms of privacy management.

Keywords—Privacy, Model-driven Engineering, Web

Applications, end-user programming

I. INTRODUCTION

Web applications are part of our lives. With more than 1.2
billions of users, Facebook, for instance, is everywhere. Most
web applications, be them social networks, musics services or
software code repositories – are “social”. They allow users to
interact and enhance their experience with the one of other
users. Most of these applications also allow users to install
third party applications. For instance, Candy Crush Saga, a
well-known online game, is available on Facebook and gathers
more than 150 millions of users.

Social features and third party applications are important
factors in the success of current web applications, a flourishing
economic sector. However, they also generate fears. Recent
surveys show that users feel they are loosing control over their
data [5][7]. As a result, they do not trust applications providers
when it comes to managing their data, especially when they are
sensitive. Such feelings are a brake to the acceptance of new
applications. They may result in less sharing among users or
suing and boycott of some applications. They demand extra
attention to privacy management.

Tools are missing to address these feelings. In this paper we
address this lack. We focus specifically on privacy
management in third-party applications use. We diagnose two
causes to the feeling of lack of control that users express. First
of all, users cannot freely chose the third party apps they want
to work with. They can only select the applications developed

for a specific platform – such as Facebook. Secondly, when
users select an application, they can usually access the
application's privacy policy. However, this policy is often
unclear or incomplete. Thus, users cannot actually make an
informed consent when it comes to selecting a third-party
application.

This problem is at the center of many current debates. For
instance, in august 2013, groups of private life defenders sued
Facebook. The company agreed to pay 20 millions dollars for
using members "likes" as endorsements for advertising, and
also to modify its rules to "give members greater control when
it comes to how their information is used"1. In France, at the
same time, a consumer organization says about Google, Twitter
and Facebbok that they record, store and process all private
information of their users2. In january 2014, Google was
ordered to pay 150,000 euros by a french government office for
its policy about data confidentiality3. In United Kingdom,
according to a survey, 92% of adult users feel uncomfortable
when sharing personal data on social networks, while 55% are
feeling more comfortable when sharing these data with
governmental institutions, showing that the problem really is
about private sector companies4. Researchers also notice an
increasing reluctance to share personal data[7].

As a result, empowering users with means to better control
their data diffusion is essential to foster the acceptance of web
applications. Users must be provided with relevant information
– they must now who uses the application for instance – and be
able to express fine-grained access control requirements. It's
challenging. It demands to retrieve a large amount of data and
to accommodate the lack of end-users' technical expertise.
Most current works on privacy management in application
composition are dedicated to expert users and are thus
irrelevant to our problem. On the other hand, end-user
programming is a promising way of research but has not be
applied to privacy management.

In order to leverage this difficulty, we propose a model-
driven approach divided in two levels:

1 http://tinyurl.com/kqdvmg8
2 http://tinyurl.com/lj5788o
3 http://tinyurl.com/ln5dcpp
4 http://tinyurl.com/l3z5vrj

Fig. 1. Composing web applications to edit online pictures

• The configuration level allows end-users to describe

the composition of a set of applications and the access
rights to their data. Users rely on information provided
by the developers of the applications. The specification
level provides a metamodel divided in two parts. The
technical part provides developers with vocabulary to
describe their applications. The nontechnical part frees
end-users from technical details.

• The implementation level allows to run the

composition of application. It relies on code generation
to produce the composition and the access control code.
Automated code generation addresses the lack of end-
users technical expertise: they do not have to write
code.

Our main contributions are twofold. First, we bring a
metamodel to specify a privacy-conscious composition of
web applications. Then, we propose an execution platform
for this metamodel to execute the specifications of end-
users while addressing their lack of technical expertise.

Our work is implemented as a website which allows to
compose web applications and specify access rights. This
website is realized with the same technologies as the ones most
current web application use. It aims at showcasing that these
technologies allow to manage privacy more accurately than
what is currently done. We apply our website to a real use case
in order to demonstrate our approach's feasibility.

The paper is organized as follows. Section 2 presents our
use case. In Section 3, we draw a state of the art in order to
identify the lacks in current works. Section 4 introduces a
global outlook over our approach. In Section 5, we detail our
metamodel, its layers and the way we configure web
applications to compose them. Section 6 outlines our execution
level. Eventually, we presentation our results and our work's
validation in Section 7 before discussing our contribution in
Section 8.

II. USE CASE

In this paper, we posit that a user wants to edit and print
pictures from his/her social network profile. Applications to do
so already exist. Their composition is represented as a process
on Figure 1. Users may edit pictures stored on a social network

(here Facebook) with an online editor (here Pho.to) and print
them (here with Pwenty) while paying for this service with an
online bank account (here Paypal) and send the pictures to an
online address book (here Gmail). However current web
application do not allow end users to run this process while
protecting their privacy for the following reasons:

• Each application is produced by a specific provider.

Users have to authenticate each time they interact with
an application either with an account issued by the
application or associated to it. For instance, users can
login to the printing application with their social
network account. This feature is called “single sign on”
(users sign on multiple applications with a single
account).

• Applications rely on the same types of data. For

instance, three out of the applications we consider
process photos. However, they represent and describe
these data types with specific vocabulary. A common
vocabulary to connect applications which process
pictures – for instance – is missing.

• The composition processes sensitive data. Photos can

display intimate scenes and banking information are
especially sensitive. When an application gains access
to these data, users loose control over what the
application will do. For instance, it may sell the data to
its business partners. As a result, users should be able to
finely control the datasets they share – by restricting the
range of the set – and the life time of the access rights.
It is currently impossible.

• Binding the applications requires code. This code is

currently realized by developers each time they want to
connect two applications. End-users cannot connect
two applications if such code does not exist. For
instance, there is no connection between Facebook and
Pho.to. Thus, users cannot process their Facebook
pictures with Pho.to.

In our work, we strive to answer these difficulties in order
to allow the end-users to compose web applications while
protecting their privacy of end-users.

III. STATE OF THE ART

This section presents how composing web applications
while enforcing privacy is presented in literature.

A. Composing web applications

 Mainstream web applications are often realized as
Representational State Transfer (REST) services [13]. REST
presents itself as a software architecture style whose structure
is an abstraction of the world wide web. It sees this structure as
a distributed resource management system. Anything with a
name – a picture, a person or a bank account – can be a
resource [13]. REST services are web services. However they
are distinct from traditional web services defined by [10].
Traditional service-oriented architectures focus on the
functionalities of services and their selection. REST, on the
contrary focuses on searching and processing resources.

As a result, there is no mainstream composition language
for REST services. Traditional service composition languages,
such as the Business Process Execution Language (BEPL),
needs extensions to accomodate REST services [1][11][13].
Actually, BEPL relies on languages such as the Web Service
Description Language (WSDL) or the Simple Object Access
Protocol (SOAP) which are different from the Hypertext
Transfer Protocol which the REST architecture uses.

Extensions to BEPL are only suitable for expert users.
Indeed, end-users are accustomed to web pages and rich
interfaces. Thus, REST services composition is often displayed
as a mash up. [8] shows that the composition of web services
relies on API and resources identified by Universal Resource
Identifiers (URI). Authors underline that such a composition is
ad hoc. Developers write code to bind specific applications but
a generic framework to connect applications is missing.

Eventually, user-centered tools, such as Really Simple
Syndication (RSS) feeds aggregator – such as Yahoo!Pipes –
allow end-users to compose RSS feeds produced by a set of
applications. However, such tools do not allow users to modify
the feeds by publishing a new message or uploading a new
picture for instance.

B. Protecting privacy in web applications

Composing web applications implies sharing sensitive
pieces of data. When applications gain access to such data, it
becomes impossible to control what they do. They may sell
data for instance. As a result, access control is crucial. In REST
there exist security protocols which permit to authenticate users
and applications and control and applications permissions.
Oauth5 is the most used protocol. Most of the time, when a user
wants to share his/her data with a third party application, a pop
up appears and asks the user to review the third-party
application's permissions. Figure 2 displays an example of such
a pop up for Gmail6.

Fig. 2. Pop up to accept the use of a third party application.

Yet, the implementation of protocols such Oauth may turn
them inefficient [14]. Sometimes they allow hackers to steal
the identity of users. Moreover, the confirmation phase is
crucial. It allows users to review the pieces of data the

5 http://oauth.net/2/
6 http://gmail.com

TABLE I. COMPARISON OF THIRD PARTY APPLICATION CONTROL MEANS IN FIVE WEB APPLICATIONS

Application Deezer Facebook Google Twiiter GitHub

Authentication Oauth 2.0

Documentation
http://tinyurl.co

m/888a82e

http://tinyurl.co

m/phcf7kg

http://tinyurl.com/phcf

7kg

http://tinyurl.com/888a8

2e
http://tinyurl.com/nbp3zyr

Users must consent to use

third-party application
Yes

Third-party application

Identity
Name, logo

Third-party application

description
No Optional

Provider contact Non eEmail Website

Customization of access rights No

Permission description List of accessed data List of what the application can and can't do List of what the application can do

Level of detail in the

description

Low. No list of what the

application can do with data.

Vague terms.

High High
Low. No description of the accessed

data

Other information No Privacy policy No

application want to access and the effect of such a sharing.
However, each web application implements this confirmation
phase in its own way. Users may not get all the information
they need to make an informed consent or this information may
be unclear or imprecise. Table 1 compares the information five
web applications provide users with when they want to use
third party applications.

The five applications use Oauth 2 a security protocol.
However, Oauth is only a specification. Each application has
its own implementation of the protocol. All the application
allows users to review the permissions the third-party
application they want to use requests. No application allows
users to restrict the set of data they grant access to. Eventually,
some descriptions are vague. For instance, users are warned
they grand access to their Facebook “public profile” without
the definition of this profile being outlined. Eventually, some
pieces of information are missing. Surveys [5][7] show that
users rely on people close to them to trust third party
applications. No application provide users with information
about who uses the third party application they want to use.

C. Model-driven security, a promising solution

Web applications process the same type of resources. For
instance, most social networks store instant messages.
However, each application has a specific representation of
these resources. Furthermore, each application relies on a
specific implementation of security and implementation
protocols. Most of the time, the binding between two web
applications is ad hoc: developers create code for specific
applications and have to realize this for each application they
want to bind their application to.

In Service-Oriented Applications, abstract languages allow
to focus on services functionalities and not on their
implementation to compose them through a model-driven
approach [2]. A metamodel provides the vocabulary necessary
to describe the composition of a set of functionalities. Model to
code transformations allow to generate the code necessary to
run the service composition. Model-driven engineering also
allows to specify at an abstract level security features such as
access control and generate the code to enforce an access
control policy [4], [16]. Such a policy is efficient to protect
priacy [4].

However, these approaches are dedicated to expert users.
[3] shows that process languages are too complex for end-
users. The author shows that identifying abstraction levels
allows to gather people with different levels of expertise, such
as end-users or developers. Eventually, the author shows that a
concrete syntax is necessary to help end-users capture a
process.

Modeling is at the heart of end-user programming.
However, an approach which reconciles end-user specifications
and technical details in order to run a privacy aware
composition of web applications is missing.

D. Conclusion to the state of the art

Composing Rest services remains complex and end-users

cannot do it. Furthermore, users lack tools to configure their

data diffusion. As a result, users feel they lack control over

their data. Existing solutions do not address these fears. In the

rest of this paper, we present a model-driven approach to

empower users with control over their data in web applications

IV. GLOBAL APPROACH

Our goal is to allow end-users to process their data with any
web application while protecting their privacy. We want to
allow users to share their data between a set of applications
while controlling their diffusion and the access rights of each
application. To do so, we propose a model-driven approach
whose global structure is presented on Figure 3. This approach
allows end-users to specify the applications they want to use
and the datasets they allow these applications to access. End-
users do not have to deal with technical complexities. We
provide them with high level descriptions of applications and
access rights. This description is extracted from an application's
description. This description is written by the application's
developer. It describes the application's functionalities. It also
specifies the data the application needs to access. Such a
description often contains numerous technical details and its
vocabulary is not adapted for end-users. Thus, the viewpoint of
end-users and the view point of developers must be reconciled.

To achieve this goal, our approach is generative and divided
in two levels:

• At the configuration level, end-users specify the

resources they want to process and how they want to
process them. By doing so, they implicitly specify a
composition of web applications. They also specify the
access rights to their data. In order to guide end-users,
we propose a metamodel which provides the necessary
vocabulary to express without technical details the
resources the user wants to share, the actions he/she
wants to perform on it and the access rights to the
resources. Our metamodel is divided in two views, a
resource view and an access control one. As this
metamodel must be available to end-users and
developers also and as they do not have the same
expertise, we design two abstraction layers for our
metamodel. The most abstract level does not contain
technical details. End-users can use this layer of
abstraction. The technical layer of our metamodel
allows developers to describe their applications. As end-
users are used to rich interfaces, we pay a great deal of
attention to the concrete syntax of our metamodel. This
syntax is inspired by web applications in order to
remain coherent with the usual experience of end-users.

• The implementation level of our work permits to bind

the applications and process the relevant data while
enforcing privacy protection. This level relies on
composition code which invokes the different
applications and ensures their communication. It also
relies on access control code with describes the access
rights of an application and its properties. All the code
is automatically generated from the specifications of
end-users. Thus, end-users do not have to write software
code.

Fig. 4. Non technical metamodel

Fig. 3. Overview of our approach

V. DETAILED APPROACH

In this part, we enter into the details of our work. We
present our metamodel and its two levels of abstraction: a non-
technical levl for end-users and a technical one for developers.

A. Non technical level: metamodel for end-users

End-users do not have technical expertise. We propose an
abstraction level of our metamodel which matches the
vocabulary they are used to on the web. This level is displayed
on Figure 4.

1) Metamodel entities

The metamodel gathers the following entities:

• A resource is anything which can be named. A picture,

an email or a user are example of resources. Resources
are identified by their name.

• Each resource as a type. A type has a name. User,

Picture or Message are examples of types.

• A resource possesses a set of properties which permits

to describe it. For instance, a picture has a name and it
may belong to an album.

• A resource is associated to actions: it can be created,

updated or deleted.

• An application is a software which stores, creates,

processes and modifies resources. A social networking
site or an online media player are examples of
applications. For a given resource, an application can be
a source – it stores resource – or a third-party
application: it seeks to retrieve and process the data.
Sources and third-party applications have a privacy
policy. This policy is a string which describes data it
stores and the way it processes this data.

• An application is created and made available by a

provider. A provider possesses a name, an email and
contact information such as a website.

• In order to use an application, a user must possess an

account which stores information such as a login and a
password. An account may be issued by an application
and used to connect to another application in order to
allow single sign on. For instance, a user may use a
photo sharing service with his/her social network
account.

• When the application plays the role of third-party

application towards an resource, it must gain the
necessary permissions to consume the resource it
needs, i.e. to perform actions on the resource it needs.
For instance, deleting a picture on a user social
network profile may require special privileges.
Permissions can be constrained according to a
resource's properties. For instance, a user may grant a
permission to update only the pictures in the family
album.

2) Concrete syntax
Users are accustomed to graphic syntax and rich interface.

In order to foster the acceptance of our work, we build a
concrete syntax. Table II displays this concrete syntax.

Table II Metamodel's concrete syntax

Metamodel entity Concrete Syntax Example

Application Logo

Provider Text or icon

Account Text Bank account

Resource Text or icon

Action Text Get

Functionality Text Edit photo

Permission Text Can read

B. Application to our use case

We now instantiate our metamodel for our use case from
the perspective of end-users. We add the following constraints
to the communication between the applications:

• To retrieve pictures from the social network, an

application must have the “read pictures” permission.

• In order to access a set of addresses, an application

must have the “read addresses” permission.

• In order to request for a payment, an application must

possess the “get payment” permission.

These permissions are inspired from real-world
applications. For instance, the Facebook application demands
an application to possess permissions to access datasets. For
instance, accessing a user's private messages requires the
“read_mailbox” permission. Users grant these permissions
when they review the data a third-party application accesses.

Table 3 gives an overview of the instances of our
metamodel's entities that we identify in our use case.

Table III Instances of our metamodel in our use case

Metamodel entity Use Case Instance

Application

Social network

Online photo editor

Address book

Photo editing service

Provider

Facebook

Pho.to

Pwinty

Paypal

Gmail

Account

Social network account

Email account

Bank account

Resource

Photo

Edited photo

Address

Baking informations

Action

Get photos

Get baking information

Get addresses

Functionality
Photo edition

Photo printing

Permission

Can permanently read photos

Can read photos from the “family”

album

Can read once addresses from the

group “family”

Can read once banking information

Can read pictures

Can read addresses

Can get payment

Figure 4 displays a graphical representation of our use case
with our concrete syntax.

Fig. 4 Graphical representation of our use case

Fig. 5. Technical metamodel
C. Technical level: metamodel for developers

In order to generate the code to link a set of applications
and the access control code, we need technical information.
This code allows to invoke the functionalities of applications
and to retrieve and update the data they hold. All the
information necessary to produce this code is provided by
developers. Currently, such information lies in Application
Programming Interfaces. For instance, the Graph Api –
Facebook's programming interface, describes Facebook's
available functionalities.

The technical model refines the nontechnical level. Figure 5
displays the technical metamodel. It adds technical information
to the concepts we have already identified. We refine our
metamodel with concepts from Rest architectures. Such
information can be found in [13] for instance. We also add
information for access control from single sign on protocols
such as Oauth. All the technical concepts are displayed in grey.

1) Metamodel entities
We now detail the information we add to our metamodel.

In order to access a resource, we need identifiers. We thus
add Universal Resource Identifiers (URI) to resources.

According to Rest architectures, resources have several
representations. For instance, a picture may have several
versions with several sizes and resolutions. Each representation
is described by metadata. A metadata provides information
about a resource. For instance, the “resolution” metadata gives,
for a picture, its resolution.

Web technologies rely on “Internet media types” (Mime
types) which define the types of data applications handle.
Mime types include image, text or video. We add Mime types
as implemented types to our “Type” class.

In Rest architectures, actions are basic HTTP actions. We
thus add three subclasses to our Action class, their definitions is
inspired by the HTTP protocol's specification:

• the Get action allows to retrieve any resource identified

by its URI. For Instance, “Get 012456” will return the
resource identified by the number Get/012456.

• the Post action permits to publish data to the target

URI. For instance, “Post 012456” adds the resource
identified by the number 012456 to the target
application. This method allows, for instance, to publish
new messages to a social network or upload pictures.

• the Delete actions allows to delete a resource identified

by its URI. For instance, “Delete 012456” deletes the
resource identified by the number 012456 from the
target application.

We refine the association between an application and an
action to add the notion of Application Programming Interface
(API). An action is part of an API. An application provides an
API. This API is used by third-party developers to discover the
application's functionalities. Each API has a Universal
Ressource Link (URL) and is written in a language such as
Java or Php.

Each application accommodates one or several
authentication methods. For instance, an application may
require a login and a password or allows single sign on
protocols such as oAuth.

Eventually, an application requires security properties.
Security properties allow an application to connect to another
application. For instance, Facebook requires third-party
applications to possess an “application number” and a “shared
secret”. Such information are necessary to identify and
authenticate third-party applications. Third party application

Fig. 6. A request template

Fig. 7. Actual request to retrieve a picture on Facebook

must possess the security properties relevant to connect to the
application it targets.

2) Application to our use case
We now apply our technical metamodel to our use case. In

most cases, technical information are provided as textual API
by developers. We thus do not provide a graphic syntax to this
level of our metamodel. We stick to a textual syntax. For each
application in our use case, we present the instances of our
metamodel's concepts. We only present the technical
information for brevity reasons.

Table IV displays our metamodel's instance for Facebook.
We only deal with getting pictures on Facebook. We extract
data from Facebook's API7.

Table IV Metamodel's instance for Facebook

Metamodel entity Use Case Instance

API

API's url:

http://tinyurl.com/qf5n7gx

Languages: Javascript, PHP, etc.

Action Get/PhotoID

Resource: URI A number. Example : 119778565

Authentication method oAuth

Required Security Properties

Access token (permissions granted

to an application)

Application secret (allows

Facebook to identify an

application)

Application Id (allows Facebook to

authenticate an application)

Table V displays our metamodel's instance for Pho.to. We
extract all the information from Pho.to's Api8.

Table V Metamodel's instance for Pho.to

Metamodel entity Use Case Instance

API

API's url:

http://tinyurl.com/o27cu89

Languages: HTTP

Action Get/use_auto_red_eye

Resource: URI An Image URL

Authentication method Key issued by Pho.to.

Required Security Properties
Key (allows Pho.to to authenticate

an application).

Eventually, Table VI presents our metamodel's instance for
Pwinty. We extract all the information from Pwinty's Api9.

7 https://developers.facebook.com/docs/graph-api/‎
8 http://files.pho.to/documentation/editor-

platform/online_photo_enhancement_platform_api.htm#ite

m_4_2
9 http://www.pwinty.com/Overview

Table VI Metamodel's instance for Pwinty

Metamodel entity Use Case Instance

API

API's url:

http://tinyurl.com/oodrcox

Languages: HTTP

Action

Post/Order (creates an order)

Post/Orders/{orderId}/Photos (adds

photos to an order)

Post/Orders/{orderId}/Status

(validates the order)

Resource: URI
A number. Example: 1605 is an

order's URI.

Authentication method oAuth

Required Security Properties
X-Pwinty-MerchantId

X-Pwinty-REST-API-Key

All this information allows to call each application and its
functionalities when they are relevant to our use case. As we
want to automatically produce the code necessary to call each
application, we now describe our code generation process.

D. Request templates for code generation

Code generation is responsible for producing the code
necessary to invoke each application. The technical
information allows to define request templates. A request
templates describes the generic form of a call to an application.
templates are fed with actual information in order to invoke an
application.

Figure 6 displays the request template which describes the
generic request to retrieve a picture from Facebook:

When a specific application wants to retrieve a photo from
Facebook, it feeds the template with the relevant pieces of
information. For instance, in order to retrieve the picture with
URI “1265873”, the application with the application id
“178656” and the access token “867567509” will issue the
request displayed on Figure 7.

At the end of the configuration process, we have captured a
user's needs in terms of the composition of applications. We
have also captured the user's privacy preferences in terms of
data access.

We now present our implementation level, which is
responsible for executing the captured requirements and
feeding our code templates with actual information.

VI. EXECUTION LEVEL

In our state of the art, we have identified the several lacks
in current web applications:

• Users can only select a limited range of third party

applications.

• Users have limited control over data third party

applications access.

• Users are not provided with all the information

necessary to make an informed consent.

As we cannot modify mainstream web applications such as
Facebook in order to address these lacks, we propose a
dedicated architecture to execute a privacy conscious web
application composition. This phase relies on code generation
from the specification of users.

Figure 8 gives an overview of our architecture. We can
identify three main components:

• Model to text transformations allow to turn user's

requirements into code. They are responsible for linking
the non-technical models of an end-user to technical
information necessary to run the desired composition.

• The mediation and execution engine executes the

privacy aware composition according to the generated
code.

• The applications repository stores the description of

the APIs of all the available applications.

We present each component in the rest of this section.

1) Access control code generation process
According to a user's access control requirements we

generate an access control token for an application. An access
control token is a piece of code which contains all the access
rights of an application for a specific set of resources.

In order to generate the token, we rely on an access control
token template which describes the generic form of a token.
Figure 9 presents our access control token template.

Our token contains the following elements:

• A user id: the identifier of the current user.

• An application id: the identifier of the third party

application.

• Privileges: a set of pairs : <{property, value},

resource> which describes a resource a third party
application is granted access to and a set of values its
properties should have.

• Each token is associated with a lifetime which states

how many times the token is valid.

The token template is fed with information from an API
description end-user's access control requirements. Figure 9
displays a token to restrict Pwinty's access to the pictures in the
“Family” album.

2) Composition code generation process

Composing two applications necessitates to call a source
application to retrieve its data and transmit the retrieved pieces
of data to a third party application. This transmission is itself a
request to the third party application. Thus each composition
phase relies on two request templates: one for a source
application, one for the third party application. Requests to
retrieve data can only bear on allowed sets of resources.

In order to link requests, we use variables: data necessary
retrieved from a source application as stored in a variable
before their transmission to the third party application.

Once again, this phase relies on templates. Figure 10
displays the composition template. This templates is used at
each step of the composition.

Fig. 8. Overview of our architecture

Fig. 9. Access token template

Fig. 10. Composition code template

Fig. 9. Composition code template

This template is fed with information from APIs
descriptions. It is also fed with an application access token in
order to ensure that a third party application only accesses
allowed sets of resources. Figure 10 displays a part of the
composition code corresponding to our use case.

3) Composition execution and access control enforcement:

the mediation and execution engine
The mediation and execution engine is equivalent to an

orchestrator in Service-oriented architectures. It permits to
compose the applications while enforcing access control. To do
so, it calls the templates we have described, feeds them with
relevant information and issues requests to the applications.
Implementation

We have developed a prototype to allow users to specify the
composition of a set of applications and configure their access
control preferences for each application. This prototype
consists in a mash up of the applications an end-user actually
uses. It has two main parts, a web page, which provides an
interface to interact with end-users, and a mediation and
execution engine which runs the composition.

Figure 12 displays the interface of our prototype. The
interface contains the following elements:

• a menu presents the resources the applications hold.

Such resources include pictures or friends. A contextual
menu allows, for each resource to perform an action
with a dedicated application. For instance, a user may
chose to synchronize a set of pictures with his/her
dropbox or edit this set.

• When the user wants to transfer data from one

application to the other, a pop up asks the user to review
the access rights he/she grants the application. The user
may also restrict the datasets an application has access
to.

Our prototype is implemented with mainstream web
technologies. The client-side are plain Javascript and HTML.

The mediation and execution engine is written in
Javascript. All the requests to the application are regular HTTP
requests rewritten to enforce access control. The mediation and

execution engine also stores a repository of all the applications
available to end-users.

Our prototype aims at showcasing that access control can
be more finely enforced in web application. We bring two new
abilities to end-users. First, en users can restrict an application's
privileges. They can either select a subset of data an application
gets access to, or restrict the lifetime of a permission. Then, it
is customary in marketing to identify groups of similar users –
i.e. users who share the same interests and the same
sociological profile. Identify these group allows to predict a
user interests: users are likely to like and do what people who
look like them like and do. This sociological phenomenon is
called “assortativity”.

Surveys shows that the same stands for applications use.
end-users do not trust service providers. However they trust
people they feel are close to them and look like them to select
an application. However, as we have said, no web application
provides information about who uses a third-party application
when end-users have to review the access rights they grant to
this application. We answer this lack by selecting users who
use the third party application, are close to the current end-user
and share the same interests and close profile. We then present
the end-user with the list of the selected users.

The selection phase follows two steps:

• Close users selection. Most users are connected to a

large number of other users. Even if they call them
“friends” on Facebook, they may not actually know or
trust them. Some social networks, such as tweeter,
encourage week links – users can “follow” each other or
share each other's messages. However, these links may
not denote a strong connection between users. Thus, we
select users close to a end-user by selecting the set of
users the end-users interacts and shares the most with,
be it by posting content to their profiles or exchanging
private messages. All interactions may not have the
same significance. For instance “poking” on Facebook
is rather neutral and meaningless when frequent private
messages show an actual relationship between users.
Given a set of interactions I defined by I = {I1,...In},
each interaction is associated to a weight w, a positive

Fig. 12. Interface of our prototype

integer. The degree of interaction between users is given
by the weighted sum of all the interactions between
users.

• Similar users selection. Among the users close to the

end-users, some users share the same tastes. These users
are especially important as the end-user is likely to use
the same applications as them. Given a set of interests –
for instance music or applications – and set of features –
age, location, etc. – the degree of similarity between
users is given by the number of similar interests and
features they share.

VII. VALIDATION

A. Relevance of our prototype

We have tested our close users selection process on real-
world Facebook data. To do so, we have developed a Facebook
application which analyzes a user's friends list and retrieve the
user's 8 closest and most similar friends. To do so, the
application first selects the users a user interacts the most with.
To do so, the application accesses the user's inbox and analyzes
the messages the user posts to the profiles of other users. Then,
the application selects the users who share the more interests
with the current user.

In order to validate our work, we have selected 8 Facebook
users. Each of them is connected to more than 500 other users.
We have asked each user to use our application and to answer
following questions:

• How many of the height selected people would you

call “close”?

• If these people used an application, would it help you

to trust the application?

At most, we were able to guess 8 actual close friends. At
worse, we guessed 5. All the users have answered that knowing
they close friends use an application helps them to trust the
application.

These results have helped use to attune the way we select
close friends. Even though we have only submitted our
approach to a limited amount of users, their answer confirms
what other surveys state and let us think that presenting users
with social information when they install third party
applications is necessary.

B. Relevance of the proposed metamodel

The approach presented in this paper is an adaptation of the
approach we have already proposed in [4]. In this previous
work, the authors described how to protect privacy in service
oriented architecture : privacy is defined at design level and a
service orchestration is generated to offer a secured and privacy
respectfull application. This first approach has been validated
on two main facets: response times and data protection. It has
been shown that response times are increased by only 1%, and
that it is not possible to access data without being controlled by
the proposed mechanism.

The approach proposed in this paper being very close to the
previous one. It relies on the same principles. Data security is
the same. For instance, private pictures are protected because
all requests which seek to retrieve pictures are rewritten in
order to enforce access control.

However, the response times might be influenced by the
languages we use in this new proposal and most of all by the
dependency to social networks performances. The tests we
have driven show that Facebook requests are quite slow and it
takes 5 seconds to get all the needed data.

VIII. DISCUSSION AND FUTURE WORKS

Web apps users feel they lack control over their data. Most
of them do not trust web app providers when it comes to
managing their data. Eventually, users lack tools and relevant
pieces of information to control the diffusion of their data. We
have tackled these issues in this paper. We brought in a model-
driven approach which allows user to compose web apps while
tuning an app's access rights to a user's data. Our approach
empowers users with two level of control over their data.

First of all, users can invoke any app. Nowadays, users can
only select apps registered with a provider, such as Facebook.
Our approach allows user to select any app implemented as a
Restful service – the widest used type of app. Users, which do
not possess technical expertise, do not have to produce code to
make their apps interact. We rely on code generation to
produce the necessary code. Technical information can already
be harvested from APIs. In order to show the instantiation of
our metamodel, we have extracted the information from each
API by hand. However, works such as [9] underlines that APIs
can be easily turned self-descriptive and automatically
processed. Such works ensure that our automatic generation
process is actually feasible.

Our access control token generation allows to generate finer
access control than current access control tokens in web
applications

Then, we allow users to assess an app's trust and finely tune
its access rights to a dataset. This is currently impossible in all
the most famous web applications – such as social networks –
which allow users to install third-party applications. When
users install third-party applications, they are not provided with
information – such as who uses the application. Furthermore,
the least privilege principle – which is fundamental in access
control – is not enforced on the web. Third-party apps request
access rights aend-users cannot but accept them if they want to
use the app. Our approach enables users to restrict the dataset
they want to share with an application and configure the
lifetime of an app's access rights.

Our approach is implemented as a website to share a set of
resources – pictures, messages, etc. - among web applications.
This website demonstrates the feasibility of our work. As a
preliminary validation step, we have presented our work to a
set of users. They all confirm that the pieces of information we
provide them is relevant and useful to trust web apps.

We do not aim at developing yet another web application.
We want to showcase what web technologies allows in terms of
privacy management. Our work shows that bringing together
well-mastered concepts such as model-driven engineering and
access control and current web technologies empowers users
with new means to control their data. As such, our work shows
that privacy requirements elicitation and management can be
processed more effectively with widely used technologies. Our
work could thus be easily integrated to an already existing
application.

Our approach is realistic to the extent that their already
exists web apps repositories such as programmableweb.com.
Users could select and invoke pretty much any app from such
repositories. Furthermore, enhancing existing applications with
privacy-conscious features is a growing trend. Blackphone.ch,
for instance, extends Android with communication cyphering
capabilities when secret.ly proposes to share without
communicating one's identity.

Our future works will deal with integrating our work with
existing apps and extending the range of privacy features we
offer. We will also test our work with a larger set of users.

REFERENCES

[1] W. Budan, L. Rongheng, C. Junliang. “Integrating RESTful Service into
BPEL Business Process on Service Generation System”. Proceedings of
the IEEE Service Computing Conference, pp. 527-534, 2013.

[2] S. Chollet,, P. Lalanda. Security Specification at Process Level. IEEE
Service Computing Conference, pp. 165-172, 2008.

[3] M. Cortes Cornax. “Service choreographies through a graphical notation
based on abstraction layers and viewpoints”. IEEE RCIS 2011. p. 1-11..

[4] A. Faravelon, S. Chollet, C. Verdier, A. Front, . Configuring Private Data
Management as Access Restrictions: From Design to Enforcement.
International Conference on Service Oriented Computing, pp. 344-358,
2012.

[5] F-Secure. “Digital lifestyle survey”, 2013. http://www.f-secure.com

[6] C. A. Hill, E. Dean, J. Murphy, Social Media, Sociality, and Survey
Research, John Wiley & Sons, 2013.

[7] Microsoft. “Data privacy day privacy survey”, 2013.
http://tinyurl.com/lcvoqaw

[8] H. Meng-Yen, L. Hua-YiL. Kuan-Ching Li. A web-based travel system
using mashup in the RESTful design. International Journal of
Computational Science and Engineering. Vol. 6, n°3, p. 185-191.

[9] L. Panziera, F. Paoli. “A framework for self-descriptive RESTful
services” WWW (Companion Volume), pp. 1407-1414, 2013.

[10] M. Papazoglou. Service-Oriented Computing: Concepts, Characteristics
and Directions. Proceedings of the Fourth International Conference on
Web Information Systems Engineering, pp. 3-12, 2003.

[11] P. Pautasso. RESTful Web service composition with BPEL for REST.
Data Knowl. Eng., vol. 68, n°9, p. 851-866.

[12] R. Fielding, R. Taylor. Principled design of the modern Web
architecture. ACM Trans. Internet Techn., vol. 2, n°2, p. 115-150.

[13] F. Rosenberg, F. Curbera, M. J. Duftler, R. Khalaf R. Composing
RESTful Services and Collaborative Workflows: A Lightweight
Approach. IEEE Internet Computing, vol. 12, n°5, p. :24-31.

[14] S. Sun, K. Beznosov. “The devil is in the (implementation) details: an
empirical analysis of OAuth SSO systems”. ACM Conference on
Computer and Communications Security, pp. 378-390, 2012.

[15] T. Stoitsev, S. Scheidl, F. Flentge, M. Mühlhäuser. “Enabling End Users
to Proactively Tailor Underspecified, Human-Centric Business
Processes: "Programming by Example" of Weakly-Structured Process
Models”. ICEIS pp. 307-320, 2008.

[16] C. Wolter, A. Schaad. Modeling of task-based authorization constraints
in BPM'07, pp. 64-69, 2007.

http://www.f-secure.com/

	I. Introduction
	II. Use Case
	III. State of the Art
	A. Composing web applications
	B. Protecting privacy in web applications
	C. Model-driven security, a promising solution
	D. Conclusion to the state of the art

	IV. Global Approach
	V. Detailed Approach
	A. Non technical level: metamodel for end-users
	1) Metamodel entities
	2) Concrete syntax

	B. Application to our use case
	C. Technical level: metamodel for developers
	1) Metamodel entities
	2) Application to our use case

	D. Request templates for code generation

	VI. Execution level
	1) Access control code generation process
	2) Composition code generation process
	3) Composition execution and access control enforcement: the mediation and execution engine

	VII. Validation
	A. Relevance of our prototype
	B. Relevance of the proposed metamodel

	VIII. Discussion and Future Works

