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Estimation of Foetal Contribution to ECG Recordings Using Oblique Projection
Technique Exploiting Cyclostationary Properties of the Heartbeat Signals
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Abstract— In this paper, the authors propose to estimate the
contribution of the electrical activity of the foetal heart to each
component of cutaneous electrocardiogram (ECG) recordings
using an oblique projection technique. To date, related research
work reported in the literature using Blind Source Separation
(BSS) or Independent Component Analysis (ICA) methods rely
on a widely used projection techniques family, which is the or-
thogonal projection. More recently, reported work in other ar-
eas of biomedical research is based on the use of oblique projec-
tion techniques in order to remove the artifacts from the avail-
able recordings and to estimate the contribution of the Signal of
Interest (SoI) to the data set. The novel approach presented in
this paper is tailored to the problem of foetal ECG (FECG) con-
tribution estimation. The optimal steering vector’s computation
procedure for the oblique projection is based on the use of the
cyclostationary properties of the SoI and on the concept of Mul-
tidimensional Independent Component Analysis (MICA). The
latter is used to gather into independent subspaces the compo-
nents estimated using a BSS/ICA method and corresponding to
the foetus’ heartbeats, the mother’s heartbeats and various ar-
tifacts and noise sources. Early comparative results with the or-
thogonal approach obtained after application of both methods
to synthetic non-invasive FECG recordings illustrate the relia-
bility as well as the effectiveness of the proposed method. A dis-
cussion and perspectives for future research conclude this work.

Keywords— foetal electrocardiogram, oblique projection,
principal component analysis, multidimensional independent
component analysis, cyclic coherence

I. INTRODUCTION

Foetal heart monitoring using non-invasive techniques is a
valuable tool for use by clinicians as it helps establishing an
early diagnosis that can prevent complications due to heart
defects of the foetus. The electrical activity of the foetal heart
is measured by means of cutaneous electrodes applied on the
mother’s skin. The main difficulties arising in this case are
the relatively low amplitude voltage of the foetal electrocar-
diogram (FECG) compared to the maternal one (MECG) and
the contamination of the FECG with other interferences and

noise sources, such as maternal respiration, random instru-
mentation noise, baseline wandering or even foetal move-
ments.

Among the first attempts to extract the FECG from multi-
lead MECG recordings, one may mention [1] were the au-
thors used the Gram-Schmidt technique to build a set of or-
thogonal basis functions representing the thoracic MECG sig-
nals assumed independent and appropriately represented by
a dipole; finally, and following a "cancellation" system, the
foetal contribution is extracted by subtracting the maternal
one from the thoracic MECG recordings. Since then, and es-
pecially these last decades, the emergence of new signal pro-
cessing techniques has paved the way for new research effort
devoted to the problem of foetal ECG extraction.

More particularly, Blind Source Separation (BSS) tech-
niques [2] and the higher-order-statistics (HOS)-based class
of methods known as Independent Component Analysis
(ICA) [3] have been successfully applied to various biomed-
ical problems, such as artifacts removal from electroen-
cephalographic (EEG) or electromyographic (EMG) signals.
These techniques aim at recovering unobservable source sig-
nals from a set of observations to which they contribute in
an unknown way. Many ICA methods have been adapted in
order to fit the FECG extraction problem. The multireference
adaptive noise cancelling (MRANC) method issued from the
adaptive filtering solution by Widrow et al [4] and its adap-
tation to the FECG extraction problem is presented in [5]. In
this work, the authors compare the results provided by the
MRANC method with the ones obtained after application of
BSS techniques. A review of recent FECG research work can
be found in [6].

In Section II we will present the ICA and multidimen-
sional ICA framework and the orthogonal projection meth-
ods and we will give an overview of oblique projection op-
erators. Then, in Section III we will present the model we
used to simulate the synthetic FECG data sets, the inherent
cyclostationarity property of such signals and its measure, as
well as the details of the proposed method and the obtained
simulation results. A discussion with perspectives for future
research are drawn in Section IV.



II. METHODOLOGY

A. The ICA model

Let M be the number of observed signals xi(t), i ∈ [1,M]
to which contribute N unknown sources si(t), i ∈ [1,N], with
N ≤ M. The aim of ICA-based methods is to find the un-
known sources that are hidden in the observations. The
widely used linear instantaneous noiseless BSS model writes
in a matrix form:

x(t) = As(t) (1)

where t stands for time, x(t) = [x1(t),x2(t), ...,xM(t)]† and
s(t) = [s1(t),s2(t), ...,sN(t)]† denote the mixture vector and
the source vector, respectively, with † the transpose operator
and with A an unknown M×N full rank mixing matrix. The
mixture model of eq.1 is based on the assumption of statisti-
cal independence of the source components si.

In the context of FECG signal estimation, the measure-
ment vector x(t) is a linear mixture of the unknown bio-
electric current source signals one wants to estimate, i.e. the
maternal contribution (MECG) and the foetal contribution
(FECG), but also of other artifacts and noise sources, as men-
tioned in Section I. Let B be the inverse of the full rank mix-
ing matrix A; then an estimate of the independent compo-
nents (ICs) of the source vector s is:

ŝ(t) = Bx(t). (2)

In order to find the de-mixing matrix B, some preprocess-
ing steps are commonly used in ICA methods. These are de-
scribed in the next subsection.

B. Preprocessing for ICA

In order to simplify ICA algorithms, the most basic pre-
processing is to make x a zero-mean variable by centring it,
i.e. by subtracting its mean value E{x}. Another useful strat-
egy which is applied as an ICA preprocessing step is a linear
transformation of the observations vector x called whitening.
The aim of the whitening step is to obtain a new vector x̃
which components are uncorrelated and have unit variance,
i.e. the covariance matrix of x̃ is the identity matrix:

E{x̃x̃H}= I. (3)

where H denotes the Hermitian transposition.
A popular method for whitening is the Principal Com-

ponent Analysis (PCA) [7] which consists in an eigenvalue
decomposition of the covariance matrix of the observations

E{xxH}= UΛUH where U is the orthogonal matrix of eigen-
vectors of E{xxH} and Λ is the diagonal matrix of its eigen-
values. Thus, the whitened observations vector writes:

x̃ = Λ−1/2UHAs = Ãs (4)

with Ã a new orthogonal mixing matrix to estimate with less
degrees of freedom than the original one. So, whitening re-
duces the number of parameters to be estimated but it is also
a dimension reduction technique, because one can discard the
smallest eigenvalues of the covariance matrix of x that has
as effect the reduction of additive noise in the case of the
noisy linear instantaneous BSS model. Many ICA algorithms
use this whitening step, like the JADE algorithm [8] which is
based on a HOS optimisation criterion.

C. Multidimensional ICA and orthogonal projections

Several source subspace separation methods for FECG ex-
traction exist in the literature, e.g. [9], where the authors pro-
pose a higher-order singular value decomposition (HOSVD)
technique to estimate the underlying source subspaces. An-
other subspace-based technique has been proposed by Car-
doso in [10] and it is known as multidimensional independent
component analysis (MICA). The author applied this method
to a real 3-channel FECG dataset which served as input to
the JADE algorithm. After separation, the estimated ICs have
been grouped into two independent source subspaces. The
first one is a bi-dimensional subspace corresponding to the
MECG and the second one is a one-dimensional subspace
corresponding to the FECG signal. Next, using the estimated
de-mixing matrix B (eq. 2) provided by JADE, the author
computes the orthogonal projection matrices for each one of
the two estimated multidimensional components. Finally, by
back-projection to the original input space, the mother and
foetal signal contributions to the mixtures are computed.

To illustrate the orthogonal projection, let us consider the
case where the MICA decomposition yields two linearly
independent component subspaces. The nm-dimensional
mother’s subspace in spanned by the nm columns of the de-
mixing matrix corresponding to the nm highest eigenvalues
of the diagonal matrix Λ after the preprocessing step, while
the foetus’ n f -dimensional subspace in spanned by the n f
columns of the de-mixing matrix corresponding to the next n f
smaller eigenvalues, with nm + n f = M. Let A f be a n f ×M
matrix composed by the n f columns of the mixing matrix A
that span the foetus’s subspace. Then, the orthogonal projec-
tor Π f onto Vf = Span(A f ) writes:

Π f = A(AHA)−1AH (5)



and the contribution of the FECG signal to the observations
can be expressed as:

x f = Π̃ f x, with Π̃ f = Π f × (Π f +Πm)
#, (6)

where Πm and superscript # denote the orthogonal projector
onto Vm = Span(Am) (which is defined similarly to that of
Πm of eq. 5) and the pseudo-inversion operator, respectively.
Definitions of orthogonal projectors in the general case are
given in [10].

D. Oblique projections operators

Oblique projectors [11] decompose a space in two non-
orthogonal subspaces. Orthogonal projection is a special case
of oblique projection when the two subspaces are orthogo-
nal. Any projector operator P is idempotent, i.e. P2 = P, but
oblique projection matrices are not symmetric. By defining
two basis matrices, the first one spanning the interference
subspace (called kernel subspace) and the second one span-
ning the signal of interest (SoI) subspace (called range sub-
space), oblique projections may be used to cancel the inter-
ferences spanned by the kernel subspace.

With respect to the notations introduced in the previous
section and in order to fit the FECG extraction problem, let
Am and A f be the basis matrices defining the kernel and the
range subspaces, respectively. Then the oblique projector PA f

whose range is < A f > writes in matrix form:

PA f
= A f (A f

HP⊥
Am

A f )
−1A f

HP⊥
Am

, (7)

with P⊥
Am

= I −Am(Am
HAm)

−1Am
H and where ⊥ stands for

the orthogonal complement symbol. Finally, the estimated
contribution of the FECG signal to the observations using the
oblique projection is:

x fo = PA f
x̃. (8)

III. RESULTS AND ILLUSTRATION WITH
SYNTHETIC MECGS

A. The synthetic FECG signals

For our experiments we used the open source ECG Tool-
box provided by Sameni [12]. The recordings are obtained
from electrodes placed in various locations on the expec-
tant mother’s body and are contaminated with noise which
is a mixture of real baseline wander, electrode movement
noise and EMG artifacts. The mother’s heartbeat frequency
(MHF) is set to 0.9Hz while the foetus’ heartbeat frequency

(FHF) is equal to 2.2Hz and all data are recorded simultane-
ously at a sampling rate of 500Hz. The mixture vector x is
8-dimensional and as similar BSS schemes based on oblique
projection operators seem to perform well in very low signal-
to-noise (SNR) ratios (e.g. [13]), various datasets have been
simulated with different SNR values.

B. The cyclostationarity property and measure

ECG signals have a pseudo-period, i.e. they are not strictly
periodic but cyclostationary at the frequency α0 of the heart-
beats. The cyclostationarity property of the FECGs have been
successfully used in previous work [14]. In order to perform
MICA decomposition, the authors also proposed a method
based on the Cyclic Coherence (CC) [15] which is a nor-
malised cyclostationarity measure based on the correlation
degree between two signals at each frequency value; this
same measure is used in this work in order to decide whether
a JADE-estimated IC belongs to the FECG rather than to the
MECG subspace.

C. Simulations and results

In order to compare the estimated FECG contributions to
the simulated MECG recordings obtained after application
of the MICA decomposition based on orthogonal projections
and those yielded by the oblique projection of the whitened
data provided by the same ICA algorithm, we established the
following simulation procedure:

1. Apply the JADE algorithm to estimate ICs from the
synthetic MECG data preprocessed for baseline removal
with a moving average filtering algorithm.

2. Compute the CC for each extracted IC and decide to
which independent subspace it belongs.

3. Perform JADE-based MICA decomposition as well as
oblique projection of the JADE-whitened data during the
preprocessing step.

4. Normalise the estimated FECG contributions to the elec-
trodes obtained in the previous step and compute the
residual crosstalk (RCT) between the original FECG sig-
nals and the estimated ones.

The RCT is a common performance criterion in BSS and
writes (in dB):

RCT (s) = 10log10
E{(ŝ− s)2}

E{s2}
, (9)

where ŝ denotes the estimated contribution of the SoI to one
of the channels. The more s and ŝ are similar the more RCT



Normalised FECG signals and their estimates
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Fig. 1: The original FECGs and their contributions to the 4 first channels
(from top to bottom) by oblique projection (solid red plot) and orthogonal

projection (dashed blue plot)

tends towards −∞.
For the sake of clarity but also due to lack of space, the

estimated FECG contributions to the first 4 channels only are
illustrated by Figure 1 in the case of a 0db SNR value for the
synthetic mixture signals. Figure 2 plots the corresponding
RCT values for the FECG contribution to all channels; six
of the eight extracted FECGs are estimated more accurately
in terms of RCT using the oblique projection technique than
the orthogonal one. Further experiments were performed with
synthetic mixtures contaminated with noise for SNR values
in {20,10,−10}dB. Apart from the SNR=20dB case where
both methods exhibited similar performance, results obtained
with the proposed method were more accurate.

IV. DISCUSSION

Early results provided by the proposed FECG extraction
method based on oblique projection techniques tailored for
the BSS/ICA problem are very promising. Current research is
focused on the automation of the MICA decomposition step,
on the validation of the proposed method on real FECG data
sets and on taking into account specific properties of such
bioelectric signals.
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