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A New Cyclostationarity-Based Blind Approach for Motor Unit’s Firing

Rate Automated Detection in Electromyographic Signals

Julien Roussel1 and Michel Haritopoulos1 and Philippe Ravier2 and Olivier Buttelli2

Abstract— This work focuses on electromyographic (EMG)
signal processing. We propose a new blind approach that aims
at detecting the firing rates of the activated motor units. The
proposed method is based on the fact that, EMGs can be mod-
elled as second-order cyclostationary signals. After application
of a Blind Source Separation (BSS) algorithm, we compute a
cyclostationarity measure which is the Cyclic Spectral Density
(CSD), and we show how one can use it to group the estimated
components into independent subspaces and in an automated
manner. The proposed classification procedure is based on the
concept of subspace BSS techniques, like the Multidimensional
Independent Component Analysis (MICA), the difference being
that our method allows automatic classification of the estimated
source signals. After discarding the subspace corresponding to
the noise and computation of a modified CSD measure, the
proposed procedure yields to the detection of specific cyclic
frequencies corresponding to the discharge frequencies of the
Motor Units Action Potential Trains (MUAPTs). Early results
obtained from experiments on synthetic EMGs are presented
in the paper and research perspectives conclude this work.

I. INTRODUCTION

Research on bioelectric signals is very active over these

last twenty years and, in the meantime, new signal processing

techniques emerged, offering new challenges. In particular,

Blind Source Separation (BSS) [1] has been applied, e.g.

for single muscle activity detection of surface electromyo-

graphic signals [2], but also, for the estimation of the

foetus’ heartbeat rate and subspace dimension [3]. One of

the most challenging applications of this technique concerns

the exploration of muscle’s electrical activity.

A muscle is composed of Muscle Fibres (MFs) organized

into Motor Units (MUs). This functional unit is composed

of an alpha-motoneuron (α-MN), innervating several MFs

(from tens to hundreds MFs depending on the MU and on

the muscle characteristics).

Activation of the MU produces an electric field generated

by each MF into the MU. The summation of these electric

fields provides a specific waveform called Motor Unit Action

Potential (MUAP). This full electrical activity is called

electromyogram (EMG) and can be recorded using electrodes

located on the skin surface (sEMG). When this EMG is

composed of several MUs activities it becomes difficult to

distinguish the individual MUAPs.
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The contraction of MFs requires a train of action potentials

which induces a MUAP Train (MUAPT). This train produces

a frequency discharge called Firing Rage (FR). In many

cases, the FR evaluation of individual MUs is important to

understand how the Central Nervous System (CNS) controls

the MU and in the case of clinical application it provides

information about neuromuscular disorder.

The paper is organised as follows. First, we present the

cyclostationary nature of EMG signals. Next, is introduced

the model we used to generate synthetic EMGs and the

overall concept of BSS techniques; a particular focus is

made on Multidimensional Independent Component Analysis

(MICA). Follows a detailed presentation of the proposed

automated estimation method and the results obtained after

its application to simulated EMGs. A discussion concludes

this work.

II. CYCLOSTATIONARY PROPERTIES OF MUSCLE

ACTIVITY

Even under isometric conditions and in constant force, the

MUAPT is not strictly periodic and has a mean Inter-Spike

Interval (ISI) equal to the inverse of the FR. Instantaneous ISI

is not fully constant over time; it exhibits a random variation

called jitter [4]. Finally, a MUAPT writes:

y(t) =
∑

i∈N

x

(

t−
i

FR
+ τi

)

(1)

where x stands for the MUAP waveform and τi denotes the

jitter.

This signal exhibits a hidden periodicity at the FR, called

cyclostationarity. It has been shown [5] the considered model

in (1) is a second-order cyclostationary signal (CS) that leads

to a periodic Instantaneous Autocorrelation Function (IAF):

Γxx(t, τ) = E
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)

x
(
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]

(2)

The two-dimensional Fourier transform of Γxx(t, τ) along

t and τ provides the cyclic spectrum of the signal of interest,

with α the cyclic frequency and f the spectral frequency,

associated to t and τ , respectively. That leads to the Cyclic

Spectrum Density (CSD) hereafter:

Sxx (α, f) =
∫∫

R2 Γxx (t, τ) e
−2iπ(tα+τf)dtdτ

= E

[
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2

)
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(

f + α
2
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]

(3)

where x stands for the MUAP waveform and X denotes

its Fourier transform. Considering a second-order cyclosta-

tionary signal, the periodicity in time of the IAF generates



spectral lines along values of the cyclic frequency α. As we

will demonstrate in what comes next, the CSD proves to be

a useful tool in order to reveal hidden periodicities present

in the MUAPT.

III. EMG SIGNAL PROCESSING

A. EMG Modelling

For the simulated EMG signals and the experiments

present in this paper, we used (1) to generate each MUAP.

Summation of the action potentials generated by the fibers

corresponding to these MUAPs, leads to the following syn-

thetic EMG model:

sEMG(t) =
N
∑

i=1

yi(t) + ν(t) (4)

where N and i ∈ [1, N ] denote the number of active MUs

and the MUAP index, respectively, whereas ν(t) stands for

an iid Gaussian noise. The MUAPT y is computed following

(1) and its jitter τi is drawn from a normal distribution

with zero mean and σ2
i variance. According to Clamann’s

law [4], standard deviation is computed following σi =
(0.91/FR2

i )+4× 10−3, i ∈ [1, N ]. Finally, the simulated

MUAPTs use a library template of synthetic MUAP wave-

forms based on model (4) (interested readers are referred to

[6] for details).

B. Blind Source Separation

Given a set of M observed signals xi(t), i ∈ [1,M ],
BSS methods aim to extract the N unknown source signals

sj(t), j ∈ [1, N ], with N ≤ M , which are drowned in the

observations contaminated by additive noise n(t):

x(t) = As(t) + n(t) (5)

where x(t) = [x1(t), x2(t), ..., xM (t)]† and

s(t) = [s1(t), s2(t), ..., sN (t)]† denote the observations (also

called mixtures), and the unknown source vector, respec-

tively, with † the transpose operator and with A an unknown

M × N full rank mixing matrix. Various methods for esti-

mating the unmixing matrix depending on the conditioning

of A and the number of source as well mixture vectors exist

in the literature; one can compute the pseudo-inverse of A
or use adaptive filters which avoid matrix inversion [7]. The

model in (5) is known in the literature as the noisy linear

instantaneous model and assumes statistical independence of

the unknown source signals and at most one Gaussian source

vector component. Regarding the noise, is generally assumed

to follow a normal distribution.

C. Multidimensional Independent Component Analysis

The Multidimensional Independent Component Analysis

(MICA) [8] consists of a linear separation of mixed signals

into independent groups instead of solely single independent

components (ICs). Its author applied this method to real

foetal electrocardiogram (FECG) data. From a set of obser-

vations recorded with skin electrodes placed in the expectant

mother’s abdominal and thoracic areas, he first applies the

BSS algorithm JADE [9] to a three-dimensional set of

these recordings to extract an equal number of independent

components. Then, based on a simple visual inspection, the

author groups two of them into a two-dimensional subspace

corresponding to the maternal ECG (MECG); we will show

in IV-C how to automate this classification step using the

cyclostationary properties of the signal of interest.

IV. SIMULATED DATA AND METHOD

A. Generating Synthetic EMG Mixtures

For our experiments, we needed to construct a simulated

EMG mixture vector. For this, we used (4) described in

section III-A. Our surface EMG acquisition test bench con-

sisting of seven equidistant surface electrodes, we took into

account the slight delay with which each MUAPT arrives

from the first towards the last sensor. Once the MUAPT

delayed versions computed, they are mixed up with a real

well conditioned (i.e. non singular) mixing matrix AEMG.

Finally, a Gaussian noise gn(t) is added to each one of the

input channels. Hence, the following model corresponds to

the BSS noisy linear instantaneous one in (5):

xEMG(t) = AEMGsEMG(t) + gn(t) (6)

where sEMG(t) is the vectorial form of the unknown EMG

signals in (4).

The variables in our simulation procedure are:

• the number N of the activated MUs,

• the firing rates for each one of the activated MUs (in

Hz),

• the size M of the observations vector xEMG,

• the mixing matrix AEMG,

• the jitter level as rate of the Clamann’s law σi in %,

and,

• the SNR expressed in dB (amount of noise gn).

In the following and in order to clarify the presentation of

the simulation results, the above variables are assigned the

next values: N = 4 with respective firing rates FRi =
{10.8, 11, 13.5, 13.8}Hz, M = 7, AEMG is a M×N mixing

matrix containing random values drawn from the normal

distribution, jitter level in {10, 50, 100}%σi and SNR in

{−15,−10,−5}dB. For comparison purposes, the same

mixing matrix AEMG and additive noise vector gn(t) have

been used in all simulations.
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Fig. 1. The 4 MUAP library templates used for the simulations.



CSDs of JADE estimated components from left to right:
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Fig. 2. CSDs of 6 out of 7 estimated ICs using the JADE algorithm.

B. Why Use Cyclostationary Measures?

Fig. 1 shows the time waveform of the raw MUAP library

templates used in all simulations for this work. One can

easily remark that, their respective shapes are all different

(but, in general, they may also have some similarities), their

amplitudes have a large dynamic range and, also, they may

overlap in time. This is some of the major complexities that

make decomposition or firing rates estimation tasks more

difficult [10].

Once the mixing vector computed according (6), combi-

nations of the aforementioned complexities together with the

strength of additive Gaussian noise of the mixing model

and the amount of jitter, make EMG signal processing an

even more challenging task. It is very hard to distinguish

the individual MUAP shapes from the time plots of the

xEMG mixture vector’s individual components. Hence, we

used envelope spectrum analysis of the observations and

we compared the obtained results concerning FR estimation,

with those obtained with the proposed method based on the

intrinsic cyclostationary properties of EMG signals (envelope

spectrum is issued from the Fourier transformed squared

analytical signal of interest). As cyclostationarity measure,

we used the integrated CSD (iCSD) obtained by summing

over all the spectral frequencies f for every cyclic frequency

α.

C. The Procedure for the Firing Rates detection

The following steps compose the proposed MU’s firing

rate automated detection procedure:

1) Apply JADE to the mixing vector xEMG(t) and ob-

tain estimated independent components JADEi, i ∈
[1,M ].

2) Compute the CSD and then the iCSD for each ex-

tracted independent component previously computed.

3) Compute and compare standard deviation and kurtosis

values of the CSDs and put into an independent

subspace those corresponding to the noise.

4) For each iCSD computed in step 2, except for those

corresponding to the noise subspace (step 3), subtract

its maximum value. If the new vector exhibits null

values, then, the ICs whose null values correspond to

the same cyclic frequency α span a subspace of signal

components corresponding to a MUAP firing at that

cyclic frequency.

The above proposed procedure employs one of the most

widely used BBS algorithms (JADE) which is based on

fourth-order statistics. Other BSS algorithms may be used

for the separation task (step 1).

V. RESULTS

For the simulations, the variables are given the values

detailed in section IV-A. In real world EMG signals, the

number of active distinguishable MUs - even for minimum

Maximum Voluntary Contraction (MVC) rates, is at least

equal to several hundreds. But, for the sake of clarity and to

test the feasibility of the proposed method, we have chosen

N = 4.

A. A Concrete Case Simulation Example

Let us now illustrate the application of the proposed

FR detection procedure by considering a simulated EMG

mixture with a 100%σi jitter and −10dB SNR. Envelope

spectrum analysis of the xEMG(t) vector, reveals 2 among

the 4 unknown, a priori, firing rates. Envelope spectrum

analysis of the estimated ICs after application of the JADE

algorithm, does not detect any additional FR. After applying

the proposed procedure, one obtains the CSDs of the JADE-

separated ICs. Now, and in order to decide whether an IC

should fit the noise subspace, one computes the standard

deviation and kurtosis (κi, 1 ≤ i ≤ M ) values of the obtained

CSDs. Obtained results are summarised in Table I.

The IC corresponding to the noise subspace is the second

one, not only because its CSD’s standard deviation value is

the smallest one, but also, because of its CSD’s low kurtosis

value comparatively to those of the remaining ICs, which

indicates a very noisy CSD plot. The CSDs of the remaining

six ICs are plotted in Fig. 2; one can easily remark high-

valued spectral lines at cyclic frequencies equal to 10.8Hz,

11Hz and 13.8Hz. Thus, the subspace containing useful

information about the signal of interest is spanned by six

components while the noise subspace is one-dimensional.

The detection of the previously detected firing rates is

automated by computing the integrated CSDs of the six-

dimensional subspace and then subtracting from each one of

them its maximum value. Therefore, one obtains the plot of

Fig. 3. The modified iCSDs of components 1, 3, 5, 7 exhibit

a single null value at cyclic frequency α = 13.8Hz, the

one of component 4 has a null at α = 11Hz and, finally,

the iCSD of component 6 vanishes at α = 10.8Hz. These

cyclic frequencies correspond to firing rates FR1,2,4 (section

TABLE I

STANDARD DEVIATION (σCSDi
) AND KURTOSIS (κ) VALUES OF THE ith

INDEPENDENT COMPONENT’S CSD.

ICi 1 2 3 4 5 6 7

σCSDi
0.36 0.02 0.34 0.07 0.19 0.05 0.33

κi 55.7 7.4 55.8 28.5 52 21.1 55.7
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IV-A). Only the FR3 = 13.5Hz still remained undetectable

most likely due to the relatively small amplitude of the third

MUAP (Fig. 1).

B. Synthesis of the Obtained Results

Many different synthetic EMG mixtures have been tested.

Table II resumes the obtained results with the variables’

values given in section IV-A.

For each pair {SNR (rows), jitter (columns)}, the columns

A, B and C of the table show the number of detected

firing frequencies associated to the active MUs. The first

two columns, A and B, correspond to the results given

after visual inspection of the envelope spectrum of the raw

mixtures, and the JADE-separated independent components,

respectively, whereas, the third column C, gives the results

after application of the procedure described earlier in section

IV-C.

With 100%σi jitter values and for SNR ratios smaller

than −5dB, the proposed method achieves detection of all

firing rates, except the one at 13, 5dB. In the worst case,

it detects as much firing frequencies as with an envelope

spectrum analysis after ICA separation of the raw data. The

fact that the proposed method did not succeed to detect the

remaining FR, is mainly due to the very low amplitude range

of the associated MU with respect to these of the remaining

MUs (dashed red curve of Fig. 1).

VI. DISCUSSION

In the last decade, various techniques for EMG decompo-

sition have been proposed in the literature (e.g. [11]). The

work we present here is a novel method for estimating the

number of MUs and their firing rates in surface EMGs. It

takes advantage of the intrinsic cyclostationary properties of

TABLE II

NUMBER OF DETECTED MOTOR UNITS.

Jitter (%σi)
10 50 100

SNR A B C A B C A B C

−5dB 2 3 3 3 3 3 3 3 3

−10dB 2 2 3 2 2 3 2 2 3

−15dB 1 2 3 1 2 3 1 1 3

such signals, which, at the best of our knowledge, has not

been reported yet in the dedicated literature, and it introduces

a new automated classification step of the BSS estimated

components into independent subspaces. The obtained results

after application of the proposed method to synthetic EMGs

are very promising.

With the proposed method and under certain conditions

one obtains a gain over traditional frequency domain signal

processing techniques. Future research should focus on the

validation of the proposed method’s estimation accuracy and

of its robustness against different BSS algorithms, when

applied to simulated EMG mixtures, with more or less

closely spaced FRs, with different numbers and various

relative amplitude range for the MUs used for the simulated

mixtures. Current research in that direction is ongoing. Also,

its extension and application on real world EMG datasets

is a very challenging task due to the important number of

active MUs which can vary between ten to more than several

thousands depending on the muscle.
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