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Abstract 

This paper describes the role of traps in the electronic conductivity of 8-tris-hydroxyquinoline 

aluminium in a conventional sandwich structure with indium tin oxide and aluminium 

electrodes.  New results obtained by photodipolar absorption techniques and impedance 

spectroscopy are presented.  The former method acts as a probe to highlight the role of traps. 

It is shown that optical pumping of electrons to trap levels gives a clear increase in dielectric 

absorption due to the reorientation of dipoles associated with trapped charges.  The trap depth 

is estimated to be around Et = 0.19 eV, a value in good agreement with theoretical 

calculations and thermoluminescence measurements.  The latter method permits a 

representation of the sample in terms of a circuit composed of a parallel capacitor (Cp) and 

resistor (Rp) both in series with a resistor Rs ≈ 50 � located on the anode side.  A logarithmic 

plot of Rp as a function of the dc bias voltage gives a linear law that is recognized, for the first 

time, to be a consequence of a trapped charge limited (TCL) current.  The linearity can be 

improved by the introduction of a field-dependent mobility.  
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1  Introduction 

In the development of molecular materials for organic optoelectronics, particularly for 

applications using electroluminescence, the electron emitter 8-tris-hydroxyquinoline 

aluminium (Alq3) has been studied in depth [1].  Figure 1 shows the chemical structure of this 

material which is an organometallic complex based on a central metal cation coordinated to 

quinolate ligands.  It is generally prepared as a thin film by evaporation under vacuum, which 

in itself demands that the complexes exhibit no overall charge or saturated coordination 

numbers [2].  Alq3 satisfies these requirements and is the most widely used compound, even 

if its fluorescent quantum yield is relatively low.  It provides films with a stable 

electroluminescence and is a good transporter of electrons.  

 

[Insert Figure 1 about here please] 

 

Numerous discussions have taken place concerning the electronic conduction 

mechanisms and the role of traps in Alq3 [3].  For example, a trapped charge limited (TCL) 

model in which the trapping time is longer than the average transit time for a hop between the 

LUMOs of two molecules, was proposed to answer criticisms concerning electronic transport 

in a band structure where there is a sufficient delocalization of carriers to establish a thermal 

equilibrium between free and trapped charges [4]. 

In this paper, we present new results, which, on interpretation, advocate the use of 

conductivity laws involving trap mechanisms.  Experimental results are based on photodipolar 

absorption measurements obtained from thermo-photo-dielectric effects, as currently used 

with inorganic materials (class II-VI semiconductors such as ZnS(Cu)).  This technique has 

not been used before with Alq3 to our knowledge, and is here complemented by the use of 

impedance spectroscopy.  We discuss the possibility of a modified TCL law to take into 

account a dependence of the mobility on applied electrical field. 

 

2  Electronic structure and transport mechanisms in an indium tin oxide/Alq3/Ca(Al) 

sandwich device 

2.1  Energy levels in Alq3 

In polymers each monomer is joined to its neighbours by strong bonds, which have associated 

with them transfer integrals β [5].  However, in thin films composed of molecules, cohesion 

arises from weak Van der Waals forces between weakly overlapping orbitals of the 

molecules.  In addition, the greater the distances between the molecules, the weaker the 
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interactions between electrons on neighbouring molecules and the lower the degeneracy of 

valence states.  As the discrete occupied levels increase with increasing numbers of chemical 

groups, the separation, or band gap, between HOMO and LUMO bands decreases [6], as is 

the case for polymers.  The result is that the electronic bands obtained for molecular solids are 

narrow and exhibit poor interaction.  It should be noted that the term ‘band’ here corresponds 

simply to an energy interval in which HOMO and LUMO levels are situated, without 

implying a Bloch pseudo-continuum of energy levels. 

As shown in Figure 2, Alq3 is a large molecule consisting of a central metal cation 

tied to 3 surrounding ligands, and the interactions between ligands must not be ignored.  A 

study has been made using semi-empirical determinations of molecular orbitals to compensate 

for this intermediate neglect of the differential overlapping (INDO) method [7].  By 

considering an isolated molecule of Alq3 and assuming that it exhibits the same 

characteristics as a molecule within a thin film (i.e. simply ignoring the effects of the weak 

Van der Waals forces between molecules), energy levels were determined by Burrows et al. 

[4].  The calculations indicated that full π-orbitals (HOMO) are situated at the ligand 

phenoxide groups while empty π*-orbitals (LUMO) reside around ligand pyridine groups. 

 

[Insert Figure 2 about here please] 

 

Figure 3 shows absorption and electroluminescence spectra of Alq3.  The 

electroluminescence peak is red shifted by ≈ 0.4 eV from the absorption peak.  This is a 

Franck-Coulomb shift results from large conformational changes on optical excitation.  These 

conformational changes, arising from strong electron-phonon coupling, broaden the 

electroluminescence spectrum and give rise to discrete trapping levels in the HOMO-LUMO 

gap. 

 

[Insert Figure 3 about here please] 

 

2.2 Interface barriers  

The work functions of indium tin oxide (ITO), calcium and Alq3 are denoted by WITO, WCa 

and WAlq3, and the electron affinity, the ionization energy and the size of the forbidden band 

of Alq3 by χAlq3, IPAlq3  and  EGAlq3, respectively.  Experimental values are WITO = 4.6 eV, WCa 
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= 2.9 eV, χAlq3 = 3.3 eV, EGAlq3 = 2.6 eV, so that IPAlq3 =χAlq3 + EGAlq3 = 5.9 eV (values for 

Alq3 were obtained from Schmidt et al. [8]). 

Organic light-emitting diodes (OLED)s are generally fabricated as detailed in Figure 4 

(a) [9].  Once contact is made with the electrodes, the bands move through the adjustment of 

Fermi levels such that VFB = (WITO – WCa)/q where VFB is the voltage difference of the flat-

bands and Vapp is the applied dc bias voltage (Figure 4(b)).  The drop in voltage that appears 

of its own accord is in fact what we term VPS (the ‘positive supplementary’ voltage applied to 

the ITO anode), and is equal to the total applied voltage minus the flat-band voltage (VFB).  In 

this example VFB ≈ 2 V, a non-negligible value with respect to those generally used (of the 

order of 0 to 15 V). 

Important information can be gained about the interfaces.  The barrier at the anode (�A), 

observed by holes, is equal to �A = IPAlq3 - WITO.  In this example �A = 1.3 eV.  It is more than 

probable that the contact at the anode is not ohmic and risks being limited by emissions from 

the anode.  At the cathode there is no barrier to the injection of electrons.  The drop in 

potential energy for electrons �C = χAlq3 - WCa,which gives �C = 0.4 eV.  This contact can be 

assumed to be ohmic because near the electrode the Fermi level penetrates the Alq3 LUMO. 

  

[Insert Figure 4 about here please] 

 

2.3  Transport mechanisms 

2.3.1  Introduction 

Various mechanisms can be envisaged for charge transport.  The voltage and current flow 

characteristics of a material are usually studied and explained in terms of charge injection 

under an electric field (Schottky effect) or by tunnelling, in which case the current is 

electrode-limited.  However, as here, the results may be interpreted using models based on 

current flow through the bulk of the material.  It is important to note though that in order to 

reduce the threshold potential of the device (ITO/Alq3/Ca(Al)), the effect of the metal used for 

the electrode or the mobility of carriers within the organic layer should be characterized 

depending on the technique used. 

Studies of I(V) characteristics have shown that Schottky emissions can give an ideality 

factor n of the order of 20 (a very high value indeed) and an unusually high diode series 

resistance of 50 k�.  However, the emission law for tunnelling effects (Fowler-Nordheim 

law) is not completely verified [4,10].  In fact, it is the Alq3 bulk that limits the current flow 
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and furthermore, the conductivity cannot arise from carriers in extended states.  In fact, the 

I(V) characteristic follows the TCL relation I ∝V 
m+1

/d 
2m+1

, notably within domains that yield 

electroluminescence. 

 

2.3.2 Conduction processes and trapping levels 

Qualitatively, in Alq3, the Al
3+

 ion complexes with the 3 ligands to leave them with the 

capability, through back bonding, to act as effective electron acceptors.  This character results 

in the easy propagation of electrons between molecules.  The material is therefore considered 

to be n-type. 

The existence of extended states in condensed small molecules is controversial.  As 

mentioned above, semi-empirical calculations have been used to determine the energy levels 

for an isolated molecule.  However, the weak Van der Waals intermolecular interactions do 

not even yield narrow molecular bands.  When dealing with electroluminescence, the 

continuity (or non-continuity) of energy levels susceptible to receiving injected charge 

carriers at interfaces is problematic.  If the energy separation between levels is too great, then 

there is a risk that any injected charge will not find an accepting energy level.  Given the size 

of the molecule however, it is probable that there is a large number of energy levels and 

consequently these should be sufficiently close to ensure that charge carriers are not blocked.  

Even if there are permitted bands arising from weak Van der Waals bonding, the very limited 

overlapping of molecular orbitals makes these bands narrows (B < kT) and the effective-mass 

approximation can no longer be applied to evaluate charge mobility. 

 By assuming that any collision is isotropic, and therefore that the relaxation time is 

equivalent to the time between two consecutive collisions, a general equation for the mobility 

µ [11] leads—with the Ioffe and Regel rule l > a (where a represents an average 

intermolecular distance and l  the mean free pathway of an electron) [12]—to the inequality µ  

> qa
2 

/ ћ [9].  Given that a ≈ 5 x 10
-8

 cm, we find that µ  ≥ 1 to 10 cm² V
-1

s
-1

.  With µ  << 1 cm² 

V
-1

 s
-1

 (µ  ≈ 5 x 10
-5

 cm² V
-1

 s
-1 

in Alq3), we do not have the inequality required (i.e. µ  ≥ 1 to 

10 cm² V
-1

s
-1

) to obtain conduction through delocalized states.  

 Structural defects resulting from electron injection into Alq3 have been studied.  

According to Section 2.1, an injected electron should enter the first empty level localized 

around pyridine groups.  In order to determine the approximate trapping energy associated 

with an electron injected into Alq3, calculations were performed for a neutral Alq3 with the 

geometric structure of its anion [13].  Transition energies of 3.07 to 3.20 eV and 3.34 eV 

underwent a large red shift of the order of 0.21 eV with respect to the neutral and fundamental 
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state of Alq3, a value which represents the electron trap energy depth.  It was also thought that 

these calculations provided insight into the nature of the traps in Alq3.  When an additional 

electron is localized on a molecule it occupies anti-bonding orbitals and the molecule 

accordingly relaxes into a new structure (Frank-Condon principle).  This relaxation towards a 

lower energy level can be used to automatically trap an electron that would otherwise move to 

a neighbouring molecule through polaronic processes.  Given that there are many possible 

variants to the Alq3 structure, an exponential breakdown of trap levels leading to distribution 

of levels in the LUMO band is possible.  The upshot of this is that conduction mechanisms 

associated with trap levels can therefore appear in otherwise resistive media. 

In the next section, we briefly recall the main results for current flow obtained with 

electrical conduction involving traps.  For the discussion section, a clear understanding of the 

mechanisms leading to the physical laws is of importance. 

 

2.3.3  Transport mechanisms in resistive organic materials with traps; effective mobility 

2.3.3a  The space-charge-limited-current law without traps 

The current can be space-charge limited when the contact is ohmic.  Given that the Alq3 is 

close to being an insulator, space-charge formation near the electrode interface opposes the 

trickle of current through the material.  At a sufficiently high applied field (Ea), the space 

charge is pressed right back to the interface and can effectively enforce a saturation current.  

At this point, it is important to recall the hypotheses leading to the common space-charge-

limited (SCL) law.  First, the band model is applicable to the treatment of injection of carriers 

with a current not limited by the electrode.  While considerable controversy does surround the 

question of whether or not band models can be applied to organic solids, a model does indeed 

exist for these [5,14], which is close to that proposed for amorphous semiconductors [15].  

The most important assumption of the model is that the energy levels within an insulator, 

localized or not, can accept injected charges at the interface.  Second, carrier mobilities are 

assumed to be independent of Ea and the dielectric permittivity (ε) is not modified by charge 

injection. Poole-Frenkel or impact ionization effects are not considered.  Third, the electric 

field is assumed to be high enough to render negligible the following current components: 

- ohmic current due to thermally generated carriers with density n0 as under a high 

injection regime n >> n0;  

- current due to diffusion, because the applied potential is considerably greater than the 

thermal potential kT/q.   
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Fourth, the system is essentially one-dimensional when Ea is sufficiently intense for the 

resulting field at the cathode to be equal to zero.  If Js is the saturation current, given the 

above conditions [16], it is possible to state that  

2 2

a a

3

9 9
 

8 8
s

V E
J

d d
ε
 ε
= =  . 

  

2.3.3b  The effect of traps:  the effective mobility and the modified SCL law 

If n is the density of free charges with mobility µn, and nt the density of trapped charges on a 

discrete level Et, then the current density (J) can be written either as J = q n µn Ea or as J = q 

(n + nt) µeff Ea which defines the effective mobility (µeff).  The current density with traps (JsT) 

becomes 

JsT = 
2

a
eff 3

9

8

V

d
ε
  = 

2

a
eff

9

8

E

d
ε
 . 

 

Traps can be distributed according to a Gaussian law.  Accordingly, the density of traps per 

unit energy (g(E)), centred about energy E, is of the form 

g(E) = (Nt/kTt)exp(-[Ec – E]/kTt) 

in which Nt is the total density of trap levels and Tt is a constant characteristic of the 

distribution.  Taking Tt =Et/k = mT in which Et represents the characteristic energy of traps 

with respect to EC and m a characteristic of the trap distribution, the current density is 

generally TCL and given by 

J ≡ JTCL ∝ V
m+1

/d
2m+1

 . 

 

Qualitatively, an ohmic law is followed at low voltages (due to thermally generated 

carriers of density n) in thick films.  As the voltage increases, the Fermi pseudo-level rises 

and traps start to fill.  This decrease in the number of empty traps, which can now receive few 

electrons, induces a rapid increase in the mobility and the overall current, resulting in the TCL 

law being observed (I ∝ V
m+1

/d 
2m+1

).  At a sufficiently high value of V, all traps are filled and 

the classic SCL law may be observed.  However, such values for V are rarely obtained 

without destroying the films. 

Numerous arguments have been developed as to why the TCL law is observed [4] but 

controversial points have been raised [3], as will now be discussed. 

 

2.3.4 Controversial points 
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Apart from doubts concerning the validity of the band scheme for small molecules, another 

controversial point relates to the hypothesis of the invariance of carrier mobility with respect 

to an electric field, which is used in establishing the SCl and TCL laws.  Because of the low 

mobilities and short mean free paths in organic solids, Kao and Hwang proposed that, 

between successive collisions, the carriers could not gain much energy from an applied field, 

and hence their mobilities should be essentially independent of the applied field [16].  

However, in disordered systems, general expressions for µ  are obtained empirically and have 

only been verified through Monte Carlo simulations [17], or in accordance with an empirical 

law for charge transfer [18].  Carriers in small molecules generally exhibit a mobility which 

follows the Poole-Frenkel law in the form µ  ∝ µ0 exp(αEa
1/2

).  However, in certain materials, 

such as polymers doped with molecules to the order of 5 to 25 % by mass, mobilities do 

decrease above a certain value of Ea.  As shown in Figure 5, in qualitative terms, we can 

suppose that this effect is due to ‘diagonal disorder’ associated with the variable distances 

between molecules [19].  Under a weak field, there are many available and facile pathways 

(short distance hops in different directions with respect to the field) which are, nevertheless, 

removed once a strong field is applied. 

 

[Insert Figure 5 about here please] 

 

2.3.5 Alternative models 

By modelling the characteristics of organic materials such as Alq3, Ioannidis et al. showed 

that trapping levels need not be invoked [3].  This group even supposed that such levels do 

not exist, because in examples where only electrons have been injected (using the same 

contacts on either side, which are assumed to be ohmic), the I(V) curves are identical whether 

or not the applied voltage is interrupted during the measurements, indicating negligible 

electron trapping.  They consider that experimental characteristics may be based on Ohm’s 

law, into which can be included an appropriate law for a variation in mobility of the form µ  = 

µ0 exp(αEa
1/2

) where µ0 is the mobility under a weak field and α a parameter increasing with 

disorder. In their fitting, they found α = 1.3 x 10
-2

 cm
0.5

 V
-0.5

 and µ0 = 6.5 x 10
-10

 cm² V
-1

 s
-1

. 

 It is important to state, however, that the presence of trapping levels has been 

confirmed using a variety of techniques.  These include thermo-stimulated luminescence 

(TSL) spectroscopy which was demonstrated by Forsythe et al.[1] in the modelling of a 

principal peak using a distribution of traps with energies between 0.25 and 0.15 eV (two 
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supplementary peaks were observed at lower energies), and the characterisation of thermo-

stimulated currents (TSC) as performed by Meier et al. [20] and Nguyen et al. [21] on 

polymers such as poly(phenylene vinylene) (PPV). 

In order to demonstrate the presence and calculate the depth of trapping levels in Alq3, 

we undertook a study by photodipolar absorption as detailed in the following section. 

 

3 Experimental: photodipolar absorption and impedance spectroscopy 

The photodipolar effect consists of three major components, which are: a photonic effect from 

the pumping of electrons to the trap level—or to the conduction band—with a subsequent 

release from traps;  a thermal effect associated with the initial cooling of the sample; and a 

dielectric effect arising from the relaxation of dipoles produced by the polarization of trapped 

electrons.  The energy of the trapping levels is the activation energy that can be determined 

from dielectric absorption measurements as a function of frequency and temperature. 

 

3.1 Experimental procedures 

Alq3, obtained from Aldrich, France, was deposited by thermal evaporation onto an ITO (ca 

300 nm thick on a glass substrate and obtained from Merck, France) plate in a secondary 

vacuum (ca 10
-6

 mbar), and then covered with aluminium (ca 100 nm thick layer) by thermal 

deposition.  Once the sample cell was prepared, with electrical contacts placed on opposite 

sides of the sample in order to prevent short-circuits as shown in Figure 6, it was transferred 

to the apparatus schematized in Figure 7.  The experimental measurements were performed 

using a Hewlett-Packard 4274A bridge.  Samples were cooled to 77 K and then data were 

obtained in the 20 Hz – 1 MHz frequency range during heating passages from 150 K to 320 

K. A Wood lamp, Model B 100 AP UVP manufactured by Upland, USA, and supplied by 

Fisher Bioblock Scientific, France was used to supply the UV illumination at an intensity of 

7000 µW cm
-2

 and a wavelength (λ) of 365 nm (figures supplied by the manufacturer in 

accordance with the filter used on the lamp).  The sample was also exposed to ambient natural 

light. 

 

[Insert Figures 6 and 7 about here please] 

 

3.2 Components observed by dielectric absorption spectroscopy 
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Prior to considering the results from the dielectric experiments, it is worth discussing what has 

actually been measured.  Since the dielectric absorption analyses cannot discriminate between 

the various electrical currents in the sample, in order to determine the true dielectric response 

of Alq3 the other components that are concurrently measured must also be determined [22].  

In other words, effects due to the true dielectric loss, characterized by the imaginary 

component of the dielectric susceptibility (χ"), must be separated from those due to:  the dc 

conduction (σ0) caused by free charges that are practically independent of frequency (at least 

in the low-frequency range); hopping conduction (σh); photoconduction (σph) for an 

illuminated sample; and variations at the interfaces between Alq3 and the electrodes.  For the 

measured apparent dielectric loss, or rather the imaginary component of the effective 

dielectric response (ε") it is therefore possible to write  

0

''   ''   
σ

ε χ
ε ω

= +   

where σ = σ0+ σh + σph. Following from the discussion above, the last component (σ /ε0ω) 

arises only because the instrument cannot distinguish between true dielectric and electronic 

transport processes.  In the Debye model, the dielectric loss due to χ" can be represented as a 

double potential well as schematized in Figure 8.  Under the influence of an applied 

alternative electric field, the electrons oscillate around an equilibrium position between 

positions A and B, which are separated by a potential barrier of height U.  In the most simple 

scenario, the mechanism for the oscillation is a relaxation process of time constant τ where 

( )0   exp /U kTτ τ= .  When the dielectric loss is at a maximum,  = 1
c

ω τ , and the activation 

energy U can be related to the trap depth by U = Et, as has been possible for luminescent 

inorganic II-VI semiconductors.  It is possible to distinguish the component σ0 from dielectric 

phenomena because ε"(ω) is proportional to 1/ω and, on decreasing ω towards 0 Hz when 

ε'(ω) attains a constant value, the remaining measurement is due to σ0 which becomes the 

dominant process.  The component σh has often been observed in amorphous materials and 

various theories have been proposed to define it. The most widely used is σh = C ωs
, where s = 

s(T) in accurate theories [15].  However, for amorphous materials with traps, the 

photoconductivity may be discerned as a function of temperature through the equation 

 ( / ) exp(-[ - ] / )ph T c t c tq G N N E E kTσ 
τ=  
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where τT is the time required for electrons to recombine with traps, G is the rate of generation 

of photocarriers, Nc is the density of states in the conduction band, and Nt is the density of trap 

levels [23].  The effects due to the contacts between the Alq3 and the electrodes cannot be 

neglected, especially when considering that the film is relatively thin.  Equivalent circuits, 

generally consisting of a parallel resistor (Rp) and capacitor (Cp) in series with a resistor (Rs), 

that exhibit a virtually temperature-independent absorption peak in the relevant frequency 

range may be used [22]. 

 

[Insert Figure 8 about here please] 

 

3.3 Results from dielectric experiments 

During illumination, excited electrons are 'pumped' from the HOMO to the trap levels, with a 

transient photo-electronic process around the LUMO levels as schematized in Figure 8.  The 

results from the dielectric analyses of the sample are presented in Figure 9 (curves 1-4).  

Without illumination and under relatively fast heating, the sample gave a small and near 

constant response (curve 1).  Again without illumination, but with slow heating, the dielectric 

response was weak with a broad peak at around 220 K caused by trapped electrons excited by 

ambient natural light (curve 2).  Under illumination during both the cooling and heating 

passages, a component due to σh, which eclipsed the dielectric contribution could be observed 

(curve 3).  With illumination during only the initial cooling passage, the dielectric response 

could be clearly discerned at around 220 K on the heating passage (curve 4).  It should be 

noted that as fluorescence is a near-instantaneous process with a relaxation time of less than 1 

ms, it would not have interfered with the data in curve 4 on account of the delay of several 

minutes between the illumination during the cooling passage and the measurement during the 

heating passage. 

 

[Insert Figure 9 about here please] 

 

Figure 10 shows curves for ε" = f(T) at a range of frequencies for the samples exposed 

to the lamp light or only natural light during the cooling curve, respectively denoted (a) and 

(b).  The dielectric peaks are at higher temperatures as the frequency increases, a 

characteristic of Debye dielectric absorption.  The curve of log νc = f(1/T) shown in Figure 

11(a) and derived from the (a) plots in Figure 10 permits a calculation of the activation energy  
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Et ≈ 0.19 eV.  This value is in good agreement with that obtained elsewhere by 

thermoluminescence studies (0.15 eV <Et < 0.25 eV) [1], TCL measurements (Et = 0.15 eV) 

or theoretical calculations (Et = 0.21 eV) [4].  From Figure 11(b), derived from the (b) plots of 

Figure 10, it was possible to conclude that electrons are trapped for a considerable time 

(several minutes) at the low temperatures used in this study; the level of the traps (Et) was 

calculated to be 0.18 eV, and it is probable that they are nearly identical in nature to those 

filled by the action of the lamp light. It should be noted that to obtain reproducible curves, 

slow heating passages (ca 0.5 °C min
-1

) were required. 

 

[Insert Figures 10 and 11 about here please] 

 

It is interesting to note that in going from 100 Hz to 1 kHz there is a steady increase in 

the intensity of the Debye peaks shown in Figure 10.  This increase is most probably due to a 

superposition of two effects.  Firstly, the thermally activated process of photoconductivity, as 

detailed in Section 3.2, which gives rise to a large increase in conductivity at the higher 

temperatures indicated in Figure 9 (curve 3).  Secondly, even if the excitation caused by UV 

is suppressed, as indicated in curve 3 and to a lesser extent in curve 2 where excitation is 

caused only by natural light, the photodipolar measurements can be influenced by a slow 

process of phosphorescence, which may be of non-negligible intensity for a period of several 

tens of minutes.  The combination of the weak photoconductivity (without peaks) and the 

Debye absorption (that generates peaks) results in this behaviour; so, as the actual positions 

for the peaks remains unchanged in relation to a classical Debye behaviour, the calculated 

activation energies are nevertheless directly related to the photodipolar absorptions and 

therefore also the trap depths. 

 

3.4 Study of the contact resistance by impedance spectroscopy 

In order to calculate the contact resistance in the ITO/Alq3/Al device, impedance 

spectroscopy was used. Figure 12 shows a Cole-Cole plot at several dc bias voltages.  The 

minimum value for Re(Z), obtained at the highest frequency, indicates that Rs has a value of 

ca 50 �.  The maximum value for Re(Z), obtained at the lowest frequency, indicates the sum 

of Rs and Rp, and therefore Rp can be calculated to be ca 1.7 x 10
3
 � at zero dc bias.  Given 

that experiments performed on similar devices made from ITO/Alq3/Au (in which the work 

functions of ITO and Au are of the same order) and Al/Alq3/Al indicated a value for Rs of 
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around 50 � and 15 � respectively, it is possible to think that Rs is located at the anode side 

of the equivalent circuit.  Importantly, the analysis made above also indicated that the 

interface capacitance was negligible, and the interfaces could therefore be assumed to have no 

air gaps or insulating barriers.  

 

[Insert Figure 12 about here please] 

 

3.5 Discussion on possible improvements to the TCL law 

As traps have been shown to exist through photodipolar effects, it is useful to consider the 

accuracy of the TCL law and, indeed, how it may be improved.  As shown in Figure 13, Rp 

decreases as the dc voltage increases while Cp (= 1/ωmaxRp) is almost independent of the dc 

bias voltage.  This observation was also made for a similar device based on PPV instead of 

Alq3 [24]. From the TCL law given by J = K
+1

2 +1

m

m

V

d
 , where K is a constant, it is possible to 

deduce the voltage dependence of the resistance Rp in such a way that -m
pR V J V∝ ∝ .  On 

plotting log Rp against log V, as in Figure 13, it was found that m ≈ 2.5.  On making a first 

analysis, the reasonable linearity of the Rp versus log V plot would seem to indicate that the 

conductance followed the TCL law owing to an exponential trap distribution.  However, on 

further inspection, it can be noticed that the plots in Figure 13 do not follow perfectly straight 

lines. Indeed, plots of log J against log V elsewhere in the literature are also not linear [10].  It 

should also be noted that the latter results did not exhibit the Fohler–Nordheim law, which 

would indicate that the conductivity was bulk limited.  Therefore, there is every possibility 

that an improvement can be made to the TCL law.  By taking into account the dependence of 

mobility on temperature and electric field, it seems reasonable that effects due to space 

charges and the applied electric field should affect J(V) characteristics [25].     

 

[Insert Figure 13 about here please] 

 

 On reconsidering the general expression for current density, and ignoring the term for 

diffusion, J = ρv =qnµE, where n is limited by space charge.  The equation may be rewritten 

in the form J = qnµV/d, and n is generally proportional to V
m 

, where m = 1 when only free 

untrapped charges contribute to the space charge.  This in effect gives rise to the saturation 

current (Js) as indicated in the Mott-Gurney law. However, if the space charge is dominated 
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by trapped charges, as here, then, with traps distributed according to an exponential energy 

curve, m = Tc/T for which Et = kTc. While J ∝ V
m+1

, the J(V) law follows variations in µ .  As 

the latter is not a constant, then J  will no longer follow a law based on V
m+1

. 

 The problem therefore is to resolve whether space charge or mobility is dominant in 

any specific voltage domain.  If it can be supposed that mobility varies slowly enough with 

respect to Ea, so that an integration of Laplace’s equation may be performed (Section 2.3.3 

(a,b)), the appropriate law for the mobility, i.e. µ(Ea,T), may be introduced into the TCL 

equation.  If, however, the mobility varies strongly with respect to Ea, the integration of 

Laplace’s equation becomes problematic.  While attempts to obtain a field-dependent 

mobility from space-charge-limited-current variations against voltage have been presented 

elsewhere [26], the complexity of such equations make direct numerical treatment impossible, 

negating any contribution to the hypothesis of conduction by traps. 

  

4 Conclusions 

The presented experimental results and a consideration of the electronic structure of Aq3 have 

indicated that the conduction mechanism in a device based on ITO/Alq3/Al is bulk limited. 

The TCL law would initially seem the most appropriate to describe electron transport 

in the device; however, improvements could be made to this law by bringing in a term to 

describe field-dependent mobility.  Photodipolar absorption measurements indicated by a 

dielectric effect the presence of traps with depths of around Et = 0.2 eV.  Optical pumping of 

electrons to trap levels gave a clear increase in the dielectric absorption.  This method may 

therefore be used effectively to probe traps and demonstrates that the once controversial 

hypothesis that traps are present in Alq3 has been affirmed. 
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Figure Captions 

Figure 1.   Chemical structure of Alq3. 

Figure 2.   Localization of full (HOMO) and empty (LUMO) orbitals on Alq3. 

Figure 3.  Absorption and electroluminescence spectra of Alq3. 

Figure 4.  (a) Typical set up for an OLED based on ITO/Alq 3/Ca in which the ITO layer  

is about 300 nm thick, the Alq3 film is around 75 nm, the calcium is 

approximately 250 nm and the aluminium electrode is ca 75 nm; and (b): the 

associated band scheme. 

Figure 5.    Qualitative description of charge transport under strong and weak fields.  

With a strong field, collisions are orientated and electrons are forced to follow 

a certain trajectory.  On meeting a barrier, their passage is arrested, and thus 

mobility decreases when Ea is very high.  With a weak field, however, 

trajectories are such that collisions are disorientated and electrons follow 

energetically favourable paths.  In effect, transport is independent of positional 

disorder.  

Figure 6.  Schematization of the sandwich device.  Note placement of electrodes to 

minimize possibility of short circuits. 

Figure 7. Apparatus for photodipolar study. 

Figure 8. Band scheme showing the position and depth of traps. 

Figure 9.  Curves plotted for ε" = f(T)  at ν = 40 Hz with the sample under various 

conditions: (1) no illumination and fast heating (2 K min
-1

); (2) no illumination 

and slow heating (0.5 K min
-1

);  (3) illumination during cooling and heating (2 

K min
-1

); and (4) illumination during cooling passage only (2 K min
-1

). 

Figure 10.  Curves for ε" = f(T) at various frequencies for samples exposed to UV 

(curve a) or natural light only (curve b) during the cooling passages only. 

Figure 11. Trap depths for samples exposed only during the cooling process to: (a) UV  

and natural light; and (b) natural light only. 

Figure 12. Cole-Cole plot of the ITO/Alq3/Al device at several bias voltages. 

Figure 13. Plots of log Rp versus log V. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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