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Abstract

Our objective was to evaluate the efficacy of robenacoxib in osteoarthritic dogs using
four ordinal responses measured repeatedly over time. We propose a multivariate probit
mixed effects model to describe the joint evolution of endpoints and to evidence the
intrinsic correlations between responses that are not due to treatment effect. Maximum
likelihood computation is intractable within reasonable time frames. We therefore use a
pairwise modeling approach in combination with a stochastic EM algorithm.

Multidimensional ordinal responses with longitudinal measurements are a common
feature in clinical trials. However, the standard methods for data analysis use unidimen-
sional models, resulting in a loss of information. Our methodology provides substantially
greater insight than these methods for the evaluation of treatment effects and shows a
good performance at low computational cost. We thus believe that it could be used in

routine practice to optimize the evaluation of treatment efficacy.

KEYWORDS: categorical data, clinical scores, pairwise fitting, pseudolikelihood.



1 Introduction

Osteoarthritis is a chronic disease characterized by articular cartilage lesions, bone re-
modeling with osteophytes, inflammation and pain. It affects not only humans but also
companion animals and constitutes a common disorder in dogs. Robenacoxib is a non-
steroidal anti-inflammatory drug that has been developed for the treatment of osteoarthri-
tis in dogs to reduce pain and inflammation (Reymond et al., 2012). In clinical trials,
changes in animal behavior, locomotion and demeanor patterns are considered the most
relevant end points for the evaluation of treatment effects. Because the objective evalu-
ation of these signs is difficult, scoring systems consisting of multiple ordinal responses
are used. Typically, four ordinal outcomes are measured in clinical trials, including the
posture of a dog while standing, lameness while walking, lameness while trotting and
pain at the palpation/mobilization of the affected limb (Table 1). Figure 1 shows the
results of a clinical trial in which 125 osteoarthritic dogs received robenacoxib once daily
over 84 days. All outcomes clearly improved over time, with an increasing percentage of
subjects in the lowest (normal) category and a decreasing percentage of subjects in the
highest (most severe) category until a plateau was reached. Several questions of clinical
interest are addressed in such clinical trials, i.e., what are the percentages of subjects
with no symptoms (clinical cure), no or mild symptoms (acceptable clinical status), and
clinical improvement (improving on all scales by at least one grade) and what is the time
necessary until clinical improvement, etc. To avoid a lengthy paper, we deliberately chose
to address only the first two questions.

The questions raised are multidimensional in nature and pose a challenge for the data
analyst. A routinely used method consists of computing the sum of outcomes and ana-
lyzing this sum as if it were a continuous variable. Obviously, this method is not optimal.
The first reason is that the multidimensional nature of the data is lost; the second, that it
ignores the ordinal nature of the data and uses purely arbitrary coding (0, 1, 2, 3...) as
a metric. A classical alternative is to analyze each ordinal response separately (so-called

univariate analysis). The most popular models in this case apply a link function to cumu-



Posture at a stand Lameness at walk Lameness at trot Pain at palpation

0 - normal 0 - normal 0 - normal 0 - none

1 - slightly abnormal 1 - mild 1 - mild 1 - mild

2 - markedly abnormal 2 - obvious 2 - obvious 2 - moderate
3 - severely abnormal 3 - marked 3 - marked 3 - severe

Table 1: Ordinal outcomes measured in clinical trials for the evaluation of the effects of
robenacoxib in dogs with chronic osteoarthritis

lative probabilities, generally a logit or a probit (for a review, see Liu and Agresti, 2005).
It is possible to interpret these models as a categorization of an underlying continuous
unobserved variable (latent variable interpretation). As an example, an ordinal response
for pain Y can be viewed as the categorization of a continuous underlying ’pain’ variable
Y™, which is the true variable of interest for the evaluation of drug efficacy.

The univariate analysis strategy shows, however, some limitations. In particular, this
approach does not document how the various responses jointly evolve in one subject. In
fact, a subject might improve on one outcome but not another, and such information is
critical to gauging the overall efficacy of the drug. To derive a joint distribution from
separate univariate analyses (estimating marginal distributions), one has to assume that
the different outcomes are independent. This assumption is quite restrictive and not
very plausible because the multiplicity of outcomes in clinical trials results precisely from
the decision to account for all aspects of the disease, despite any overlapping information.
Thus, it can be anticipated that the outcomes are more or less correlated with the existence
of potential redundancies. Obviously, a multivariate analysis adapted to longitudinal
ordinal data would be of great value to address these issues.

Different approaches have been proposed in the literature to evaluate the association
between several (K) observed variables. A popular approach is the so-called "factor anal-
ysis", which aims at finding a set of K independent latent variables (factors) that is
smaller in number than the observed variables (p < K') but contains essentially the same
information. An extreme case is when a single factor is used to model the correlations
among all observed variables (Sammel et al., 1997, 1999; Teixeira-Pinto and Normand,

2009). Factor analysis is appealing, as it provides a simple framework to model correla-
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Figure 1: Empirical probability to observe a given category for posture, lameness at walk,
lameness at trot and pain at palpation in a clinical trial in which 125 osteoarthritic dogs
received robenacoxib once per day over 84 days at the oral dose of 1-2 mg/kg. Clinical
examinations were performed at seven subsequent visits during the treatment period: at
baseline and at days 7, 14, 28, 56 and 84. The variations in gray are used to represent the
severity of symptoms, from no symptoms (white) to the most severe ones (dark gray). Note
that the most severe category is either not or rarely observed for posture and lameness at
walk /trot.



tions between the observed variables of different natures, including ordinal data, and to
detect potential redundancies among these data (Shi and Lee, 2000; Dunson, 2003; Lee
and Song, 2004; Katsikatsou et al., 2012). On the other hand, this approach must specify
a priort the number of factors p. To select a reasonable value for p, it is necessary to
fit and compare several models, which may be a considerably time-consuming process,
especially when K is large. Another approach is to leave the correlations between the
observed variables free of any structure and to estimate these correlations based on the
data. This approach is more exploratory and provides the rationale for further factor
analysis based on correlation estimates.

There is a large literature on the multivariate analysis of ordinal data. However, most
of the published papers are restricted to the analysis of cross-sectional multivariate out-
comes (Dale, 1986; Sammel et al., 1997; Shi and Lee, 2000; Lee and Song, 2004; Qaqish
and Ivanova, 2006; Teixeira-Pinto and Normand, 2009; Katsikatsou et al., 2012) or to the
analysis of repeated measurements over time for a single ordinal response (Glonek and
McCullagh, 1995) or both (Molenberghs and Lesaffre, 1994; Chib and Greenberg, 1998;
Molenberghs and Lesaffre, 1999). By comparison, little work has been performed on the
analysis of multivariate longitudinal ordinal data, which requires the researcher first to
take into account the dependence of observations in one subject, as well as to model the
cross-sectional associations among multiple outcomes. A common way to accommodate
repeated measurements in time is to apply mixed effects models where subject-specific ran-
dom effects are used to tie together the observations from a same subject. The difference
between the models then lies in the manner by which the contemporaneous associations
between outcomes are modeled conditionally on subject-specific random effects and by the
way serial correlations are addressed. Ten Have and Morabia (1999) proposed a model
for bivariate binary outcomes with univariate logit components for the marginal distribu-
tions and log odds ratio components for the association of outcomes at given time points.
Todem et al. (2007) suggested the use of probit mixed effects models based on the concept
of continuous latent variables. In their work, Todem et al. (2007) assumed a multivariate

Gaussian distribution for the latent variables conditionally on subject-specific random



effects. Other authors have assumed the conditional independence of the latent variables,
assessing solely the correlations between subject-specific random effects (Liu and Hedeker,
2006; Fieuws et al., 2006). The complexity and flexibility of the model can be greatly in-
creased; in fact, Dunson (2003) proposed flexible correlation structures between outcomes
and times (serial correlation). However, as discussed by the author himself, the costs
of this versatility are the accompanying potential identifiability and estimability issues,
which favor the use of a Bayesian framework, as implemented in his article.

In the present paper, the challenge was to identify a good compromise between the
complexity (and hence flexibility) of a model and its computation time. The ultimate
objective was to propose a method that could be routinely used in practice for the analysis
of multivariate longitudinal ordinal data in clinical trials. The model developed by Todem
et al. (2007) offered sufficient flexibility and required a limited number of parameters to
describe the associations among outcomes. Because Todem’s work was restricted to the
bivariate case, we propose an extension of this model to accommodate K > 2 outcomes
(K = 4 in robenacoxib case study). Although this extension may appear conceptually
modest, it requires a very substantial revision in the estimation procedure because the
existing methods in the bivariate setting become intractable in even the trivariate setting.
Here, we propose an estimation method that yields unbiased estimates within acceptable
time frames. This methods combines a pairwise approach (Varin et al., 2011) with the
use of a stochastic EM algorithm (Delyon et al., 1999) adapted from Kuhn and Lavielle
(2005), in the same spirit as Booth and Hobert (1999).

The article is organized as follows. In section 2, we describe the general model and
likelihood used to model the longitudinal ordinal data in the robenacoxib case study. We
discuss our fitting strategy in Section 3 and apply it to the robenacoxib data in Section
4. The objective of the robenacoxib analysis was twofold. The first objective was to
estimate the joint evolution of ordinal responses over time, assessing the consequences of
assuming independent outcomes for the evaluation of robenacoxib efficacy. The second
objective was to identify possible redundancies between responses based on the estimation

of intrinsic correlations. Finally, we conducted a Monte Carlo investigation of performance



for the proposed methodology and report the results in Section 5.

2 General model and likelihood

Suppose that K ordinal responses are measured repeatedly over time in N subjects.

Each response k (kK = 1,..., K) takes values in the range 0,...,¢; and ¢; + 1 is the
v

total number of categories. Let Y;; = (Y;é-l), ..., Y;;)T be the vector of observations

for the K ordinal responses in individual ¢ at time ¢;; (¢ = 1,...,N, j = 1,...,n;)
and Y; = (Y1,...,Y,,,) the matrix obtained by an horizontal concatenation of Y,;.
Then, assuming that each ordinal response ngk) comes from the categorization of an
underlying latent variable Ylgk)* and that this categorization is achieved by using a vector
of cut-points with monotonically increasing values al®) = (agk), e agf))T, we obtain the

following relationship in K dimensions

¥y =uw. VY =0 e (@l <Y <al sl <Y <)
(2.1)
u=20,...,coand v=0,...,ck
where aék) = —oo and ag:)ﬂ = +4oo forall K =1,..., K. Note that in the case of binary

outcomes, only one cut-point is necessary.
At a second level, mixed effects models are used for the latent variables, with the

following expression for the k™ latent variable in individual i at time

Vi =g® (1, %, 8) + 01 + €l

€i; “ N<07 2); (2 2)
b, % N(0,),

i=1,...,N, j=1,....n;, k=1,..., K,



where ¢g¥)(-) is a known real function, x; = (z1,...,2,)" is a vector of time-independent
covariates for subject i (e.g., treatment dosing information), 3 = (B, ..., 3,)" is a vector
BT

of unknown parameters common to all subjects, b; = (bl(-l), e is a vector of random

Z(;), e e(K))T is a vector of residual random effects

effects specific to subject ¢, and e;; = (e i

and is assumed independent from b,;. The matrix € is a (K x K) variance-covariance
matrix and ¥ a (K x K) correlation matrix (the variances of e;; components cannot be
estimated due to a lack of identifiability and are set to 1 with no loss of generality, see
Liu and Agresti, 2005). The random effects b; account for the longitudinal association of
data from the same individual across time. The diagonal elements of €2 quantify between-
subject variability, and the off-diagonal elements of €2 measure the overall association
between outcomes. The residual random error e;; accounts for the variations with time
conditionally to the subject-specific random effects b;, reflecting within-subject variability.
The correlation matrix 3 models the contemporaneous association between the outcomes,
given b;. Here, we assume that 3 does not change with time or with covariates, but we
could extend this model to accommodate more general situations, in which the correlation
structures in X are more complex, possibly depending on time and covariates, as shown
in Todem et al. (2007) for the bivariate case. We denote 8" = (a, 3,2, ¥) the parameters

to be estimated, where a is a vector obtained by the concatenation of vectors a*),

Because the subject-specific random effects b; are unobserved, the maximum likelihood

estimation is based on the marginal likelihood of the multivariate response

Lor(y) = [[ Lo 50 = [T [ Zo-(5.1b0) o (bi) 23)

where y, is the observed response matrix, Lg-(y,;|b;) is the conditional density of y, given
b; and Py+(b;) is the density of b;. Although the latent variable model is linear in the
random effects, the multivariate ordinal response model is not linear; thus, there is no

analytical solution for the marginal likelihood. Assuming the independence of e;; across



time points, Le+(y;|b;) is calculated as the product of the conditional probabilities at all

time points, namely

n; ¢

1 X... XTI
Lotyab) = TITT - TT1Re (v = ¥ = i) 087200892 (9.

j=1u=0 v=0

where I(-) is the indicator function. Then, based on the relations described in equation

(2.1) and the latent variable models specified in (2.2), we get

Py (VY =us. Y = 0lby) = Pae (o) < V" < “ LB <y < {8 by
= Py (al) — IV < el <all), - 11

K K K
al) = 15 < el ><a£+i 1571b)

where £ = g®(t;;,x;, B) + b = B(YS"|b;) for all k =1,..., K.
We write ¥ = 3(p), where p denotes the collection of all distinct parameters in
(1) (K)

i €

3. Because €;; = (e )% follows a multivariate standard normal distribution
with cumulative distribution function ®g ,, the conditional joint probability specified in
equation (2.5) is calculated by integrating the multivariate normal density on hypercubes

of RX. When K = 2 (bivariate case), the equation (2.5) reduces to the expression

1 2 1 2 2
PB*(Y;E' ) = u, ng ) = vlb;) = CI)Q,p( u+1 fz(g )7 v+1 fz(])) - (1)27;0(@&1) - fz(] ) v+1 fz(] ))
1 2
—@27;)( u+1 fz(j)7 ay f( ))+(I) ( - z(])a 5)2) fz(]))

(2.6)

where p = (p12) is the correlation coefficient between e(

and e ) and ®, , is the bivariate
normal cumulative distribution function. For K > 2, the expression of the conditional

joint probability of y;; gains rapidly in complexity as the number of dimensions increases.



3 Fitting strategy and estimation algorithm

Clearly, the maximum likelihood estimator is desirable, as it shows nice asymptotic prop-
erties. Unfortunately, this estimator cannot be calculated within a reasonable time-frame
in our situation because the computation of Lg«(y;|b;), as defined in equation (2.4),
involves the multivariate cumulative distribution function ®g ,. As will be discussed be-
low, the computation of this function is a tedious and rate-limiting task when K > 3.
This is the reason why we chose to implement a pairwise modeling approach in which
pseudo-likelihoods are optimized instead of the likelihood. Although the pairwise ap-
proach circumvents the problem of computing ®g ,, the pseudo-likelihoods are in the
same functional form as the likelihood in equation (2.3) and have no closed-form expres-
sion. We thus used a stochastic EM algorithm to optimize these pseudo-likelihoods in a
short time-frame.

As in the univariate case, there is no analytical expression for the multivariate cumu-
lative distribution function ®g ,, but its numerical computation is much more complex
due to the 'curse’ of dimensionality. Much research has been devoted to the computation
of multivariate normal distribution functions in recent decades, and reliable and accu-
rate numerical algorithms are now available (for a review, see Genz and Bretz, 2009).
However, while computations are very rapid and accurate in the bivariate case, higher
dimensions increase considerably the complexity and amount of calculations needed to
maintain acceptable numerical integration errors. In our situation, additional limitations
need to be taken into consideration. Indeed, as illustrated for the simple bivariate case in
(2.6), the evaluation of the joint probability generally requires the integration of the Gaus-
sian density on a hypercube, inducing multiple intermediate computations, the number of
which increases with the number of dimensions. Furthermore, these computations must
be repeated many times during the iterative estimation process, i.e., at each evaluation of
the conditional likelihood of y;; for alli =1,..., N and all j =1,...,n;. This leads to a
major computational burden, even for moderate K values (e.g., K = 4 in our robenacoxib

case study).



To reduce the computational complexity when more than two outcomes are analyzed,
the dimensionality of the problem needs to be reduced. As stated above, we chose to
implement a pairwise modelling approach. The pairwise approach dates at least back
to Besag (1974) and represents an attractive solution to decrease the dimensionality of
the problem. This approach has been successfully applied to the analysis of multivariate
longitudinal continuous or discrete data (Molenberghs and Verbeke, 2005; Fieuws and
Verbeke, 2006; Fieuws et al., 2006) and to non-longitudinal multivariate ordinal data
(Katsikatsou et al., 2012). The pairwise approach consists of fitting all pairs of ordinal
responses separately. In other words, instead of maximizing the likelihood (2.3), we
analyze all pairs of outcomes independently and maximize the likelihood for each specific

pair (r,s), which is called a pseudo-likelihood and takes the following form:
N N
[[ 20,675 =TI [ La..1"5 ) Pa, (b b, (31)
i=1 i=1

Here, ygr) and y§3) are the observed response vectors for outcomes r and s, respectively,
and 0, ; represents the vector of all parameters in the bivariate model corresponding to pair
(r,s). For the sake of simplicity, let us denote by 6, the vector 6, ; where p corresponds
to pair (r,s) with p=1,..., P and P = K(K — 1)/2 the total number of possible pairs.
Similarly, let us denote by y? the observation matrix containing the observed response
vectors y!" and y!*, and by Ly, the individual likelihood Lg, (%) = Le, . (y\", y\*)).

Let @ = (64, ...,0p) be the vector resulting from the concatenation of all pair-specific
parameter vectors 8,. Note that the vectors 8 = (a, 3,2, X) and € do not have the same
length; some parameters in 6 have a single counterpart in @ (for example, any element
of p), whereas other parameters in * have multiple counterparts in @ (for example, vari-
ances of subject-specific random effects). In the latter case, a single estimate is obtained
for 8 by averaging all corresponding pair-specific estimates in 6. More precisely, 0" is

obtained as Aé, where A is a matrix containing the appropriate coefficients to calculate

the averages over all pairs. Because the estimates stored in 6 are obtained by maximum

10



likelihood estimation within each pair, they show classical asymptotic properties, includ-
ing consistency and asymptotic normality, and any linear combination of these estimates
will share the same asymptotic properties. This process results in a normal asymptotic
distribution of @ with mean 6" Regarding the uncertainty in parameter estimates, the
standard errors of 8" cannot be obtained simply by averaging the standard errors of the
estimates in 9, as we need to take into consideration the variability among pair-specific
estimates. Furthermore, these estimates are expected to be correlated, as they are derived
from datasets with overlapping information because a single outcome is analyzed several
times across pairs. Under asymptotic conditions, 0 follows a normal distribution (Fieuws
and Verbeke, 2006)

VN0 —8) ~ N(0,J'KJ™Y) (3.2)

where J is a block-diagonal matrix with diagonal blocks J,,, and K is a symmetric matrix

containing blocks K,,. These blocks are given by

with l;, = log(L;,) being the logarithm of the marginal individual pseudo-likelihood in
subject 7. As in Fieuws and Verbeke (2006), the blocks are calculated by dropping the
expectations and replacing the unknown parameters with their estimates. The variance
of 6" is then obtained as AT(0)AT where T'(8) is the variance of 8 obtained in equation
(3.2). Both J and K matrices are approximated using numerical derivatives.

As stated at the beginning of this section, the estimation of 8, for each pair is achieved
by maximizing the pseudo-likelihood in equation (3.1), which has the same functional
form as the likelihood (2.3) but involves ®, , instead of ® ,. The correlation coefficient

pp = prs is the correlation between two latent variables Yigr)* and Y;g»s)* conditionally to b;.

11



For bivariate Gaussian integration, we have chosen to implement a standard numerical
algorithm developed by Alan Genz for Matlab software based on a previously described
method (Drezner and Wesolowsky, 1990), which provides rapid and accurate results.
The maximization of the pseudo-likelihood is performed using a stochastic version of
the EM algorithm. The EM algorithm (Dempster et al., 1977) has become extremely
popular in recent decades, as it can be easily implemented and applied to a wide variety
of problems. This algorithm iterates between an E-step and an M-step. The E-step
computes, at each iteration ¢, the expectation of a complete data log-likelihood, given the
observations and the current model parameter estimates obtained at iteration (t—1). The
M-step finds new parameter estimates that maximize this expected log-likelihood. With

the pairwise approach, the expectation has the following expression:

N
At—1
Q(6,,0, ) = Ey-: [log Lo, (y7[bi) + log Pa, (b:)ly!] (33)
=1

where y? is the total observation matrix corresponding to pair p for subject i. As we now
address bivariate outcomes, the logarithm of the conditional individual pseudo-likelihood

takes a simple form:

ng Cr Cs

s Ly o)
log Lg, (y}|b:) ZZ log [ng v u;Yig) = ofby)| 0= 0=
7=1 u=0 v=
where the variable YZ] takes values in {0,...,c.}, the variable ng takes values in

{0,...,¢s}; and I(-) is the indicator function.
The expectation in equation (3.3) is then approximated by a Monte Carlo sum, in
which b; are simulated under the conditional density Py-1(-|y}):
] N
Q(6,,0, )= — ZZ log Le, (y?|bi.) + log P, (b; )] (3.4)

z:l =1

where Z is the number of Monte Carlo simulations performed and b; , is the vector gen-

12



erated at simulation z. Note that in the present case, Pé;fl('bff) restricts to Pﬂﬁjl('b’f).
The b; cannot be exactly drawn from this conditional distribution but, based on the work
of Kuhn & Lavielle (2004), we use the Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970) to converge to the target distribution. The Metropolis-Hastings
algorithm consists in the running of a Markov chain, the stationary distribution of which
is the target distribution. This stationarity is reached after the chain has run a number
of times, which is referred to as a burn-in period. In the present method, we use two
successive transition mechanisms that differ only by their proposal distribution II(z,y),
proposing y when the chain is in x. The first proposal distribution at the t —1 iteration of
the EM algorithm is N (0, Q;_l), and the second proposal distribution is N (z, 0.3? x Diag)
where Diag is diagonal matrix with components equal to the variance terms in QZ_I. We
run the Markov Chain M = M; + M, + Z times, where M; and M, are the burn-in
periods for the two transition mechanisms. Recall that Z is the number of terms used to
approximate the EM function @) in (3.4). At iteration m of the chain, we simulate b, ,,

with the transition probability

P(b;|y?) x (b;, by,
P(b;[b; 1) Zmin{ (bily7) x 1(by; bim-1) );1}.

P(bj;m-1ly?) x II(b; m-1,b
In our example, we found that M; = 3, My = 2 and Z = 5 were sufficient for the two suc-
cessive Markov chains. These numbers may appear rather low for the Metropolis-Hastings
algorithm to reach its stationary distribution. However, when the convergence of EM is
nearly obtained, the transition probability does not vary much between two successive
iterations of the EM algorithm. As a result, this inhomogeneous Markov chain becomes
more and more homogeneous along the EM iteration, allowing a stationary distribution
to be reached.

Then, based on equation (3.4), the @ function is maximized, and new parameter

estimates are produced (M step):

~

0, = arg max Q(6,, 9;_1). (3.5)

13



The estimate of the variance matrix for the subject-specific random effects in pair p is
computed empirically from b, ,, 2 = 1,..., Z. Other model parameter estimates are up-
dated using standard methods, either the Gauss-Newton method or the classical Gradient
method, when numerical difficulties are met with the inversion of the Hessian matrix.
To improve computation time and to stabilize the estimation process, the stochastic
EM algorithm is run in a stepwise manner. First, optimization is performed on the
marginal models, assuming independence between outcomes (€2 and X are diagonal); then,
on the joint model, assuming the independence of outcomes conditionally to the subject-
specific random effects (only X is diagonal); and finally, on the joint model, estimating all
correlations. The computations are very rapid in the first two steps, allowing reasonable
estimates for (conditional) marginal models to be achieved in a short period of time.
Correlations are then estimated quite rapidly within a limited number of iterations (50
iterations are usually sufficient). The convergence of the algorithm is checked graphically
and is considered to be reached when the successive values of the estimates oscillate
around a plateau. When such a plateau is reached, the parameter estimates are obtained

by averaging the successive values of the Markov Chain (Kuhn and Lavielle, 2004).

4 Application to the evaluation of robenacoxib efficacy

in osteoarthritis in dogs

Efficacy data were available from three multicenter, prospective, randomized clinical trials
where robenacoxib was administered to dogs with chronic osteoarthritis. For a dog to be
included in the trials, osteoarthritis had to be diagnosed on one or more joints and had to
be present for at least three weeks. Other inclusion/exclusion criteria are given in details
in Reymond et al. (2012) and were similar across studies. Study 1 was the largest trial
performed, with 125 dogs receiving robenacoxib over 12 weeks (84 days). In the two other

studies, robenacoxib was administered for a shorter period of time (28 days) and to a
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smaller number of subjects (51 dogs in study 2; 61 dogs in study 3). In all trials, the drug
was given as oral tablets with once-daily administrations in studies 1 and 2 and twice-daily
administrations in study 3. A single dosage of 1-2 mg/kg/day was investigated in study
1, while in studies 2 and 3, three different dosages of 0.5-1, 1-2 and 2-4 mg/kg/day were
administered to parallel groups of equal size (17/17/17 in study 2 and 20/21/20 in study
3). Clinical examinations were performed at various time points during the treatment: at
days 0, 7, 14, 28, 56 and 84 for study 1; at days 0, 2, 7, 14 and 28 for study 2; and at days
0, 7, 14 and 28 for study 3. At each visit, the four ordinal outcomes listed in Table 1 were
documented, as follows: posture at a stand, lameness at walk, lameness at trot and pain
at palpation (see Reymond et al. (2012) for a more detailed description). Because the
most severe category was poorly represented for three outcomes (less than 0.2, 0.6 and
1.3 % of the data for posture, lameness at walk and lameness at trot), we decided to pool
the data with the adjacent categories to have sufficient observations at each level. The
new coding was as follows: (0): normal, (1): slightly abnormal, (2): markedly /severely
abnormal, for posture and (0): normal, (1): mild, (2): obvious/marked for lameness at
walk and lameness at trot. The coding for pain at palpation was left unchanged. As it
was not the purpose of this work to address missing data, any time point with one or
more missing data in a single subject was excluded from the analysis. This concerned
1.2% of the observations and, in the end, a total of 4764 observations were measured at
1191 time points in 232 subjects who were available to build the model.

Three models with increasing complexity were successively developed. First, the data
were explored to yield a mixed effects model that adequately described the marginal
distribution of the different outcomes over time. More precisely, the data were fitted
jointly but assuming the independence between outcomes (Model 1). In a second step,
a model assuming the independence between outcomes conditional to subject-specific
random effects was run (Model 2). Finally, the model estimating all correlations between
outcomes was run using the methodology detailed in Section 3 (Model 3). Note that no
pairwise approach was used for the estimation of Model 1 or Model 2. In these models, the

independence of ez(f) allows one to decompose the multidimensional Gaussian cumulative
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distribution function into a product of one-dimensional Gaussian cumulative distribution
functions, which dramatically reduces computation time so that the pairwise approach is
not more necessary after the implementation of the stochastic EM algorithm. For Model 1
and Model 2, the Fisher Information matrix was computed by stochastic approximations
to generate the standard errors. All estimation algorithms were implemented in Microsoft
Visual C++ and are available from the authors on request.

Figure 1 summarizes the data obtained for each outcome marginally in the study with
the largest sample size and the longest treatment period (study 1). We can see that
the daily administration of robenacoxib led to a gradual improvement of subjects in all
outcomes and that the percentage of subjects in the various categories tended to stabilize
after eight weeks, suggesting the existence of a plateau for treatment effect. These trends
were supported by the data of the two other studies (not shown), and no difference between
the dosing regimens was observed within and across studies. A simple model was selected

for the latent variables to account for this evolution of over time:

YO = =B, 5 (1 — exp(—Beg # tij)) + b7 + €l (4.1)

where ﬁy(r}fc)w is the maximal treatment effect observed at the plateau, and an exponential
function of time with coefficient 3., was used to model the rate at which the plateau was
reached. This type of model is widely used in clinical pharmacology when a delay in drug
response is observed and the measurement of drug effect is quantitative ([3,,; it is typically
called the "equilibration rate constant"). Note that in equation (4.1), we used a single
parameter for the equilibration rate constant common to all outcomes. A model with
different rate constants, coded as (., for the first outcome and ., x 35 for the others,
was tested but did not show any statistical superiority (p=0.37) over the reduced model,
as confirmed by the Wald test (2, 83, 84) = (1,1, 1). In any case, the simplest model was
retained as Model 1, and its parameter estimates are displayed in Table 2.

Model simulations were performed to evaluate the ability of Model 1 to describe the

time-course of the effects on each outcome marginally. More precisely, Model 1 was used
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to simulate M = 500 replicates of the dataset following the design of studies 1, 2 and 3
and to derive, for each outcome, the median and 95% confidence interval for the marginal
probability to belong to a single category at a given time point. These were compared
to the empirical probabilities calculated from the observations. Overall, the consistency

between empirical and predicted probabilities was very good (Figure 2).
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Figure 2: Time-course of cumulative probabilities for each outcome investigated
marginally. The dots represent the empirical cumulative probability that the correspond-
ing outcomes < m, with m € {0,1} for posture, lameness at walk, lameness at trot, and
m € {0,1,2} for pain at palpation. These values are compared to the median probability
(solid line) and 95% confidence intervals (shaded area) computed from simulations under
the tested model at each time point.

Thus, assuming that the marginal models specified in Model 1 were adequate, Model
2 and Model 3 were run on the data. Note that the difference in Models 1 and 2 lies solely

in the estimation of the covariances in € = (W, )mn and that the difference in Models 2
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Parameters Model 1 Model 2 Model 3

Cut-points
al! -1.375 (0.155) -1.373 (0.158) -1.379 (0.150)
al! 1.580 (0.163) 1.546 (0.181) 1.513 (0.164)
al? -2.070 (0.150) -2.128 (0.164) -2.029 (0.152)
af? 0.286 ( 0.132)  0.246 (0.150)  0.345 (0.128)
at? -2.556 (0.175) -2.586 (0.191) -2.398 (0.145)
as? -0.110 (0.149) -0.120 (0.170) -0.006 (0.102)
al! -2.858 (0.146) -2.740 (0.145) -2.786 (0.149)
al! -0.813 (0.118) -0.717 (0.119) -0.747 (0.113)
al! 0.884 (0.122)  0.945 (0.123)  0.916 (0.124)
Treatment effect

o 2.581 (0.165)  2.520 (0.166)  2.534 (0.174)
B, 2.350 (0.139)  2.370 (0.133)  2.376 (0.168)
Bina 2.582 (0.149)  2.613 (0.147)  2.505 (0.159)
B 2.688 (0.128)  2.639 (0.125)  2.639 (0.145)
Beg 0.128 (0.008)  0.128 (0.008)  0.128 (0.013)
Random effects, variance terms 2
w1y 2.840 (0.383)  2.659 (0.390) 2.811 (0.482)
wa 2.241 (0.330)  2.373 (0.404)  2.235 (0.362)
Wss 2.580 (0.357)  2.926 (0.548)  2.455 (0.381)
Wi 1.703 (0.219)  1.607 (0.202)  1.634 (0.226)
w12 2.037 (0.361)  1.715 (0.318)
w13 2.147 (0.444)  2.169 (0.442)
wis 0.681 (0.146)  0.685 (0.185)
was 2.492 (0.445)  1.991 (0.305)
was 0.640 (0.167)  0.580 (0.182)
w4 0.674 (0.226)  0.535 (0.184)
Random effects, variance terms X
p12 0.746 (0.046)
P13 0.630 (0.057)
P14 0.318 (0.062)
P23 0.776 (0.039)
P 0.344 (0.053)
pai 0.359 (0.060)
~2logLikelihood 7393.247 6933.052 6494.719°
AIC 7429.247 6981.052 6554.719

“marginal likelihood using Gauss-Legendre quadratures (8 fixed nodes) for the computation of @4 ,

Table 2: Parameter estimates and standard errors (within parentheses) under the mixed
effects model, assuming the independence between outcomes (Model 1), the independence
between outcomes conditionally to subject-specific random effects (Model 2), or all corre-
lations between outcomes (Model 3). The outcomes investigated were the posture of the
dog at a stand (k = 1), the lameness at walk (k = 2), the lameness at trot (k = 3), and
the pain at palpation (k = 4).
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and 3 lies solely in the estimation of the correlations in 3. The following notations were

used for the components of 3.

I pi2 -+ pus
pr 1 o
5 _ 12 2
p1a paa -1

The parameter estimates of Models 2 and 3 are listed in Table 2. As expected, the
parameter estimates characterizing marginal distributions were very similar across models,
and the small differences observed were essentially attributed to the stochastic nature of
the estimation algorithm. However, the estimation of the covariances in € (Model 2 or
3) and of ¥ components (Model 3) revealed very strong correlations between some of the
outcomes. To summarize and simplify the interpretation of these correlations, a Principal
Component Analysis was conducted on both €2 and 3. The two first principal components
explained 86-89% of the variability in the data, and correlation circles were drawn for
the first principal component versus the second principal component to summarize the
relationships between outcomes. These correlation circles (displayed in Figure 3) reveal
very unexpected results, namely, a very similar behavior for posture, lameness at walk
and lameness at trot, while pain at palpation appeared to behave very differently. The
results even suggest the independence of pain from the other outcomes, as what was
measured actually looks more like two sub-scores with very different weights, at 3:1. Such
findings could not have been deduced from the marginal analyses (Model 1), which rather
show similarities between the outcomes regarding treatment effect parameters. In short,
the marginal analyses do not document the intrinsic correlations between the ordinal

responses, and these intrinsic correlations cannot be read directly from contingency tables.

As for Model 1, simulations were performed with Models 2 and 3 to assess their

ability to predict joint probabilities, such as the probability that all outcomes equal zero
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Figure 3: Results (correlation circle for the first and second principal components) of a
principal components analysis on (a) the 4 x 4 variance matrix of the subject-specific
random effects € and (b) the 4 x 4 correlation matrix of the residual random effects ¥
(1, posture of the dog at a stand; 2, lameness at walk; 3, lameness at trot; 4, pain at
palpation).

(meaning that the dog shows no symptoms) or the probability that all outcomes are
below 1 (meaning that the dog shows no or mild symptoms). Such probabilities are very
relevant from a clinical point of view. As before, M = 500 simulations of the dataset
were generated to compute the median and 95% confidence interval for (i) the marginal
probability to belong to a single category at a given time point, (ii) the joint probability
that all outcomes equal zero, and (iii) the joint probability that all outcomes are below 1.
As could be expected, very good predictions were obtained for the marginal distributions,
with plots very similar to Figure 2. However, the models were not equivalent with respect
to the prediction of joint probabilities. Major departures from the data were seen for
Model 1 (Figure 4), and although Model 2 performed much better than Model 1, some
departures from the data were also observed. The model that best predicted the joint data
was Model 3, in line with AIC values, which is an argument in favor of a joint approach
for estimating all correlations. The plots in Figure 4 indicate that clinical symptoms were

suppressed in approximately 25% of the dogs and that approximately 80% of the dogs
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had no or mild symptoms when the asymptote effect was reached.
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Figure 4: The upper panel shows the time-course of the joint probability that all out-
comes are equal to zero (no symptoms) under (a) Model 1, assuming the independence
between outcomes; under (b) Model 2, assuming the conditional independence between
outcomes, given the subject-specific random effects; and under (c) Model 3, estimating all
correlations. The lower panel shows the time-course of the joint probability that all out-
comes are below 1 (no or mild symptoms) under (d) Model 1, (e) Model 2 and (f) Model
3. Dots represent the empirical probabilities computed from the observations. They are
compared to the median probability (solid line) and 95% confidence interval (shaded area)
computed from simulations under the tested model at each time point.

5 Monte Carlo investigation of performance

In this section, a simulation study was conducted to evaluate the performance of the
proposed methodology. We used the final model (Model 3) that had been developed for
the robenacoxib data in Section 4 for simulation and followed the design of study 1, which
had the longest duration (see Section 4 for more details). As in the original robenacoxib

dataset, four ordinal outcomes (posture of the dog, lameness at walk, lameness at trot,
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pain at palpation) were simulated at the different visits for 232 subjects. Posture, lameness
at walk and lameness at trot were graded on 3-level scales, whereas pain at palpation
was graded on a 4-level scale. A total of 100 Monte Carlo datasets were generated and
analyzed with Model 3 using the pairwise approach in combination with the stochastic
EM algorithm. Reasonable values were used for the initial estimates, although these
values were different from the true values to test the ability of the proposed method to
identify proper estimates: (—0.5;0.5) for a®) when k = 1,...,3, (—0.5;0;0.5) for a®
when k = 4, 1 for all components in 3 and variances in €2, and zero for covariances in
2 and correlations in 3. The total number of iterations used for estimation was fixed
at 200 for all samples. This value was checked in randomly chosen datasets so that
these values were sufficiently large to ensure that convergence was reached in most cases.
Additionally, to avoid lengthy computation times, the size of the Monte Carlo simulations
for the computation of standard errors was set to 1000 in the simulation study, although
it was equal to 5000 in the analysis of the robenacoxib data in Section 4. Under these
conditions, the computation time was only 2.8+0.06 hours, which is very reasonable given
the size of the dataset (232 subjects, 1392 observations, 4 outcomes) and the complexity
of the model. This nevertheless hampered intensive simulations and explains why only
100 Monte Carlo datasets were analyzed.

The results of the simulation study are summarized in Table 3. The pairwise estimator
did not show any bias at this sample size, and the standard errors of the estimator
were consistent with the standard deviations of the sampling distribution. It must be
kept in mind, however, that the blocks in the J and K matrices used to calculate the
variance-covariance matrix of the estimator (equation (3.2)) were computed by dropping
the expectations and plugging in the final model parameter estimates. Although it has
been shown that this plug-in approach leads to satisfactory results (Louis, 1982), this
could explain the small differences seen between the Monte Carlo standard deviations

and the means of the estimated standard errors derived from the pairwise approach.
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Parameters True value MC mean MC SD SE mean

Cut-points

al! -1.379 -1.385  0.166 0.167
al’ 1.513 1.508  0.141 0.177
al? -2.029 2.028  0.152 0.176
al? 0.345 0.335  0.120 0.163
al? -2.398 2400 0.172 0.161
af? -0.006 0.012  0.141 0.114
alV -2.786 2814 0.141 0.165
as! -0.747 0.773  0.116 0.147
al’ 0.916 0.894  0.138 0.153
Treatment effect

B 2.534 2.538  0.168 0.148
82 2.376 2.376  0.116 0.135
B 2.505 2500 0143  0.135
B, 2.639 2.661  0.114 0.122
Beg 0.128 0.120  0.008 0.009
Random effects, variance terms 2

Wit 2.811 2.834  0.442 0.473
Was 2.235 2.195  0.293 0.339
Wi 2.455 2.465  0.333 0.370
Wi 1.634 1.666  0.190 0.252
Wia 1.715 1.693  0.273 0.324
wis 2.169 2193 0.302 0.365
wia 0.685 0.696  0.165 0.252
Was 1.991 1.975  0.275 0.305
Waa 0.580 0.605  0.163 0.275
Wi 0.535 0.548  0.162 0.263
Random effects, correlation terms X

p1o 0.746 0.754  0.042 0.039
p1a 0.630 0.635  0.047 0.047
pia 0.318 0.323  0.052 0.055
s 0.776 0.785  0.033 0.031
Poa 0.344 0.348  0.043 0.053
P4 0.359 0.360  0.052 0.052

Table 3: Results of the simulation study with the Monte Carlo sampling distribution of
parameter estimates (from 100 simulated samples of size N = 232 subjects and a total
of 1392 observations). MC mean and MC SD are the Monte Carlo mean and standard
deviation. SE mean is the mean of the estimated standard errors for the parameter
estimate.
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6 Discussion

The objective of the paper was to analyze robenacoxib efficacy data consisting of four
ordinal outcomes measured repeatedly over time in 232 osteoarthritic dogs. In particular,
we wanted to evaluate the clinical improvement of dogs under robenacoxib treatment and
to increase our understanding of the scoring system used by identifying possible redun-
dancies between outcomes. Clearly, some of the questions addressed in this paper could
have been treated by reducing the information to a single dichotomous variable. How-
ever, different clinical criteria (cure/no cure; improvement/no improvement; etc.) would
require different dichotomizations, and any information on more gradual responses would
be lost. The proposed model allows us to retain maximal information while answering
several questions simultaneously.

Models with increasing complexity were tested to analyze the four ordinal outcomes
simultaneously over time. Model 1 assumed the independence between outcomes; Model
2 assumed the independence between outcomes conditionally on subject-specific random
effects b;; and Model 3 assumed the full correlation of b; components and of e;; compo-
nents. Although Models 2 and 3 obviously performed much better than Model 1, Model 3
did not show much improvement over Model 2 with respect to the percentage of subjects
with no symptoms, despite a large difference in AIC. When assessing other, secondary
criteria (such as the time before all scores are improved by at least one grade), a difference
in fit could be seen between Model 2 and Model 3, supporting that Model 3 was better
than Model 2, in agreement with the AIC values.

Overall, Model 3 provided a very good description of the data and showed that all
symptoms of pain and inflammation were suppressed in 1 dog out of 4 after 4 weeks
of treatment (4 dogs out of 5 having no or mild symptoms). By comparison, Model
1, assuming the independence between outcomes, largely underestimated the efficacy of
the treatment, predicting no symptoms in only 1 dog out of 20. Such results raise a
number of concerns regarding the interpretation of univariate analyses performed on each

outcome separately. Additional information provided by Model 3 was the evaluation of
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possible redundancies between outcomes. In the present case, three of the four outcomes
were strongly correlated (posture, lameness at walk, lameness at trot); thus, what was
measured looks more like two sub-scores with very different weights, at 3:1. Thus, the
standard method analyzing the sum of outcomes would have counted the same information
three times.

Because the pain response appeared to be largely independent of the highly correlated
posture and lameness measures, the next step would be to conduct a factor analysis to
validate this observation. In additional work (not shown), we performed a factor analysis
with two independent factors, as suggested by the results of the present multivariate
analysis. We obtained similar likelihood and goodness-of-fit plots as for the reference
model with the four factors (i.e., four latent variables), thereby confirming the previous
findings. This illustrates how the two approaches can be applied in a stepwise manner
and are complementary.

Multiple ordinal responses are a common feature in clinical trials. Many diseases
involve complex pathophysiological processes, and this complexity generally cannot be
described using a single ordinal outcome. Numerous examples of multivariate ordinal
outcomes can be found in the literature, e.g., the Glasgow Coma Scale for head trauma (3
dimensions), the Positive/Negative Syndrome Scale in schizophrenia (7 dimensions each)
and the Hamilton Rating Scale for depression (21 dimensions). Although computational
performance has greatly improved during the last decade, rendering multivariate analysis
more tractable, computation time is a limiting factor for the use of these models in
routine practice. This is the reason why we saved time at each computational step, using
a stochastic EM algorithm for estimation with low values of M;, My and Z (see Section
3). A main advantage of this algorithm is that the estimation of subject-specific random
effect variance components is obtained directly by sampling from the posterior distribution
without requiring any optimization process. This is a major gain in computation time
when the dimension increases.

Indubitably, the largest gain in computation time comes from the use of the pairwise

approach. It is clear that a joint model in 21 dimensions (Hamilton Rating Scale) is
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intractable with classical maximum likelihood methods; therefore, the pairwise approach
is very appealing. As an indication, a single evaluation of the likelihood in 4 dimen-
sions took approximately 9 hours in our example, whereas the estimation of parameters,
pseudo-likelihood and standard errors for the same data took 2.5 hours. It is noteworthy
that the computation of the variance matrix of the estimator is the most time-demanding
step of the estimation process (30-60% of the total time, depending on the desired pre-
cision). The counterpart of the pairwise approach is a possible efficiency loss because we
do not compute the maximum likelihood. From what we see in the literature, it appears
that this efficiency loss is rather low (Geys et al., 1999; Fieuws and Verbeke, 2006; Fieuws
et al., 2006). In our example with 4 dimensions, we were not able to compute the maxi-
mum likelihood variance matrix in reasonable time. However, the standard errors of the
parameter estimates obtained with the pairwise approach were of acceptable sizes.

Our strategy was to use a probit mixed effects model with a latent variable interpreta-
tion. Although there is no requirement that the latent variable exists (this can be viewed
as an abstraction to motivate the model), the latent variable concept is very appealing
in the field of clinical pharmacology and facilitates the interpretation of results from a
biological background. In particular, many of the classical models developed from quan-
titative measurements of drug effect can be applied to continuous latent variables. It is
clear that the probit model offers less flexibility than other (logistic) models. However,
this approach worked well on our data, requiring only a limited number of parameters to
be estimated. Extensions of the model can be considered to accommodate more complex
situations. For example, the correlations in ¥ might depend on covariates (see Todem
et al., 2007, for an illustration in the bivariate case), or serial correlations within subjects
can be modeled (Li and Schafer, 2008) (in the present work, the residual random effects
were considered independent across time). Additionally, the proper handling of missing
data would be useful. Finally, we used simple mixed effects models for the latent variables
that were linear in the subject-specific random effects. Alternatively, non-linear models

could be used in line with typical models in clinical pharmacology.
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