Alain Thiery 
  
Note on the sequence A157751

In this note, the following conjecture of Clark Kimberling(?) is proved Conjecture. Let (F n (X)) n∈N be the sequence of polynomials defined by F n (X) = (X + 1)F n-1 (X) + F n-1 (-X) with initial term F 0 (X) = 1. If n is even then F n (X) has no real roots, and if n is odd then F n (X) has exactly one real root, denoted by r, and if n 5 then 0 < -r < n.

First we give a new formula for F n .

Lemma 1. Denote P n the even part of F n and I n its odd part. Let √ X 2 + 1 be a square root of X 2 + 1. Then

P n (X) = 1 2 √ X 2 + 1 ((1 + X 2 + 1) n+1 -(1 -X 2 + 1) n+1 ), I n (X) = X 2 √ X 2 + 1 ((1 + X 2 + 1) n -(1 -X 2 + 1) n ).
Proof. It is obvious that P 0 = 1 and I 0 = 0. From the definition of F n , one gets F n (X) = (X + 1)F n-1 (X) + F n-1 (-X) = (X + 1)(P n-1 (X) + I n-1 (X)) + P n-1 (X)

-I n-1 (X) = (2P n-1 (X) + XI n-1 (X)) + XP n-1 (X).
It follows immediatly that

P n (X) = 2P n-1 (X) + XI n-1 (X), I n (X) = XP n-1 (X). Denote A = 2 X X 0 .
The previous equation can be rewritten as

P n (X) I n (X) = A P n-1 (X) I n-1 (X) = A n 1 0 .
It is easy to see that the eigenvalues of A are

r 1 = 1 + √ X 2 + 1 and r 2 = 1 - √ X 2 + 1, the associated eigenvectors are v 1 = r 1 /X 1 and v 2 = r 2 /X 1 , and 1 0 = X v 1 -v 2 r 1 -r 2 = X 2 √ X 2 + 1 (v 1 -v 2 ).
1

This implies that

P n (X) I n (X) = X 2 √ X 2 + 1 A n (v 1 -v 2 ) = X 2 √ X 2 + 1 (r n 1 v 1 -r n 2 v 2 ) = X 2 √ X 2 + 1 1 X (r n+1 1 -r n+1 2 ) r n 1 -r n 2
The proof of the conjecture is based on the following formula 1

Lemma 2. For all n ∈ N,

F n (X)F n (-X)(X 2 + 1) = (-1) n X 2n+2 + n k=0 2n + 1 2k (X 2 + 1) k .
Proof. With the previous notations, one has

F n (X)F n (-X)(X 2 + 1) = (P n (X) + I n (X))(P n (X) -I n (X))(X 2 + 1) = ((P n (X)) 2 -(I n (X)) 2 )(X 2 + 1) = 1 4 ((r n+1 1 -r n+1 2 ) 2 -X 2 (r n 1 -r n 2 ) 2 ).
Using r 1 r 2 = -X 2 , one gets

F n (X)F n (-X)(X 2 + 1) = 1 4 (r 2(n+1) 1 -2(-X 2 ) n+1 + r 2(n+1) 2 -X 2 (r 2n 1 -2(-X 2 ) n + r 2n 2 )) = (-1) n+2 X 2n+2 + 1 4 (r 2(n+1) 1 + r 2(n+1) 2 -X 2 (r 2n 1 + r 2n 2 )).
Let p be an integer. Binomial formula gives

r p i = (1± √ X 2 + 1) p = p k=0 p k (± X 2 + 1) k (i = 1 or 2). It implies immediatly that r 2p 1 + r 2p 2 = 2 p k=0 2p 2k (X 2 + 1) k .
Using this with p = n or n + 1, one gets

r 2(n+1) 1 +r 2(n+1) 2 -X 2 (r 2n 1 +r 2n 2 ) = 2 n+1 k=0 2(n + 1) 2k (X 2 +1) k -2X 2 n k=0 2n 2k (X 2 +1) k .
1 This formula was discovered working on Tchebychev polynomials 2 Writing -X 2 = 1 -(X 2 + 1), the right-hand side becomes

2 n+1 k=0 2(n + 1) 2k (X 2 + 1) k + (1 -(X 2 + 1)) n k=0 2n 2k (X 2 + 1) k = 2 n+1 k=0 2(n + 1) 2k (X 2 + 1) k + n k=0 2n 2k (X 2 + 1) k - n k=0 2n 2k (X 2 + 1) k+1 = 2 (1 + 1)(X 2 + 1) 0 + (1 -1)(X 2 + 1) n+1 + n k=1 2(n + 1) 2k + 2n 2k - 2n 2(k -1) (X 2 + 1) k
To finish the proof, one must show that, for 1 k n,

2(n + 1) 2k + 2n 2k - 2n 2(k -1) = 2 2n + 1 2k .
We will use the well-known formula p l + p l+1 = p+1 l+1 .

2(n + 1) 2k + 2n 2k - 2n 2(k -1) -2 2n + 1 2k = 2(n + 1) 2k - 2n + 1 2k + 2n 2k - 2n + 1 2k - 2n 2(k -1) = 2n + 1 2k -1 - 2n 2k -1 - 2n 2(k -1) = 0.
Theorem. If n is even then F n (X) has no real roots, and if n is odd then F n (X) has exactly one real root, denoted by r, and if n 5 then 0 < -r < n.

Proof. If n is even, F n (X)F n (-X)(X 2 + 1) = X 2n+2 + n k=0 2n + 1 2k (X 2 + 1) k
is a sum of positive terms, hence it is never zero.

If n is odd, then F n has at least one real root. Since the coefficients of F n are positive (see http://oeis.org/A157751), the roots must be negative. It is then sufficient to prove that Q n (X) := F n (X)F n (-X)(X 2 + 1) has only one positive root, α, and that 0 < α < n. Let R n (X) = X 2n+2 Q n (1/X) be the reciprocal polynomial of Q n . From Lemma 2, R n has only postive coefficients, except its constant term which is -1. Hence its derivative has only positive coefficients. It follows that R n is a strictly increasing function on R + , the set of positive real numbers, and it has at most one real root in R + . Since the roots of Q n are the inverse of the roots of R n , we have proved that R n has exactly one positive real roots.

It remains to show that

α < n if n 5. Since Q n (0) > 0, it is sufficient to show that Q n (n) < 0. Q n (n) = -n 2n+2 + n k=0 2n + 1 2k (n 2 + 1) k < -n 2n+2 + n k=0 2n + 1 2k (n + 1) 2k < -n 2n+2 + 2n+1 l=0 2n + 1 l (n + 1) l = -n 2n+2 + (n + 1) 2n+1 .
A sufficient condition to have Q n (n) < 0 is (n + 1) 2n+1 n 2n+2 . The latter is equivalent to (2n + 1) log(n + 1) (2n + 2) log(n). But it is well-known that log(n + 1) -log(n) 1 n . Hence (2n + 1) log(n + 1) (2n + 1)(log(n) + 1 n ) = (2n + 1) log(n) + 2 + 1 n . For n = 9, 2 + 1 n = 2.11111 . . . and log(n) = 2.19722 . . . It follows that for all n 9, 2 + 1 n log(n) (the left-hand side is decreasing and the right-hand is increasing). We conclude that, for n 9, (2n + 1) log(n + 1) (2n + 1) log(n) + 2 + 1 n (2n + 1) log(n) + log(n) = (2n + 2) log(n). This proves the theorem for n 9. Using a computer, one gets, for n = 5, -r = 4.80441 . . . and, for n = 7, -r = 5.99442 . . . Remark. Let a > 0. One can compute Q n (n/a) as above and show that -r/n 1/a if n a exp(3a). This implies immediatly lim n→∞ -r/n = 0. We also have

Q n ( √ n) = -n n+1 + n k=0 2n + 1 2k (n + 1) k > -n n+1 + 2n + 1 2n (n + 1) n
= -n n+1 + (2n + 1)(n + 1) n > -n n+1 + (n + 1) n+1 > 0, hence -r > √ n and lim n→∞ -r = ∞. Using the recursive definition of F n twice, one easily gets F n (X) = (X + 1)F n-1 (X) + F n-1 (-X) = (X + 1)((X + 1)F n-2 (X) + F n-2 (-X)) + (-X + 1)F n-2 (-X) + F n-2 (X) = ((X + 1) 2 + 1)F n-2 (X) + 2F n-2 (-X).

Let r ′ be the real root of F n-2 , then F n (r ′ ) = 2F n-2 (-r ′ ) > 0. It follows that r < r ′ , hence -r is an increasing function of n.