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Abstract. Describing the topological properties by a template is a powerful
technique to classify chaotic attractors. Most of the time, reduced template
are used but direct templates — in which all mechanisms (torsions, branch
permutation, etc.) identified in the attractor are explicitely described without
any simplification — are of a great interest to have a better description of the
subtleties of the dynamics. We here introduce two additional conventions to
represent in an unique way the reduced template from a given linking matrix.
Then, we propose an addition law for linking matrices which allows to manipulate
(combine) different mechanisms. Direct template can thus be described by using a
series of linking matrices. In the other hand, we show how to analytically build the
linking matrix associated with an attractor which is the image under an inversion
symmetry of an attractor whose linking matrix is known.
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1. Introduction

Chaotic attractors produced by three-dimensional differential equations are of various
types as well exemplified by the Rössler attractor [1], the Lorenz attractor [2], the
double-scroll attractor [3, 4], the Li attractor [5, 6]. Many works were devoted to
their characterization by branched manifolds or templates (see [7, 8, 9, 10, 11] among
others). If for simple attractors as the Rössler attractor bounded by a genus-one
torus [12], there is no problem for providing a template, there are many non trivial
details which should be evoked for attractors produced, for instance, by systems with
symmetry properties: this is the case of the Lorenz system which presents a rotation
symmetry Rz(π) [13, 14, 15]. The Lorenz attractor is bounded by a genus-3 torus
[12] and the Poincaré section is made of two components as it was first pointed out
by Letellier and co-workers [16].

Before investigating attractors bounded by large genus tori, we will show in this
paper that some chaotic attractors bounded by genus-one tori are nontrivial and that
the template is not necessarily unique depending on the location of the Poincaré section
used as a reference to build it. Moreover, in most of the studies, only reduced templates
are discussed, that is, the simplest variant of the template modulo Reidemeister moves.
Nevertheless, it was recently shown that to determine whether an attractor was new
or not, the so-called direct template must be considered [17]: the main argument
was that the attractor produced by a flow inducing, for instance, a positive global
torsion followed by a negative global torsion cannot be considered as associated with
the same dynamics as an attractor solution to a flow without any global torsion.
By global torsion, we designate here a torsion applied to all the branches which can
be distinguished in a template. A side problem is that the corresponding (direct or
reduced) template is not unique when there are global torsions. We will therefore
develop a procedure for an explicit description of direct templates as well as the
relationship between the linking matrices describing the different templates which can
be obtained for a single attractor. In order to do that, the attractors produced by the
simplest equivariant jerk system proposed by Malasoma [18] are used.

The subsequent part of this paper is organized as follows. In Section 2, templates
and how they are described by linking matrices are introduced. Section 3 is devoted
to the topological analysis of a chaotic attractor for which different templates can be
obtained depending on the Poincaré section used as a reference. The system that
produces the bench attractor is introduced. Direct and reduced templates are then
constructed for which some specific rules to sum linking matrices are introduced.
Section 4 discusses how the symmetric companion of an attractor under an inversion
symmetry can be topologically characterized from the linking matrix obtained for the
initial attractor. Section 5 gives a conclusion.

2. Template and linking matrix

A template or a branched manifold is a branched surface that synthesizes the topology
of an attractor by describing the relative organisation of the population of unstable
periodic orbits [19] which constitutes the skeleton of the attractor [10]. Any template
for a chaotic attractor bounded by a genus-one torus can be divided in two main
parts (Fig. 1): i) a part that describes the dynamical processes (stretching, folding,
squeezing, etc.) responsible for the mixing properties of the chaotic trajectories
and their sensitivity to initial conditions and, ii) a trivial part where segments of
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trajectories are everywhere locally parallel. The first part is here named a “mixer”
for designating the overall mechanism which has an action on the branches that can
be distinguished in a chaotic attractor: these branches are determined, for instance,
according to the critical points of a first-return map to a Poincaré section when the
system is dissipative enough to present a one-dimensional Poincaré map [8]. A mixer
results from some basic processes applied to the branches (torsion, permutation,
stretching, squeezing, etc.). When stretching and squeezing are absent, it is also
possible to have an action on the branches which does not lead to chaos as we will
detail below. We therefore introduce the concept of linker for designating torsions,
branch permutations while stretching and squeezing mechanisms are grouped into the
branch insertion as proposed by Tufillaro and co-workers [7]. A linker can be made
of few linkers. For instance, the linker between the splitting chart and the branch
insertion shown in Fig. 1a is made of one linker for the local torsion (applied to the
right branch) and one linker for the branch permutation. In general, we will use a
single linker (which is also a mixer in such a case) to describe the template shown in
Fig. 1a.

Trivial

part

Branch insertion 

Branch permutations

Local torsions

Splitting chart

(a) “Chaotic” template (b) “Non chaotic” template (c) Open linker

Figure 1. A typical template and the way in which it is divided into two parts,
and two of its variants (see the main text).

A linker can be encoded by a so-called linking matrix L. Element Lii corresponds
to the number of signed π-twists the ith branch presents, and element Lij is equal
to the number of signed crossings (or permutations) between the ith and the jth
branches. All elements are signed according to the convention shown in Fig. 2.
Torsions are expressed in terms of signed π-twists: thus, a α-torsion refers to a α ⋅ π-
twist (α ∈ Z). There are two equivalent representations for describing a template with
a linking matrix. One, introduced by Mindlin et al. [20], is composed by a linking
matrix associated with a vector that indicates the order with which the branches are
inserted from the back to the front. One of the problem we have with this notation
is that it is not possible to make direct comparison between two templates by only
comparing the linking matrices. To overcome this problem Cross and Gilmore used a
dressed return map to isolate the mechanism responsible for the chaotic nature of the
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solution [21]. The second representation, introduced by Tufillaro and coworkers [7],
is based on a standard insertion convention according to which branches are ordered
from the left (back) to the right (front).

(a) Positive torsion (b) Negative torsion

(c) Positive permutation (d) Negative permutation

Figure 2. Sign convention for π-twist ors permutations. The arrows indicate the
direction of the flow.

Since the standard insertion convention allows to compare different templates
using the sole linking matrix, we retained this second representation. To avoid any
ambiguity, we will add another convention which constrains the back branch in the
branch insertion to be the closest branch to the singular point surrounded by the
flow. This additional convention avoids many equivalent templates for a single linking
matrix. Moreover, also to avoid various equivalent templates, we will always use a
representation of the attractor with a clockwise flow, as used in the bounding tori
theory [12]. These additional conventions are required to ensure the uniqueness of the
template drawn from a given linking matrix.

In the template shown in Fig. 1, the non trivial part of the flow corresponds to
the mechanisms which are responsible for the chaotic nature of the solution. These
mechanisms can be schemed as follows.

(a) the stretching and the folding processes which are most often concomitant;

(b) the squeezing mechanism for inserting the branches into a single one.

Then the trivial part of the flow undergoes to the next splitting chart. In a similar
way although more schematic, the non trivial part of the template can be divided as
follows.

(i) a splitting chart [7] which allows to distinguish the different branches;

(ii) the local torsion in each branch corresponding to elements Lii;

(iii) the permutation between the branches corresponding to elements Lij (i ≠ j);

(iv) the insertion where the branches are stretched and squeezed into a single global
branch.

Then follows the trivial part of the template. Dynamically speaking, the splitting
chart does not contain any information. This is a “virtual” split introduced for the
clarity of the template. The branch insertion encodes the main features for producing
chaotic solutions, that is, the stretching and the squeezing mechanisms. These two
mechanisms are responsible for returning the n branches distinguished by the splitting
chart into a single large branch corresponding to the trivial part of the template.
Without branch insertion, there is no chaos. Indeed, if a linker is ended with a “branch
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merging” (Fig. 1b) rather than with a branch insertion (Fig. 1a), only periodic orbits
can be obtained. The branch insertion is therefore relevant for chaos production. The
first template (Fig. 1a) is characterized by a linker with a branch insertion, that is, by
a mixer, while the second (Fig. 1b) is not because the branch insertion was replaced
with a branch merging. For this reason, we will have to take into account the branch
insertion in our linking matrices theory as explained in the subsequent part of this
paper.

By itself, a linking matrix only encodes mechanisms (ii) and (iii) of the template,
the branch insertion being implicitly encoded by the standard insertion convention.
In the subsequent part of this paper, and as detailed in the two examples shown in
Figs. 1, it will be useful to distinguish a linking matrix without branch insertion from
a linking matrix with a branch insertion. As we mentioned, the splitting chart is only
virtual and is useful for designating the end of the trivial part and the beginning of a
linker. It will be designated by a simple bracket “[”. The linking matrix of a linker
terminated by a “branch merging” (by opposition to a branch insertion) will be closed
by a right bracket “]”. Thus, the linker shown in Fig. 1b is associated with the linking
matrix

L∩∪ = [ 0 −1

−1 −1
] (1)

where indices ∩ and ∪ designate the splitting chart and the branch merging,
respectively. When a branch insertion replaces the branch merging as shown in Fig.
1a, the linking matrix becomes

L∪∣ = [ 0 −1

−1 −1
⟧ , (2)

that is, the right bracket is replaced with a double bracket “⟧”. The last case to
consider corresponds to a linker inserted in a series of linkers: as a consequence there
is no splitting chart nor branch merging as shown in Fig. 1c. The linking matrix is in
the latter case written as

L = ∣ 0 −1

−1 −1
∣ (3)

where the brackets are replaced with simple bars. This type of linker will be designated
as an “open” linker. In the case where there is a single bracket (single or double), the
linker is thus semi-open, or semi-closed.

Let us consider the case of global torsion — which designates in this work a
torsion applied to all branches. Fig. 3a corresponds to a non regular representation
of a positive global 1-torsion because more than two segments of the representation
cross at the same point. Fig. 3b corresponds to a regular representation of the same
positive 1-torsion. The corresponding linking matrix is thus

T = ∣+1 +1

+1 +1
∣ . (4)

When the linker starts with a splitting chart and ends with a branch insertion (Fig.
3c), the linking matrix is

T∪∣ = [+1 +1

+1 +1
⟧ . (5)
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This closed linker is a mixer and could produce chaotic solution. To the best of our
knowledge, there is not yet a continuous flow corresponding to such a template. The
corresponding attractor should be characterized by a first-return map to a Poincaré
section with two increasing monotonic branches (a flow with such a map was obtained
by Rössler [22] but the two branches have local torsions which differ by 2π). The
last case shown in Fig. 3d is obtained by replacing the branch insertion by a branch
merging: it is thus described by the linking matrix

T∩∪ = [+1 +1

+1 +1
] . (6)

(a) Non regular (b) Regular (c) With splitting (d) With splitting

and insertion and merging

Figure 3. A positive global 1-torsion (a) applied to two branches. A regular
representation (b) clearly distinguishes the local torsion (in each branch) from
the permutation between the two branches. The positive global torsion is also
drawn with the splitting chart and the branch insertion (c). By convention, the
singular point ● surrounded by the flow is always located at the left of the non
trivial part of the template. In (c), the back branch is closer to the singular point
than the front branch. In (d), the linker starts with a splitting chart and ends
with a branch merging.

3. Topological analysis of a non trivial attractor

3.1. The simplest equivariant jerk system

The simplest equivariant jerk system

...
x= −αẍ + xẋ2 − x (7)

was introduced by Malasoma [18]. It can be rewritten as the set of three differential
equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = y

ẏ = z

ż = −αz + xy2 − x,
(8)

where y = ẋ and z = ẍ. This system is equivariant, that is, it obeys to the relation
Γ ⋅ f(x) = f(Γ ⋅ x) where

Γ =

⎡⎢⎢⎢⎢⎢⎣
−1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
(9)

is a matrix defining the symmetry properties, that is, an inversion symmetry in the
present case [23]. The system (8) has a single singular point located at the origin of the



Systematic template extraction from chaotic attractors. i genus-one attractors with an inversion symmetry7

phase space. For α = 2.0645 and from the initial conditions x0 = (x0, y0, z0) = (+4,0,0),
the trajectory settles down onto the chaotic attractorA shown in Fig. 4. This attractor
is asymmetric, that is, there is a companion attractor A from the initial conditions
Γ⋅x0 which coexists in the phase space. The companion attractorA will be investigated
in Section 4.

-4 -3 -2 -1 0 1 2 3 4
x

-1,5

-1

-0,5

0

0,5

1

1,5

y S
a

S
c

S
d

S
b

Figure 4. Asymmetric chaotic attractor A solution to the system (8) for
α = 2.0645. The flow is clockwise. Different Poincaré sections are also represented.

The attractor solution to the simplest equivariant jerk system is bounded by a
genus-one torus. The Poincaré section is therefore made of a single component [12].
In principle, the component of the Poincaré section can be equivalently chosen as any
transverse section to the flow, transverse meaning non tangent to the flow. From
Poincaré’s works [24], the component of the Poincaré section is defined by a half-plane
containing the singular point surrounded by the flow: such a constraint avoids any
tangency between the flow and the Poincaré section. In Fig. 4, we drew four possible
Poincaré sections defined by four angles ϕk in the x-y plane. According to our choices,
the four Poincaré sections are defined as Sa, Sb, Sc and Sd corresponding to the angles
ϕa = π, ϕb =

4π
5
, ϕc = 0, and ϕd =

9π
5
, respectively. The flow thus visits the sections

Sa, Sb, Sc and Sd, successively.
Once the Poincaré section is chosen, a first-return map is constructed. In the

present case, we used the cylindrical coordinates applied to the x-y plane. Thus, any
point (x, y, z) is investigated using variables (r, θ, z). The Poincaré sections are thus
defined as

Pi ≡ {(rn, zn) ∈ R2 ∣ θn = ϕi, θ̇n < 0} . (10)

For each of the four Poincaré sections, the first-return map is shown in Fig. 5. The four
first-return maps are smooth and unimodal. Nevertheless, the two monotonic branches
of the first-return maps to Poincaré section Sa and Sd are split by a maximum (Figs.
5a and 5d) and by a minimum for Poincaré sections Sb and Sc (Figs. 5b and 5c). This
means that there is an odd global torsion between sections Sa and Sb and one between
sections Sc and Sd. Up-to-now, no difference was made in the treatment of these two
types of first-return maps; using the property that all Poincaré sections are equivalent,
the axes were implicitly inverted in order to recover the critical point dividing the two
monotonic branches located at the maximum of the map [8]. Nevertheless, in two
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cases, the increasing branch is closer to the singular point surrounded by the flow
than the decreasing branch, and in the two others, it is not.
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1,94
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1,96

1,97

1,98

1,99

r n+
1 0 1

(c) Section Sc (d) Section Sd

Figure 5. First-return maps for the four Poincaré sections of the asymmetric
chaotic attractor solution A to system (8). Parameter value: α = 2.0645.

3.2. Reduced template

Depending on the Poincaré section chosen as a reference, the symbolic dynamics is
built on different symbols. Indeed, for working in sections Sa and Sd the symbolic
dynamics is built on the symbols {0; 1}. Symbols {1; 2} are used for working in the
Poincaré sections Sb and Sc. Odd (even) symbols are associated with decreasing
(increasing) branches, and the natural order is followed from the singular point to the
external boundary of the attractor. Parity of the symbols must match to the sign of
the slope of monotonic branch as required to use the kneading theory [25, 26]. Note
that results obtained by using symbols “0” and “1” and, then inverting the order of
the symbolic sequences, are equivalent to those obtained with symbols “1” and “2”.

The unstable periodic orbits are then extracted from the attractor and encoded.
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Linking numbers between various pairs of periodic orbits are computed as the half-
sum of the oriented crossings counted in a regular plane projection [7]. The results
are reported in Tab. 1 for the orbits encoded on {0; 1}. A similar table would have
been obtained with the orbits encoded on {1; 2}: to obtain it, it is sufficient to replace
any “0” by a “2”. Since replacing “0” with “2” allows to switch from one symbolic
dynamics to the other, the orbits are the same, and so the corresponding linking
numbers.

Table 1. Linking numbers computed between the unstable periodic orbits
extracted from the asymmetric chaotic attractor A solution to system (8).
Parameter value: α = 2.0645.

(1) (10) (101) (100) (1011) (1001)

(10) -1

(101) -1 -2

(100) -1 -2 -3

(1011) -2 -3 -4 -4

(1001) -1 -2 -3 -3 -4

(1000) -1 -2 -3 -3 -4 -4

To predict these linking numbers, two templates can be proposed (Figs. 6). One
(Fig. 6a) corresponds to the symbolic dynamics built on {0; 1}, and the other (Fig.
6b) to the symbolic dynamics built on {1; 2}, that is, using the Poincaré section Sa
or Sd and Sb or Sc as a reference, respectively. These two templates are topologically
equivalent since one can be transformed into the other using an isotopy by sending the
external boundary (with the arrow in Figs. 6) close to the singular point surrounded
by the flow. The mixer — here including a splitting chart and a branch insertion —
is then viewed from the back rather than from the front. These templates are reduced
in the sense that there is no trace left from the global torsions we identified between
sections Sa and Sb, and between Sc and Sd: due to their opposite signs (see next
section), they can be removed using Reidemeister moves. The important aspect of the
“reduced” template approach is that the template is not unique and that there is no
trace left of the two global torsions. The linking matrix is

LAa
= LAd

= [ 0 −1
−1 −1

⟧ , (11)

for the template shown in Fig. 6a, and

LAb
= LAc

= [−1 −1
−1 0

⟧ , (12)

for the template shown in Fig. 6b. Here Aa designates the attractor A described
by the template built starting from the Poincaré section Sa, and Ab, Ac and Ad for
attractors built from sections Sb, Sb and Sd, respectively. The corresponding mixers
will be designated by MAa

, MAb
, MAc

, and MAd
, and their linking matrices by

LAa
, LAb

, LAc
and LAd

, respectively. The first matrix is commonly used to describe
the topology of the spiral Rössler attractor [8]. The asymmetric chaotic attractor A
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solution to the simplest equivariant jerk system is therefore topologically equivalent
to the spiral Rössler attractor. If the mechanism responsible of the chaotic nature of
these two attractors are the same in the sense developed by Cross and Gilmore [21],
these two attractors cannot be considered as being associated with the same type of
dynamics since one has additional torsions compared to the other. This is one of the
reasons for which the direct template was introduced in [17].

Sa - Sd Sb - Sc

(a) From section Sa or Sd (b) From section Sb or Sc

Figure 6. Two topologically equivalent templates for the asymmetric chaotic
attractor A solution to system (8). Parameter value: α = 2.0645.

3.3. Direct template

A direct template [17] is a template describing all global and local torsions which can
be identified in the corresponding flow. No simplification using Reidemeister moves is
allowed. As deduced from the orientations of the four first-return maps shown in Figs.
5 and from the oriented crossings between segments of a trajectory, the direct template
of the asymmetric attractorA solution to the simplest equivariant jerk system presents
one negative 1-torsion between sections Sa and Sb and one positive 1-torsion between
sections Sc and Sd. A direct template is shown in Fig. 7a where, starting from section
Sa, there is one negative 1-torsion, one linker and one positive 1-torsion, successively.

Let us move the representation of the splitting chart (located after the negative
1-torsion in Fig. 7a) just before section Sa and the branch insertion at section Sd:
we thus obtain the direct template shown in Fig. 7b. The direct template shown in
Fig. 7b is drawn in a regular representation. Moreover, all linkers are described with
the same number of branches, a property which will be useful to manipulate their
corresponding linking matrices. Thus, the template shown in Fig. 6b is described by
the sum of three linking matrices as

LAa
= [−1 −1

−1 −1
∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
negative 1-torsion

+ ∣ 0 −1
−1 −1

∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
linker

+ ∣+1 +1
+1 +1

⟧
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

positive 1-torsion

= [ 0 −1
−1 −1

⟧ (13)
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All linking matrices are written in such a way that the element L11 corresponds to
the first branch (from the left to the right) at the splitting chart and the element
L22 is associated with the second branch. The central linker is open according to our
definition and the two global torsions are associated with two semi-open linkers. The
resulting linking matrix is “closed”, that is, started with a splitting chart and ended
with a branch insertion: this is thus a mixer.

Starting from the Poincaré section Sb or Sc changes the resulting linking matrix
since the order of the branches is permuted compared to the previous description. For
instance, starting from section Sb (Fig. 7b) leads to the linking matrix

LAb
= [−1 −1
−1 0

∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
linker

+ ∣+1 +1
+1 +1

∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

positive 1-torsion

+ ∣−1 −1
−1 −1

⟧
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

negative 1-torsion

= [−1 −1
−1 0

⟧ . (14)

Only the matrix describing the first linker is changed by switching from Sa to Sb as
a result of the odd global torsion that permuted the order of the two branches. The
matrix describing the linker is thus permuted. It will be thus convenient to introduce
the permuted matrix Mp of a given matrix M defined as follows

Mp
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mn n Mn n−1 . . . Mn 2 Mn 1

Mn−1 n Mn−1 n−1 . . . Mn−1 2 Mn−1 1

⋮ ⋮ ⋱ ⋮ ⋮

M2 n M2 n−1 . . . M2 2 M2 1

M1 n M1 n−1 . . . M1 2 M1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

The linking matrices L and Lp describe two branched manifolds which are topologically
equivalent. Combining a linker L with a global torsion Tη by η-torsion can be thus
expressed according to

L′ = Tη +L ≡ ∣ Tη +L if η is even

Tη +L
p if η is odd

(16)

where L′ corresponds to the linking matrix describing a global η-torsion Tη associated
with the linking matrix Tη followed by a linker L corresponding to the linking matrix
L. By definition, T p

= T , since any torsion is defined by T = ηI where I is the unit
matrix and, obviously, Ip = I. The two linking matrices (13) and (14) prove that there
are two possible templates to describe the asymmetric chaotic attractor A shown in
Fig. 4. The linking matrix (14) is also obtained when the template is built starting
from section Sc. In this case, the linking matrix is

LAc
= [+1 +1
+1 +1

∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η=+1

+ ∣−1 −1
−1 −1

∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η=−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
η=0

+ ∣−1 −1
−1 0

⟧
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
linker

= [−1 −1
−1 0

⟧ . (17)

Note that starting from section Sd is rigorously equivalent to start from section Sa
since the flow is “trivial” between these two Poincaré sections. We have thus

LAa
= L

p

Ab
= L

p

Ac
= LAd

. (18)
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There is thus no reason to prefer one template to the other. Both are topologically
equivalent.

The advantage of direct template is that it clearly shows the difference between
the asymmetric chaotic attractor A solution to the simplest equivariant jerk system
and the spiral attractor solution to the Rössler system. This is particularly important
for developing a classification of attractors. From our point of view, the asymmetric
attractor A and the Rössler attractor should not be put in the same class, as clearly
shown by the direct template since there are two additional global torsions in the
former. This is here an additional evidence of the interest of direct template as
introduced in [17].

Sd

Sc

Sb

Sa

Sa

Sb

Sc

Sd

Sb

Sc

Sd Sd

Sb

=

Sd Sa

Sb

Sc

Sc

=

(a) Direct template (b) Regular direct (c) Regular direct (d) Regular direct

from Sa mixer from Sa mixer from Sb mixer from Sc

Figure 7. The direct template describing the asymmetric chaotic attractor A
solution to the system (10). The corresponding regular mixers built from section
Sa, Sb and Sc are shown. The mixer Md is equivalent to the mixer MAa

.
Parameter value: α = 2.0645.

4. The companion attractor by the inversion symmetry

Due to the inversion symmetry, the asymmetric chaotic attractor A has a companion
attractorA = Γ⋅A (Fig. 8) which coexists in the phase space as already mentioned. The
topology of the attracorA is constrained by the symmetry properties as detailed below.
For the sake of simplicity, the symmetric object of an object O will be designated by O.
We will apply the same notation to the linking matrices, the linking matrix LO = LO
thus designating the linking matrix of the symmetric companion of the object O
described by the linking matrix LO.
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Figure 8. Companion attractor A solution from the symmetric initial conditions
Γ ⋅x0 compared to the attractor A obtained from initial conditions x0. Parameter
value: α = 2.0645.

Positive

Positive

1-torsion

Negative

permutation

1-torsionpermutation

Negative

Figure 9. Inversion symmetry applied to a global torsion and a permutation
between two branches. (See also Fig 11 of [14])

Before getting the topology of the attractor A, let us start by describing how the
dynamical mechanisms, as global torsion, branch permutation and linker, are mapped
under an inversion symmetry. Under such a symmetry, a positive global 1-torsion T+1
becomes a negative global 1-torsion T−1 (Fig. 10). In a general way, we have thus

T +η = T−η , (19)

that is, from the linking matrix point of view,

T +η = ∣+η +η

+η +η
∣ = ∣−η −η

−η −η
∣ = T−η . (20)

It is now relevant to distinguish a linker without a branch insertion as shown in Fig.
10 from a linker with a branch insertion (the splitting chart does not have any impact
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on the linking matrix). In the latter case, the linking matrix

T−1∣ = ∣−1 −1

−1 −1
⟧ (21)

of a negative 1-torsion with a branch insertion has for symmetric

T −1∣ = −T−1∣ − ∣ 0 +1

+1 0
⟧ = − ∣−1 −1

−1 −1
∣ − ∣ 0 +1

+1 0
⟧ = ∣+1 0

0 +1
⟧ = T+1∣ (22)

as shown in Fig. 10. In the two previous equations, the vertical bar introduced as
subscript means that there is a branch insertion mechanism taken into account in
these linking matrices. The second matrix which is substracted to −T−1∣ is required
to preserve the standard insertion convention. Without such a matrix, the branch
insertion would not have been in agreement with such insertion convention. Similarly,
a positive 1-torsion with a branch insertion T+1∣ described by

T+1∣ = ∣+1 0

0 +1
⟧ (23)

has for symmetric

T +1∣ = −T+1∣ − ∣ 0 +1

+1 0
⟧ = − ∣+1 0

0 +1
∣ − ∣ 0 +1

+1 0
⟧ = ∣−1 −1

−1 −1
⟧ = T−1∣ , (24)

as shown by reading Fig. 10 from the right to the left.

Negative

insertion

Positive

Insertion

Additional

permutation

Standard

1−torsion

1−torsion

Figure 10. Inversion symmetry applied to a linker made of a torsion T−1∣
with a branch insertion (left). In the resulting positive torsion T+1∣, there
is a permutation added to the torsion T+1 to preserve the standard insertion
convention.

The rule to obtain the linking matrix L of any linker is the same as the rule we
introduced for the global torsion, that is,

L = −L (25)
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Standard Non standard Standard

Rössler templateInversion of the Rössler template

Figure 11. Inversion symmetry applied to the template of the Rössler system. In
the resulting template, there is a permutation removed to preserve the standard
insertion convention (See also Fig. 10 of [14]).

when there is no branch insertion, and

L∣ = −L∣ − ∣ 0 +1

+1 0
⟧ = −L∣ −

RRRRRRRRRRRRRRRRRR

0 +1 ⋯ +1
+1 0 ⋱ ⋮
⋮ ⋱ ⋱ +1
+1 ⋯ +1 0

MQQQQQQQO
(26)

when there is a branch insertion and the extension depending of the number of
branches, trivial because the order is reversed. This relation illustrates the result
already obtained by Letellier and Gouesbet [14] where the inversion symmetry of the
Rössler template is the template of the horseshoe mechanism (Fig. 11). Applying
these rules to the linking matrix LAa

leads to

LAc
= LAa

= − [−1 −1

−1 −1
∣ − ∣ 0 −1

−1 −1
∣ − ∣+1 +1

+1 +1
∣ − ∣ 0 +1

+1 0
⟧ = [0 0

0 +1
⟧ . (27)

This is confirmed by the direct template of the attractor Aa shown in Fig. 12. Note
that section Sa is mapped into section Sc under the inversion symmetry, and so for
sections Sb, Sc and Sd which are mapped to Sd, Sa, Sb, respectively.

Now, if we consider the companion attractor Ad described starting from section
Sd, the linking matrix LAb

becomes

LAd
= LAb

= − [−1 −1

−1 0
∣ − ∣+1 +1

+1 +1
∣ − ∣−1 −1

−1 −1
∣ − ∣ 0 +1

+1 0
⟧ = [+1 0

0 0
⟧ (28)

when the previous rule is applied. We have thus

LAa
= L

p

Ab

= L
p

Ac

= LAd
, (29)

which is symmetric to Eq. (18). By a systematic procedure to be applied to the linking
matrices as previously introduced, it is thus possible to obtain the linking matrix LA
of the attractor A which is the image under an inversion symmetry of an attractor A
described by a linking matrix LA.
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Sb

Sa

Sd

Sc

Sc

Sd

Sb

Sc

Sa=

(a) Non regular direct template (b) Regular direct template

Figure 12. Direct templates of the companion attractor Aa solution to the
simplest equivariant jerk system (8). Parameter value: α = 2.0645.

5. Conclusion

A template, reduced or direct, can be divided into two parts, one which is trivial
where the flow is everywhere locally parallel, and one where there are a splitting
chart, torsions (local or/and global), permutations and a branch insertion through
stretching and squeezing mechanisms. We described the second part in a general way
by a linker associated with a linking matrix. In this work, we used the standard
insertion convention. We proposed to represent the template in such a way as the
external boundary undergoes in the clockwise direction as used for the bounding tori
introduced by Tsankov and Gilmore. The linker is thus always drawn at the right side
of the singular point surrounded by the flow. There is thus a unique reduced template
for a given linking matrix. To describe the direct template, a set of linking matrices
is required to explicitly describe all the identified mechanisms.

Typically, a linker is schemed by a splitting chart allowing to distinguish the
different branches which can be easily identified according to the critical points of
a first-return map to a Poincaré section. Then, depending on the attractor and the
Poincaré section chosen, the linker can be made of successive global torsions and
linkers, global torsions being a particular type of linkers. According to this, a linker
can be made of linkers. The linker sketching all mechanisms producing the chaotic
attractor under study is terminated by the insertion of the branches into the trivial
part of the template. A linker beginning with a splitting chart and ending with a
branch insertion is a mixer (thus a particular type of linker), its name chosen for its
mixing properties leading to chaotic solutions. We introduced the addition law for
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combining the linking matrices describing these global torsions and linkers. Such a
law is working until the number of branches is kept constant. From this addition law,
it was possible to deduce the general rule for getting the linking matrix describing
the linker L image of the linker L under an inversion symmetry. This was a required
step before adressing the topology of attractor globally invariant under symmetry
properties as the double-scroll attractor produced by the Chua circuit.

In order to do that in a very general way, a “multiplicative” law, postponed for
future works, is required for combining linker of different dimensions. The additive
law developed in this paper was the first necessary step to complete before.
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[6] C. Letellier & R. Gilmore, Poincaré sections for a new three-dimensional toroidal attractor,

Journal of Physics A, 42, 015101, 2009.
[7] N. B. Tufillaro, T. Abbott & J. Reilly, An Experimental Approach to Nonlinear Dynamics

and Chaos, Addison-Wesley (New York), 1992.
[8] C. Letellier, P. Dutertre & B. Maheu, Unstable periodic orbits and templates of the Rössler
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