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Abstract 

The aim of this study is to numerically model the fracture system at percussive drilling. Due to the 
complex behavior of rock materials, a continuum approach is employed relying upon a plasticity model 
with yield surface locus as a quadratic function of the mean pressure in the principal stress space coupled 
with an anisotropic damage model. In particular, Bohus granite rock is investigated and the material 
parameters are defined based on previous experiments. This includes different tests such as direct tension 
and compression, three point bending and quasi-oedometric tests to investigate the material behavior at 
both tension and confined compression stress states. The equation of motion is discretized using a FE 
approach and the explicit time integration method is employed. EOI (Edge-On Impact) tests are performed 
and the results are used to validate the numerical model. The percussive drilling problem is then modeled 
in 3D and the bit-rock interaction is considered using contact mechanics. The fracture mechanism in the 
rock and the bit penetration- resisting force response are realistically captured by the numerical model. 

Keywords: Granite, percussive drilling, KST-DFH model, fragmentation 
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1 Introduction 

Rock drilling has been extensively used in the mining industry for many decades. A sound understanding 
of bit-rock interaction and rock fragmentation mechanisms is essential to optimize the drilling process. 
The percussive drilling method is commonly used in the tunneling and mining business. The main idea is 
that a piston hits the drill rod at a velocity of about 10 m/s. This creates a compressive stress wave with an 
amplitude of about 200 MPa, which propagates along the drill rod. The stress wave is then transferred into 
the rock through the tool buttons. Each tool includes around ten buttons made of hard steel that facilitate 
the indentation process. Unlike the situation of quasi-static indentation, the stress waves and rapid 
indentation make percussive drilling a transient dynamic problem with high local strain rates in the rock 
[1]. 

Basic defects in rocks are voids, pores and microcracks as well as other related features [2]. Such 
microstructures produce heterogeneity in the strength and stiffness of the material. It is well known that 
rock fractures via initiation, growth and coalescence of microcracks, together with sliding between 
individual grains and the microcrack surfaces. Associated with these microscopic mechanisms, rock 
specimens exhibit non-linear stress-strain responses [2]. Granite, which is the material studied in this 
work, has many pre-existing cracks, (e.g. [3] and [4]), but the porosity is very low (about 0.2%). Most 
rocks show a transition from brittle to ductile behavior by increasing the confined pressure [2]. However, 
silicate rocks with low porosity are brittle at room temperature over the whole range of normal laboratory 
confining pressures up to 0.5-1.0 GPa. Some workers have reported that granite exhibits brittle fracture 
behavior even at confining pressures up to 3-4 GPa [5]. 

Many studies have been performed during the past years to numerically simulate rock drilling and the 
fragmentation process in brittle materials. Liu [6] developed a rock and tool interaction code (R-T2D) and 
studied the fragmentation process in a quasi-static situation. Wang et al. [7] used an in-house numerical 
tool to simulate the rock fragmentation process induced by indentation. Both Liu and Wang et al. restrict 
their analyses to 2D plain strain conditions and do not account for inelastic strains. Furthermore, Saksala 
[8,9] studied the impact indentation of rocks using an isotropic damage concept for tensile loading and a 
viscoplasticity consistency model for compression loading. This work is performed under 2D plane strain 
conditions. More recently, the model was extended to deal with 3D simulations [10]. Chiang et al. [11] 
modeled the impact of tool to the rock and rock fragmentation in drilling process using a 3D FE approach. 
A linear Mohr envelop together with a tension cut off plane is employed as a criterion for maximum 
strength of rock. The material behavior is considered linear elastic before reaching the final failure. 
Additionally, Thuro et al. [12] used Particle Flow Code (PFC2D) to investigate the crack pattern in drilling 
and its correlation with existing foliations. PFC2D code is based on discontinuum mechanics approach and 
is built for 2D simulations. 

Forquin and Hild [13] studied dynamic fragmentation in brittle materials in general due to impact loading 
by using a probabilistic approach to describe the material behavior. The constitutive equation consists of 
the plasticity model introduced by Krieg [14], Swenson and Taylor [15] for compressive loadings and 
coupled with the anisotropic damage model developed by Denoual and Hild [16], Forquin and Hild [13], 
in tension (here and in the sequel referred to as the KST-DFH model). It is shown how a brittle and 
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random behavior under quasi-static tensile loading becomes deterministic and stress-rate dependent when 
increasing the loading rate. This type of model was able to describe the fragmentation of two grades of 
limestone subjected to EOI tests [17] and the enhancement of strength and failure pattern of a 
microconcrete [18] and a standard concrete [19] in spalling tests and EOI experiments. 

In this investigation, the KST-DFH model is selected as the constitutive model based on the findings in a 
previous study by Saadati et al [20]. This model is a good alternative as it deals with both dynamic 
fragmentation due to tensile stress waves and also plasticity-like deformation in compression. This is very 
similar to the situation at percussive drilling as the impact of the piston induces stress waves into the rock 
and initiate tensile cracks, while high compressive stresses prevail beneath the indenter and lead to 
crushing of the rock. The KST-DFH model parameters for Bohus granite are defined based on previously 
reported experimental results [20]. Edge-On Impact (EOI) tests, i.e. impact of an aluminum projectile onto 
a rock slab [21], are performed. The tests are numerically modeled and these results are compared to the 
experimental data to validate the constitutive model. After that, the numerical tool is used to simulate the 
percussive drilling problem and the results are compared with real drilling data. 

2 Constitutive specification 

2.1 KST model  

The KST model has been developed to simulate the compressive behavior of geomaterials accounting for 
the effect of hydrostatic and deviatoric parts of the stress tensor [14,15]. In the deviatoric part, the locus of 
the yield surface is a quadratic function of the mean pressure in the principal stress space. 

2
0 1 2eq a a P a P     (1) 

 
where σeq is the equivalent (von Mises) stress, P the hydrostatic stress, a0, a1 and a2 are material dependent 
coefficients. 

Furthermore, the model includes a piece-wise linear equation of state linking the volumetric strain, εv, to 
the hydrostatic stress. At the first stage of hydrostatic loading, the material behaves elastically. By 
increasing the pressure, collapse of pores occurs in the case of porous rocks, which is modeled by an 
irreversible volumetric strain. During the porosity breakage, the bulk modulus, K, decreases noticeably. 
When all pores are closed, the material exhibits a higher bulk modulus which corresponds to the 
compacted material [22]. However, granite exhibits constant bulk modulus in the whole hydrostatic stress 
range as it includes a very small amount of porosity [20]. 

2.2 The DFH fragmentation model 

The DFH fragmentation model is explained in detail in Refs. [13] and [16]. In the sequel a brief summary 
of the model including both single and multiple fragmentation regimes is presented. 

2.2.1 Single fragmentation 
Under low loading rate conditions, the fracture process is generally the consequence of the initiation and 
growth of a single crack. When the stress increases, the weakest defect is first activated. An unstable crack 
is initiated and propagates very quickly leading to fracture of the whole structure. 
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Defects with different sizes and orientations are randomly distributed within the material and consequently 
the failure stress is random. To model this tensile behavior, a probabilistic approach may be employed. 
Using a Poisson point-process framework, the weakest link theory and Weibull model, the failure 
probability PF is given by [23,24] 

1 exp[ ( )]F eff t FP Z      (2) 
 

where Zeff is the effective volume [25], and λt is the initiation density defined by 
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where m is the Weibull modulus, 00 /mS is the Weibull scale parameter, and σF the maximum principal 

stress in the whole domain. The effective volume, Zeff , is expressed as 

eff mZ ZH  (4) 
 

where Z is the size of the whole volume, and Hm the stress heterogeneity factor [26] written as 
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where σ1 is the local maximum principal stress, and   Macauley’s brackets. The stress heterogeneity 

factor characterizes the effect of the load pattern on the cumulative failure probability. Last, the average 
failure stress σw and the corresponding standard deviation σsd are written as 
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where Г is the Euler function of the second kind 

 
0
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To characterize specific materials, 3-point bend tests are performed and the distribution of the failure 
stresses is obtained. One classical way to obtain the Weibull modulus m is then to look at the slope of 
linear interpolation in the diagram of ln[-ln(1-PF)] versus ln(σF) or the modified Weibull plot [20]. The 

scale parameter 00 /mS can then be extracted from Eqs. (6) and (8), or the intercept in the Weibull plot. 
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2.2.2 Multiple fragmentation 
Under high strain-rate conditions, several cracks are initiated and propagate from the initial defects 
leading to multiple fragmentation. The initial defects are assumed to be randomly distributed and activated 
for a random level of stress. When a crack is initiated, it propagates at a very high velocity (a portion of 
the stress wave velocity) and relaxes the stresses in its vicinity. This prevents activation of new defects in 
an obscured zone centered on this crack. At the same time the stress is increasing in the non-obscured 
zone and new critical defects are activated leading to new crack openings [13,16]. 

Therefore, dynamic fragmentation corresponds to a competition between, on the one hand, new critical 
defects that progressively initiate cracks with the increase of the stress level and, on the other hand, 
obscuration of areas of potential critical defects by cracks created before. The fragmentation process ends 
when the whole domain is obscured by the propagating cracks. 

The interaction law between cracks already initiated and the critical defects of the material is given by the 
concept of probability of non-obscuration [16]. If the initiation density is a continuous function, the 
probability of non-obscuration of point M at time T in a domain Ω is described by [13] 

( , ) [ ( , )]

( , )
( , ) exp t

no

x t horizon of M T

x t
P M T dVdt

t




       (9) 

 

where the horizon is defined by 

 ( , ) , [ ( ) ( ( )) ]n
ohorizon of M T x t Z T t S kC T t      . (10) 

 
In Eq. (10), Zo is the obscured zone, k a constant parameter (k = 0.38 when the crack length becomes 
significantly larger than the initial size), C the 1D wave speed, T the current time and t the crack initiation 
time, S a shape parameter (equal to 4π/3 when the obscuration volume is similar to a sphere in 3D) and n 
the medium dimension (n = 3 in 3D). 

The single fragmentation process occurs at quasi-static conditions and the probability of obscuration 

Po = 1Pno ≡ PF corresponds to the failure probability, Eq.(2), expressed by Weibull’s model. Therefore 
the initiation density for dynamic fragmentation (see Eq. (9)) is identical to that used in the analysis of 
quasi-static cases as described in Eq.  

(3).  

In the case of multiple fragmentation, the interaction between the horizon and the boundary of the domain 
Ω is small and if a uniform stress field is assumed, the obscuration probability in multiple fragmentation is 
written as [16] 

( ) 1 ( ) 1 exp [ ( )] ( )
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The non-obscuration probability provides an indication for the fraction of initiated cracks that correspond 

to the critical defects activated in the non-obscured volumes. The increment of the crack density cracks is 
associated with the obscuration probability and the increment of initiation density 

cracks
no

tP
dt dt

    (12) 

 

Eq. (12) expresses the fact that cracks will initiate only if a defect exists in a non-obscured zone of the 
volume. The probability of obscuration is defined for each principal direction i and the evolution of Pi is 
expressed in a differential form in order to be employed in a FE code using Eq. (11)  
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where σi is the local principal stress component. 

The KST-DFH model is also combined with a cohesive model in order to describe the cohesive strength in 
the obscured zone and the softening behavior of geomaterials in dynamic tension [27]. In the cohesive 
model, an extra term is added to the macroscopic stress i as 

(1 ) ( ) ( ) (1 )D
i i i i coh i iP P D          (14) 

 
where  is the residual strength in the obscuration zone  
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whereαD, , , nd are material-dependent parameters, and Di the damage variable defined for each 

principal direction. The cohesive term can be seen as an extra contribution related to the fracture energy of 
the material. It enforces the final failure of an element to occur when the dissipated energy due to the 
damage process reaches the fracture energy of the material.  

In the principal stress frame, the compliance tensor is defined by 
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where ε1, ε2, ε3 are the principal strains, E Young’s modulus and ν Poisson’s ratio of the undamaged 
material. At the inception of damage growth, the principal damage frame coincides with the principal 
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stress tensor frame and the eigen directions may change at each time step until the first damage variable 
D1 reaches a threshold value of 0.2. Then the direction of D1 is locked and the other directions D2, and D3 
follow the eigen directions with the constraint to be perpendicular to D1. When the second damage 
variable reaches the threshold value, the whole directions are locked. 

3 The material model parameters 

The KST-DFH model parameters for Bohus granite, see Table legends 

Table 1, are obtained based on previous experimental work [20]. In Table legends 

Table 1, the mechanical properties (E and ν) are determined from direct tensile and compression tests 
while the DFH model parameters are obtained mainly from flexural experiments. The KST model is 
calibrated based on quasi-oedometric test results, see Figure legends 

Fig. 1, and in particular the experimental data at high levels of hydrostatic pressure for which there is a 
considerable amount of inelastic strains (as the specimen mainly deforms elastically at the initial stage of 
loading). Presently, the equation of state linking the volumetric strain to the hydrostatic stress is taken to 
be piece-wise linear and determined by the points (εv(i), P(i)) specified in Table legends 

Table 1. 

It deserves to mention that in the model, rate dependency is negligible in case of single fragmentation and 
the strength of the material is then considered to be probabilistic. At higher stress rates (i.e. when multiple 
fragmentation occurs) the mechanical behavior is deterministic and the strength increases with increasing 
loading rates. At low stress-rates, Weibull law plays also a regularization role. The smaller the FE 
elements the higher the mean failure stress based on Weibull size effect. Furthermore, the rate dependency 
at high stress rates works as a regularization in the model and decreases mesh dependency. More details 
concerning this behavior are found in Ref. [13].  

The parameters of the cohesive law are here determined based on preliminary results from spall tests. All 
the material parameters used hereafter are summarized in Table legends 

Table 1. 

4 Edge-on impact experiments and computations 

4.1 Experiments 

In order to validate the numerical model and also to investigate the fracture pattern after impact, Edge-on 
Impact (EOI) tests [21] with a special sarcophagus configuration [16] are performed (see Fig. 2). In the 
experimental set-up, two cylindrical steel confinements of size 52 mm in length and 60 mm in diameter 
are used close to the impact point on both faces of the rock specimen. This helps to increase the level of 
confining pressure and accordingly the strength of the rock material in order to reduce compressive 
damage beneath the projectile. A more complete description of the EOI test can be found in Ref. [21]. 
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In the present experiments, a granite slab of size 200 × 120 × 15 mm3 is impacted by an aluminum alloy 
projectile (21 mm in diameter and 40 mm in length) at a speed of 150 m/s. Two tests are performed with 
similar results and the crack pattern after impact is indicated in Fig. 3. 

There are different types of damaged zones in the target with respect to crack density and orientation (see 
Fig. 3). In the first region (marked (1) in Fig. 3(b)) in front of the projectile there is a small zone 
consisting of a very large number of cracks in random directions. The material in this region can be 
considered as crushed due to high compressive stresses beneath the projectile. The second region (marked 
(2) in Fig. 3(b)) includes a few hoop cracks mostly located close to the confinement. The reason behind 
the formation of these cracks is not totally clear. However, they presumably form because of wave 
reflections. The third region (marked (3) in Fig. 3(b)) includes long macroscopic radial cracks, which 
initiate because of the circumferential motion of the material. The cracks in the second and third region 
are marked in Fig. 3(b) for the sake of clarity. It is likely that these are mode I cracks initiated by high 
tensile stresses. In the remaining part of the specimen, outside the above regions, there are an enormous 
number of cracks, of size up to a few millimeters, in different directions. Most of these cracks are formed 
along the grain boundaries and some of them are only visible under a microscope. It should be noted that 
in the region close to the free boundaries, the amount of macroscopic cracks locally increases due to 
reflections of the compressive wave (spallation).  

By observing the surface of the specimen under a microscope, a large number of small cracks can be 
observed (see Fig. 4). The black color in the micrographs indicates the points where the material is 
missing, i.e. the cracks. A small part of one of the long macrocracks in Fig. 3(b) is visible in Fig. 4(b), the 
bold curved line crossing the whole image, together with small cracks oriented in different directions. 
Note that the amount of damage is decreasing with the distance from the impact point. 

In order to evaluate the crack density from the experiment, a line is traced across the micrographs (Fig. 4) 
and the average distance between the cracks, d, is obtained by dividing the line length by the number of 
crossed cracks. The crack density is then roughly evaluated as (1/d)3, which in this case is about 1.5 × 109 
and 109 cracks/m3 in Fig. 4 (b) and (c) respectively. It should be emphasized that these numbers are rough 
estimates. 

A representative micrograph of the intact specimen is also shown in Fig. 5. A typical feature of the granite 
material studied herein is the large number of pre-existing cracks, both at the grain boundaries and also 
across the grains [3], [4]. When compared to Fig. 4, the amount of damage is noticeably increasing after 
impact. 

4.2 Numerical modeling 

The equation of motion is discretized using the FE method and the explicit time integration method is 
employed. The numerical simulation is carried through utilizing in full the KST-DFH material model 
described above and implemented as a VUMAT subroutine in the Abaqus explicit software [13,28]. The 
strain increments are given as input whereas final stress tensor and state variables are computed as output 
variables of the routine. In the subroutine, the integration scheme is mainly composed of two steps. In the 
first one, a microscopic stress tensor is calculated considering the KST constitutive law alone. The level of 
pressure is calculated from the volumetric strain increment considering a piece-wise linear relationship 
between the volumetric strain and the hydrostatic pressure. The microscopic deviatoric stress tensor is 
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calculated considering the isotropic pressure dependent yield stress criterion defined in Eq. (1). In the 
second step, the three eigen values of microscopic stress tensor are computed. In case of positive 
microscopic eigen stresses, a damage variable is calculated according to Eq.(13) and the macroscopic 
stress is derived (see Eq.(14). Finally, the macroscopic stress tensor is written in the initial basis. 

The numerical simulation of the EOI test is performed in 3D. The quarter-symmetry model consists of 8-
node linear elements (hexahedra) with reduced integration. The element edge size is 0.5 mm in the rock 
specimen (see Fig. 6). Surface to surface contact is used in the numerical simulation and all of the KST-
DFH model variables are evaluated and extracted during the analysis. 

The damage variable, D1, field is shown in Fig. 7. When the damage variable reaches unity, it indicates 
that the element is totally damaged, the physical interpretation being that single or multiple cracks normal 
to the maximum principal stress direction are open. Similar to D1, the second and third damage 
components grow during the analysis by increasing the load. 

Near the impact point, the material behaves plastically due to high levels of confining pressure. Thus the 
hydrostatic compressive stresses in this region prevent the fragmentation process. The radial cracks due to 
hoop tensile stresses induced by the particle motion in the radial direction are also shown in Fig. 7. The 
compressive stress wave is reflected from the specimen boundaries as a relaxation wave and creates some 
cracks close to the rear face. Some cracks are also formed due to Rayleigh wave propagation along the 
free surface of the impact side. It should be emphasized that in the model, crack initiation and growth is 
solely due to positive principal tensile stresses including the possible contribution from shear stresses. 
Fracturing due to high compressive stresses (for example in the compacted zone close to the region of 
impact) is indicated in the model by high values on the accumulated plastic strain.  

The crack density, due to the maximum principal stress, predicted by the model is compared to the 
experimental results. The crack density from the numerical simulation is illustrated in Fig. 8. The results 
are in logarithmic scale. The crack density in the same region as in Fig. 4 (b) and (c) is about 1011 and 
1010.5 crack/m3 respectively which is higher than the experimental results. This difference will be 
explained in more detail below. 

The number of radial cracks in the numerical results is very large while there are not that many long radial 
macrocracks visible in the experimental results. This is most likely due to the presence of large so called 
structural cracks in the specimen introduced during fabrication of the EOI specimen [20]. This feature can 
indeed be of significant importance for EOI testing of granite as the fabrication of samples requires 
substantial processing of the material.  

To investigate the effect of the structural cracks, the specimen is first impacted at 20 m/s, in a numerical 
simulation, in order to produce an initial damage. The specimen is subsequently impacted at 150 m/s 
(similarly as in the experiment). As can be seen in Fig. 9, the damage pattern changes considerably and the 
number of the radial cracks decreases. The initial cracks prevent some new cracks to form. This effect 
leads to more realistic results when compared to the experimental observations. The effect of these initial 
cracks, however, will be further investigated in future studies by introducing these cracks in a more 
appropriate way. This analysis is only preliminary and leads to a qualitative agreement between 
experiments and simulations. 
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Furthermore, the crack density decreases when initial cracking is present and becomes much closer to the 
experimental results (see Fig. 10). Accordingly, the results shown in Figs. 9 and 10 give some confidence 
in the present numerical approach and an analysis of percussive drilling is then performed below. 

A mesh study for the model is reported by Forquin and Hild before [13]. The boundary between single and 
multiple fragmentations is affected by the FE size. The smaller the element size, the smaller the region for 
which multiple fragmentation occurs in the numerical results, because for the same stress rate level, it is 
more likely for a smaller element to reach failure due to a single crack. 

5 Modeling of percussive drilling  

The same numerical tools as above are used to model the percussive drilling problem. Again, the KST-
DFH material model is utilized via a VUMAT subroutine in the Abaqus explicit software [13,28]. A 
typical drill bit has about ten buttons made of hard steel. To simplify the problem, only one hemispherical 
button from the bit is considered. Initial damage is not considered in detail as most often in a practical 
situation there is no preparation of the rock before drilling. Consequently, as discussed previously in the 
context of the EOI test and in detail in Ref. [20], the formation of large structural cracks should be of less 
importance. Some simulations relevant to repeated impact are performed. The incident stress pulse has a 
level of 200 MPa with duration of 2 × 10-4 s and with a rising and descending time of 10-5 s. A 
hemispherical indenter (5 mm in radius) is chosen. The steel drill rod is 1 m in length and 6 mm in radius. 
In a real tool the drill rod cross sectional area is a bit larger than the sum the cross sectional areas of all 
buttons. Accordingly, the drill rod radius is taken a bit larger than the button in order to take into account 
the geometric impedance difference between them. Both the drill rod and the button are assumed to be 
elastically deformable with elastic moduli equal to 200 GPa and 800 GPa respectively. A block of rock 
with a size of 200 × 200 × 100 mm3 is exposed to impact. The finite element mesh used in the simulation 
is shown in Fig. 11. 8-node linear elements with reduced integration are used in the simulations. Infinite 
elements are used at the rock boundaries to eliminate the wave reflection. 

Selected simulation results for the damage variable, induced by the maximum tensile principal stress, are 
shown in Fig. 12. Firstly, it is compared to cracking under quasi-static conditions. A typical fracture 
pattern in a rock material due to quasi-static indentation has been determined by Tan et al.[29] It includes 
different types of cracks and also a high compressive part under the indenter called the crushed zone, see 
Fig. 13. 

Although being dynamically loaded, similar types of cracks are captured from the numerical results (Fig. 
12). In the region ahead of the indenter, a crushed zone develops. The hydrostatic pressure in this region 
reaches more than 2 GPa according to the numerical results. It should be emphasized that the high 
hydrostatic stresses will lead to high values on the effective plastic strain and the damage formed in the 
crushed zone is a consequence of tensile stresses due to a gradual increase of the contact area. Radial 
cracks, or radial and median cracks combined, are formed during loading and propagate even more during 
the unloading phase, see Fig. 12(b). Side cracks, which are mainly formed during the unloading stage and 
are considered as the most efficient way of removing rock material, are also captured. Fig. 14 shows the 
damage state in a view cut of the rock block 5 mm beneath the indenter at the end of the loading and 
unloading stages. The side cracks are marked. These cracks interact with similar types from neighboring 
buttons and a significant part of the material is removed when they coalesce. In this context, it should also 

b) 
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be mentioned that all the three damage variables, in the KST-DFH material model, grow during the 
simulations. 

The penetration resistance is obtained from the indentation bit force (Pb) versus indentation penetration (h) 
response. The force-penetration (Pb–h) curve of the drill bit is shown in Fig. 15. By accounting for the 
symmetric boundary conditions and the number of buttons per drill bit, the penetration stiffness, Ks, value 
is 340 kN/mm. The values of penetration per impact and also the penetration stiffness Ks obtained from 
the numerical simulations are in good agreement with real drilling results [10]. 

If the KST model is considered without any damage in the same drilling simulation as above, the 
penetration rate decreases considerably with a penetration stiffness of about 548 KN/mm, see Fig. 15. This 
means that in the absence of damage as a dissipation mechanism, the rock behaves as a stronger material 
and becomes more resistant to the tool indentation. 

Mesh size effect on the fracture pattern and the penetration stiffness of the above explained percussive 
drilling problem have been investigated. It is concluded that the very small details of the crack pattern 
may be considered as mesh dependent in a sense that the cracks are more likely follow the mesh patterns. 
However, the size of the damaged zone and the general features of the material response are mainly mesh-
independent. 

As discussed above, initial damage is not explicitly considered in the present drilling analyses based on 
the fact that structural cracking is expected to be very limited prior to first impact. It should be emphasized 
that a controlled introduction of such cracks can be of major importance from a drilling efficiency point of 
view and, accordingly, this feature will be investigated in detail in future studies. However, as mentioned 
above, some simulations relevant to repeated impact were performed. In short, it was then found that the 
cracks formed at first impact continued to grow to a very limited extent while a large zone of crushed 
material was formed below the indenter leading to a less effective drilling procedure. Based on this result 
a controlled introduction of structural cracks, in order improve drilling efficiency, becomes an even more 
desirable feature. 

6 Conclusions 

Percussive drilling in granite has been investigated experimentally and numerically using finite element 
simulations. The KST-DFH material model was used to describe the material constitutively and the 
material parameters are calibrated for Bohus granite by a set of previously performed experiments [20]. 
The numerical simulations were performed using a VUMAT subroutine in the commercial software 
Abaqus [13,28]. 

Edge-On Impact (EOI) tests were performed to validate the numerical model. The fracture pattern and the 
crack density from the numerical analysis were in qualitative agreement with the experimental results. It 
was found that effects due to large initial (structural) cracks must be carefully accounted for. These cracks 
can prevent subsequent initiations and considerably decrease the number of large cracks. 

A 3D numerical simulation was then performed to model the percussive drilling problem. It was shown 
that the fracture pattern at drilling resembles that found under quasi-static indentation of rock materials. In 
particular, side cracks, which are the most preferable type for removing material, were mainly formed 
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during the unloading stage. The force-penetration curve and the corresponding value on the penetration 
stiffness, Ks, were in a good agreement with real drilling data. The possibility of introducing initial cracks 
in the material, in order to improve the drilling efficiency, was briefly investigated and discussed. 
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Table legends 

Table 1 Parameters used in the KST-DFH material model. Details regarding the parameters are found in 
Section 2 above. 
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Mechanical parameters 
E (GPa) 52 

 0.15 

ρ (kg/m3) 2630 

DFH model parameters 
Weibull parameters  

m 23 

σw (MPa) 18.7 

Zeff (mm3) 195 

Obscuration volume parameter  

S 3.74 

k 0.38 

C (m/s) 4400 

KST model parameters 
Parameters for hydrostatic 
behavior 

 

K (GPa) 31.7 

εv(i) 0; -0.028 

P(i)(MPa) 0; 860 

Parameters for deviatoric 
behavior 

 

a0 (MPa2) 23,500 

a1(MPa) 465 

a2 1.51 

Cohesive model parameter 
αD 1.5 

(MPa) 11 

 0.004 

nd 1 

Table 1 
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Figure legends 

Fig. 1. Quasi-oedometric test results together with the KST model (after [20]). 

Fig. 2. Schematic of the EOI test with the sarcophagus configuration. 

Fig. 3. Granite specimen after impact by an aluminum projectile (a), damage pattern is marked to be 
observable (b). Specific regions (1), (2) and (3), are also shown. 

Fig. 4. Granit specimen after impact by the aluminum projectile (a), micrograph of the specimen at a 
distance of 25 mm (b), and 50 mm (c) from the impact point. The dashed yellow boxes will be used to 
compare the model predictions with the experimentally evaluated crack density. 

Fig. 5. Micrograph of the intact specimen. 

Fig. 6. FE mesh used in the simulations of the EOI test. Quarter-symmetry model with 775000 8-node 
linear elements. 

Fig. 7. FE simulation results of the EOI test. Damage variable D1 20 μs (a), and 40 μs (b) after impact 
(velocity: 150 m/s). 

Fig. 8. FE simulation results of the EOI test. Crack density (1/m3, logarithmic scale) due to the maximum 
principal stress 20 μs (a), and 40 μs (b) after impact (velocity 150 m/s). 

Fig. 9. FE simulation results of the EOI test. Damage variable D1 at the end of the first impact at 20 m/s 
(a), and 40 μs (b) after the second impact at 150 m/s. 

Fig. 10. FE simulation results of the EOI test. Crack density (1/m3, logarithmic scale) due to the maximum 
principal stress at end of first impact at 20 m/s (a), and 40 μs (b) after the second impact at 150 m/s. 

Fig. 11. FE mesh used in the simulations of percussive drilling. Due to symmetries only a quarter of the 
problem is modeled with 400000 8-node elements. 

Fig. 12. FE simulation results of percussive drilling. Damage variable D1 at the end of loading (a) and at 
the end of unloading (b) phases. 

Fig. 13 Cracking pattern in rocks at quasi-static indentation [29]. 

Fig. 14. FE simulation results of percussive drilling. Side crack formation in a view cut 5 mm beneath the 
indenter at the end of loading (a) at the end of unloading (b). 

Fig. 15. FE simulation results of percussive drilling. Force-penetration (Pb–h) curve of the drill bit based 
on the KST-DFH and KST material models. 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 

 



29 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 
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Fig. 12 
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