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Abstract Tomographic reconstruction of a binary im-
age from few projections is considered. A novel heuris-

tic algorithm is proposed, the central element of which

is a nonlinear transformation ψ(p) = log(p/(1 − p)) of

the probability p that a pixel of the sought image be

1-valued. It consists of backprojections based on ψ(p)
and iterative corrections. Application of this algorithm

to a series of artificial test cases leads to exact binary

reconstructions, (i.e., recovery of the binary image for

each single pixel) from the knowledge of projection data
over a few directions. Images up to 106 pixels are recon-

structed in a few seconds. A series of test cases is per-

formed for comparison with previous methods, showing

a better efficiency and reduced computation times.

Keywords Tomographic Reconstruction, Discrete
reconstruction, Binary reconstruction, Binary image

1 Introduction

Tomographic reconstruction is a mature topic [29,23]
for which a variety of algorithms is now available from

the celebrated Filtered BackProjection (FBP) [32], in-

cluding its fast implementation [6,7], to various Alge-

braic Reconstruction Techniques (ART) [26]. Numer-

ous extensions have been proposed for enhanced accu-
racy or speed. ART appears as the method of choice

for a small number of projections or noisy data, whereas

FBP is superior in terms of computation times.
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A specific class of reconstruction problems appears
when the image to be reconstructed has only few gray

levels (termed discrete reconstruction) or is binary (i.e.,

its “pixels” are either black or white) [27,28]. This

additional piece of information is extremely valuable

and allows dealing with very few projections, provided
the image to be reconstructed is sufficiently “simple.”

However, the discrete nature of the image to be re-

constructed renders more difficult the recourse to classi-

cal reconstruction algorithms. In order to reach accept-
able reconstructions (perfect ones are generally out of

reach), optimization techniques specific to NP-complete

problems (binary reconstruction has been shown to be-

long to this class of “hard” problems [22]) were consid-

ered, namely, Simulated Annealing (SA) [39,30] or Ge-
netic Optimization (GO) [37] have been proposed and

shown to be able to capture approximately synthetic

phantoms over images of size N×N , with N ≤ 256 pix-

els, and a number M of projections in the range from 4
to 10, within a computation time of order of a few hours

(even for recent GPU implementations [37]). Smaller

N values, say of order 64 pixels, still require a com-

putation time of the order of a few minutes in those

references. Such performances rely on the fact that the
image contains few connected domains generally with

smooth boundaries. One additional difficulty of such

methods is their rather slow convergence and sensitiv-

ity to the way the algorithm is driven. In addition,
there is no guarantee that the algorithm is not trapped

in a local minimum.

In such a context, an iterative correction approach

seems more appealing, and recent works have led to

much more successful results either in terms of qual-
ity of the reconstruction and computation cost [3,4].

The binary nature of the sought image, although offer-

ing severe constraints that are helpful to compensate

http://arxiv.org/abs/1309.0985v1
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for the lack of information, suggests that combinatorial

type approaches are needed. Thus, the challenge is to

conciliate corrections, which naturally use a continuous

representation of the image, and the known a priori in-

formation on its binary character. Early attempts [14]
to interleave classical reconstruction steps, and “binary

steering” favoring 0 or 1 for pixel values showed encour-

aging results, yet 64 × 64 images could not be exactly

reconstructed after 1000 iterations.
The binary nature of the image constitutes by itself

an element of simplicity, namely, a single bit of informa-

tion is needed per pixel. However, additional elements

can further simplify the problem of reconstructing the

image from a few projections. In particular, the no-
tion of “sparsity” has been shown in the recent years

to allow for very efficient restoration of signals (or here

images) from few partial measurements or data. Yet,

sparsity may have different appearance. At least two
categories can be distinguished:

- Type A. If no spatial correlation exists in the image,

then sparsity has to rely only on the number of 1-valued

pixels. It has been shown in a series of work starting

from Ref. [16] on undersampling theory, that a “phase-
transition” exists separating solvable problems from un-

solvable ones depending on the quantity of available in-

formation. In the framework of sparsity based on the

density of non-zero pixels only, the order of magnitude
of the maximum concentration of non zero pixels (i.e.,

number of pixels relative to the image size), pc, in a

N × N pixel image, based on M projections has been

shown by Donoho and Tanner [17,18] to amount to

pc ≈
M

2N log(N/M)
(1)

It may be convenient to introduce the undersampling

ratio, δ ≡ N/M , so that pc ≈ [2δ log(δ)]−1. To men-

tion an example, for a 1-Mpixel image, N = 1000, and

M = 10 projections, pc is of the order of 10
−3, or about

one non-zero pixel (at most) per line. This threshold

is a theoretical level, yet available algorithms [35] allow

such problems to be addressed with an effective thresh-

old that is quite close to the theoretical value. Note
that for p > pc still a unique binary solution may ex-

ist, but there is no guarantee that this solution can be

reached through a convex minimization procedure.

- Type B. Spatial correlations may also contribute to the

reduction of “complexity” in the image. If all 1-valued
pixels are grouped into a few blobs, the information

content of the image is reduced and hence an arbitrary

proportion of black or white pixels can be dealt with,

and still a small number of projections is needed to re-
construct the image. Along this line, Candés et al. [12]

introduced an algorithm to reconstruct an image from

a set of projections provided the image consists of a

few number of domains, each of which having a uni-

form gray level. The key to the solution is here again

a low level of “complexity” in the image. However, in

contrast with the previous case, spatial correlations are

here essential. In this case, the image gradient is a
sparse field, and a regularization based on the “total

variation” is essential to reach the solution. Although

recent works [33] progress toward solid results on sta-

ble and robust image recovery from noisy data based
on total variation minimization, yet a proof of a phase

transition for type B problems (comparable to that of

type A) is not currently available.

In the following, all examples are believed to belong
to the second class of problems. However, no practi-

cal definition of the relevant measure of “complexity”

can be formally derived as above mentioned for Type

A. Based on the above result, an attempt to trans-

pose this measure for the studied cases is provided in
Sect. 7. Let us also note that Gouillart et al. [24] have

recently proposed a different type of algorithm based

on “message passing” for binary and discrete tomog-

raphy reconstruction where it was suggested that the
proportion of 0-1 pixel pairs (or interfaces) is respon-

sible for the image “complexity”. The proposed algo-

rithm is essentially heuristic, and no guarantee for con-

vergence is proposed. When too few projections are

given, the algorithm does not converge and the resid-
ual difference with the sought image fluctuates around

a constant value which may not be small. However,

when applied to test images which have been proposed

earlier [3], the reconstruction performance appears as
superior both in terms of quality and time.

In terms of applications, many different fields are

concerned. Medical imaging is one of the most de-

manding applications [36,13], and here the interest lies

in the X-ray dose reduction for the patient, provided
the reconstruction can be limited to two phases. In the

field of fluid mechanics, Tomographic Particle Image

Velocimetry (Tomo-PIV) reconstruction of tracer par-

ticle distribution in a suspending transparent fluid is
required from optical images taken by few cameras [19,

1], hence few projections. Finally, in the field of ma-

terials science, an amazing progress has been achieved

in the recent years in terms of fast data acquisition [2].

Full 3D scans can now be acquired in less than one sec-
ond in large scale synchrotron facilities. Whenever the

microstructure could tolerate a simple representation

as a binary image, the reduction in the number of pro-

jections could automatically be translated into a larger
scanning rate, or finer temporal resolution. These are

three examples where progress in the reconstruction us-

ing reduced projections would be very rewarding.
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Section 2 defines the problem of tomographic recon-

struction and presents some regularization strategies

classically used in this context. Section 3 introduces

the algorithm used, and a first illustration is shown

in Section 4. Section 5 introduces a multi-scale for-
mulation that enhances the efficiency of the algorithm.

A detailed comparison with some benchmark tests is

reported in Section 6. An attempt to rationalize the

performances of the text as a function of a proposed
measure of complexity is proposed in Sect. 7, and the

effect of noise on reconstruction is documented for a

single image in Sect. 8. Finally, Section 9 recalls the

major results and some perspectives are discussed.

2 Statement of the problem

The problem consists of identifying a binary-valued dis-

crete image f(x) where f is valued in {0, 1}. f is de-

fined at pixels x having integer coordinates, inside a

2D domain, x ∈ D, chosen in the sequel to be a cir-

cular disk of radius N/2 where N is an integer. The
image is known only from “projections” along a few

known directions labeled by j = 1, ...,M . A direction

j is characterized by its unit vector n
j , and its π/2-

rotated vector tj . For each direction j, the projection
πj(y), is defined as the line sum of f along the “ray”

that projects onto y. This ray is the set of points x,

such that x⊤
t
j = y. The projection is written as

∑

x⊤tj=y

f(x) = πj(y) (2)

where |y| ≤ N/2. The M projections πj(y) are given

and the image f is to be reconstructed.

The total number of pixels is of order (π/4)N2. In

practice it is often more convenient to consider all pixels

with the [−N/2;N/2]2 square domain that contain the

disk D. In that case, i ranges from 1 to N2, but for
those pixels, xi which are more distant than N/2 from

the origin, f(xi) = 0. It is convenient to introduce a

vector representation of the discrete image through the

notation f = {fi} where fi = f(xi). In the sequel, this
vector representation will be used systematically, and

denoted (as well as matrices) by bold characters.

Let us note that in the literature, the sampling of

πj(y) is often assumed to be resolved at the scale of
the separation between the projection of the discrete

pixel centers xi (see e.g., [3]). For instance, when the

projection is performed at π/4 with respect to the prin-

cipal axis, pixels are projected onto positions separated
by 1/

√
2 and hence the number of projection data is√

2N , as compared to N when the projection direction

is 0 or π/2. As the number of projections,M , increases,

the size of the discrete vector πj increases, so that the

information content increases quickly.

For that reason, a different discretization choice is
made herein, namely, for any direction, j, the πj(y)

function is binned over intervals of size 1. Introduc-

ing equally spaced discrete coordinates yk (with a unit

spacing), the projection πj(y) is transformed into the
series of discrete components

πjk =
∑

|y−yk|<1/2

πj(y)

=
∑

i

H(1/2− |x⊤
i t

j − yk|)fi
(3)

where H denotes the Heaviside function, i.e., H(x) = 1

iff x ≥ 0, and H(x) = 0 else. Thus the projection

data are collected into M vectors π
j for 1 ≤ j ≤ M ;

each vector πj = {πjk} being of length N , k = 1, ..., N .

In that case, any direction brings approximately the

same amount of information (i.e., same number N of

equations).

For the sake of simplicity, for any projection direc-

tion, the choice is made to associate each pixel xi with

a unique detector site yk onto which the projection is
considered (i.e., closest integer value as above defined).

It is to be noted that other choices could have been

made. In particular, a pixel could be partitioned into

different rays with weight corresponding to the area of

the square pixel swept by the ray of unit width. The
first choice is the simplest as the weight itself is binary.

The second is more realistic when considering an actual

experiment. In the following only the first choice was

made.

In discrete form, these projections are recast in a

linear form

Wf = π (4)

where the projection operator W is itself a binary ma-
trix as a result of the above projection discretization.

This linear system is the collection of the projection

equations along different orientations. For a specific di-

rection n
j , this projection operator is denoted by Wj

and second member π
j , so that W j

mnfn = πjm where

1 ≤ j ≤M , 1 ≤ m ≤ N and 1 ≤ n ≤ N2.

The associated backprojection operator Bj is simply
deduced from the transpose of Wj through a normal-

ization by the number of pixels N j
k being projected onto

the same detector site. The latter is obtained by the

projection Wj1 where 1n = 1 for all 1 ≤ n ≤ N2,
N j
k =

∑

nW
j
kn. Let us introduce the diagonal operator

D such that

Dj
kl = δkl/N

j
k = δkl/

N2

∑

n=1

W j
kn (5)
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where 1 ≤ j ≤ M , 1 ≤ k ≤ N , 1 ≤ l ≤ N , and

δkl denotes the Kronecker symbol. The backprojection

operator is written as

Bjnm =
W j
mn

∑N2

p=1W
j
mp

(6)

for 1 ≤ j ≤ M , 1 ≤ m ≤ N and 1 ≤ n ≤ N2, or

equivalently

Bj = (Wj)⊤Dj (7)

so that WjBj = I.

It is to be emphasized that the number of available

equations from the projections is far less than the num-

ber of unknowns. Typically for N = 300 and M = 4,
the ratio of equations over unknown amounts to about

1.5 %, emphasizing the crucial role to be played by the

regularization in the solution.

3 Algorithm

Most binary reconstruction methods proposed in the

literature, whatever their specific strategy, are iterative.
Hence, the first step of any algorithm is to propose a

trial image for f to initialize the procedure. The obvi-

ous route to follow is to apply the classical fast algo-

rithm known for continuous reconstruction, and hence,
typically, it is proposed to start with the standard FBP

algorithm from the known projections. Although nat-

ural, this procedure is not optimal, and the following

subsection aims at revisiting this first step through a

more genuine estimate of the local probabilities for a
site i to be valued fi = 0 or 1.

3.1 Initialization

Let us consider a specific site, xi, and two arbitrary

projection directions, 1 and 2. The corresponding

projections of xi on the detector line are denoted as
k1 and k2 respectively (W 1

k1i
= 1 and W 2

k2i
= 1).

From the first direction, and without additional infor-

mation, the probability that fi = 1 is p1, which is

equal to the projection n1 = π1
k1

divided by the to-

tal number of pixels N1 =
∑

mW
1
k1m

along the line.
Similarly for the second direction, the probability is

p2 = n2/N2 = π2
k2
/
∑

mW
2
k2m

. The question to be

addressed is to provide the “best” estimate, p, for the

probability that fi = 1, knowing p1 and p2, assuming
the influence of other pixels to be negligible. Let us con-

centrate hereafter on non trivial cases, where Ni > 1

and 0 < ni < Ni for i = 1 or 2.

Let us count the number of configurations that are

consistent with fi = 1

n+ =

(

N1 − 1

n1 − 1

)

.

(

N2 − 1

n2 − 1

)

(8)

and those corresponding to the alternative choice fi = 0

n− =

(

N1 − 1

n1

)

.

(

N2 − 1

n2

)

(9)

Hence, using the short-hand notation qi = 1− pi (i = 1

or 2), the ratio of these two quantities is found for all

Ni and ni
n+

n−
=

n1n2

(N1 − n1)(N2 − n2)
=
p1p2
q1q2

(10)

Without further information, all configurations are

considered as equiprobable and hence, p, may be eval-

uated from the ratio

p =
n+

n+ + n−
=

p1p2
p1p2 + q1q2

(11)

The above combination of the two probabilities to es-
timate p appears as quite intricate. However, if the

following function is introduced

ψ(p) = log(p/(1− p)) (12)

and the notations ψ1 = ψ(p1), ψ2 = ψ(p2) and ψ =

ψ(p), then the above relationship reads

ψ = log

(

p1p2
q1q2

)

= ψ1 + ψ2 (13)

Figure 1 shows function ψ(p). The divergences at p = 0

or 1 are the counterparts of the observation that if a

line is seen as empty or full, then whatever the other

projection values, the pixel (and the entire projection

line) is surely determined. Reverting to probabilities p
from ψ is straightforward

p =
eψ

1 + eψ
=

1 + tanh(ψ/2)

2
(14)

In practice for numerical purposes, function ψ is trun-

cated for arguments close to 0 or 1. A small parameter ǫ

is introduced and for arguments x less than ǫ or greater

than 1−ǫ, their ψ values are turned into ψ(ǫ) or ψ(1−ǫ)
respectively. For all the examples shown hereafter, a

value of ǫ = 10−6 was chosen. It is worth noting that

function ψ is the opposite of derivative of the (Fermi-

Dirac) entropy S = −p log(p) − (1 − p) log(1 − p) with

respect to p. Exploitation of this observation in the
context of image reconstruction (and more generally of

deconvolution) was proposed by Byrne [10]. In the lat-

ter reference, an iterative scheme was proposed to deal

with images obeying constraints such that 0 ≤ fi ≤ 1
for all i (rather than the binary constraint considered

herein), and the above entropy functional was postu-

lated as a convenient way to favor intermediate values
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Fig. 1 Graph of function ψ(p) when 0 ≤ p ≤ 1.

within the allowed interval. This is to be contrasted

with the above derivation based on actual probabilities.

The additive property of s = ψ(p) is easily gen-

eralized to an arbitrary number of projections. This
observation is the heart of the proposed algorithm, and

in particular the initialization step. For a given direc-

tion, j, the projections πjk are transformed into proba-

bilities πjk/N
j
k where N j

k =
∑

nW
j
kn, and further into

sjk = ψ(πjk/N
j
k). The latter is backprojected over the

image to be reconstructed. The summation of these

backprojections at each site i

σi =
∑

j,k

W j
kis

j
k (15)

or, σ = W⊤s, provides a resulting σ vector that is fi-
nally transformed back into probabilities p. This trans-

form reads

p = ψ−1
(

W⊤ψ(D.π)
)

(16)

where the t superscript denotes transposition. Thus, up

to the π-s substitution, the canonical backprojection

algorithm is to be used. If ψ is turned into identity, the

above expression reduces to a simple backprojection.

The classical FBP is based on a similar backprojec-

tion, but with the filtered signal π (i.e., convoluted by
the inverse Fourier transform of the absolute value of

the wavevector, |k|). This form of filter results from

compensating the spreading of the back-projected val-

ues, prominent for small angles. The algebraic form

of the filter is derived for a continuous distribution of
angles. Let us note that the filtering could also be per-

formed through a deconvolution on the backprojected

unfiltered projection data. A similar problem of over-

counting is met for a large number of projections be-
cause the same blocks of pixels appear for neighboring

projection directions. The kernel to be used in the de-

convolution varies with the number of projections, from

the inverse Fourier of |k| for a continuous distribution

of angles to a Dirac distribution for two orthogonal dis-

tributions. When the maximum number of angles does

not exceed 10 or 15, the filtering can simply be ignored.

As a conclusion of this section, two routes could be
considered:

– The first one would consist of i) transforming the

projection with the ψ function, ii) applying a clas-

sical FBP algorithm from this transformed signal,

iii) filtering the reconstructed image to account for

the errors induced by the incomplete set of projec-
tions, iv) finally transform back the image using

the ψ−1 function, and threshold the resulting im-

age to a value of 1/2. It is to be noted that the fi-

nal step can be further simplified since thresholding
the ψ−1-transformed image at 1/2 is strictly equiv-

alent to thresholding the untransformed image at a

value of ψ(1/2) = 0. This approach requires not

too few projection angles, but is simple and fast. It

works for instance in the case of a random distribu-
tion of pixels provided the fraction of 1-valued pixels

matches constraints Eq. 1 as theoretically obtained

by Donoho and Tanner [17,18]. Although suited to

“Type A”, this approach however does not easily
allow for the incorporation of spatial correlations in

the reconstructed image as required for “Type B”.

It will not be further explored in the present study.

– The second option is to follow an approach simi-

lar to the iterative correction reconstruction tech-
nique, i.e., design an iterative algorithm that pro-

gressively corrects the reconstructed image. This

approach is expected to be safer and more precise

when the number of projections is very small, as a
one step algorithm is out-of-reach. It is also a pri-

ori more demanding in terms of computation time

and hence algorithmic efficiency is a critical issue.

Because this approach proceeds by successive cor-

rections, the first approach (without deconvolution)
can be used to provide an initialization of the re-

constructed image.

3.2 Correction

Before describing the correction step, let us briefly re-

call a (block-iterative) ART implementation (SART in
the terminology of Ref. [29], i.e., simultaneous correc-

tion of the image for each block of projection equations

corresponding to a given direction, j, and sequential

inspection of the different directions) to highlight the
parallel with the proposed approach. This algorithm

is based on a progressive correction of a current esti-

mate, f (n) at step n. The projection error πj −Wjf (n)
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along direction j is computed and corrected by a uni-

form translation of f along each ray (i.e., a backpro-

jection) so as to cancel out this error. All projection

directions are successively considered.

One interesting variant is the MART strategy [34,
15] where M stands for multiplicative. As for the

SART algorithm, a block-iterative formulation, termed

SMART, was introduced [8,9,11]. This latter strategy

consists of scaling (rather than translating) f (n) by a
constant factor along each ray to meet the projection

constraint. The correction step can thus be seen as a

uniform translation along each ray of log(f (n)) so that

after correction the projection error exactly cancels out.

Section 3.1 showed that σ is an appropriate field

to apprehend the f image. In the same spirit as ART

and SMART, the proposed correction step is a uniform

increase (or decrease) along each ray of σ(n) values so

that the projection constraint along that direction is
exactly met. The latter increment is to be evaluated

after a binarization step to produce an image f (n+1) =

H(σ(n+1)). Hence, the computation of the increment

per ray is a little more demanding than in the two above
SART and SMART cases, yet it can conveniently be

achieved via a sorting algorithm when W is binary as

we now discuss.

Considering a specific projection direction, j, and

line reaching the detector at position k in the above
procedure, one may compute the value rjk that should

be subtracted to σ so that the natural binarization of

σ−Bjrjk would lead to the known line-sum πjk, or when

considering all lines indexed by k in a vector notation,
along the same direction j,

WjH(σ −Bjrj) = π
j (17)

The solution to this non-linear equation is given by se-

lecting the πjk largest σ values along each line k, as one

can consider that the largest values are the ones that

are the most likely to be 1-valued. Let σ∗j
k denote the

smallest of them. Alternatively, one could also consider
the N j

k − πjk smallest σ values, and denote by σ∗∗j
k the

largest of them. Then any value of rjk in the interval

σ∗∗j
k < rjk < σ∗j

k would fulfill condition (17). Thus it is

proposed to opt for the mid-value

rjk =
σ∗j
k + σ∗∗j

k

2
(18)

For a given projection direction, the correction of σ

along each ray is easily performed by a 1D sorting

step, or more precisely by looking for the π-quantile,

for which efficient algorithms exist [31]. The resulting
corrected image if binarized would fulfill the appropri-

ate projection for the considered direction. However,

presumably the projection along other directions is not

correct, and thus the algorithm consists of successively

considering all directions. This step is repeated twice.

Let us stress that the sorting algorithm to determine
the increment r is specific to the case of a binary pro-

jection matrix W so that rays are decoupled from each

other. In the case of a more general projection matrix,

then a similar correction step could be performed but

the computation of the increment r would be more in-
volved, and hence less efficient. This extension has not

been explored further.

The proposed algorithm shares the same property
as the SMART algorithm close to 0 where ψ(x) ∼x→0

log(x). However, it also introduces a similar behavior

close to p = 1. The price to pay is that the correction

is a nonlinear problem that can be solved by a sorting
scheme. It is also observed that when p is close to 0 or

1, a translation of ψ values has a very small impact on

p. In contrast for ψ close to 0 (i.e., p close to 1/2) the

relative influence of a ψ-correction is the largest.

Even though the sought image f is binary, it is im-

portant to allow for intermediate values in the course

of its determination. It enables to move continuously

from one state to the other without having to resort to
a combinatorial treatment, or being trapped within a

fixed topology. The image f , or its ψ-transform σ, are

natural quantities to deal with.

3.3 Regularization

Regularization is not introduced here as an extra func-

tional to be minimized together with the projection con-

straints. Rather a specific iterative procedure is intro-

duced aiming for an image f lying in the constraint
set, and stopping once this constraint is fulfilled. Be-

cause the solution ofWf = π is generally non unique in

the herein considered cases, the final image will depend

on the specific procedure followed for its estimation. In
some way, such a strategy can be compared to the spirit

to the approach of “Binary steering” [14]. It consists

of interleaving a first reconstruction step, and a second

one that tends to favor either 0 or 1 for a real valued

candidate for the binary image. Neither the reconstruc-
tion nor the binary steering is similar to the procedure

proposed in this reference, but the spirit of alternat-

ing these two steps can be considered as qualitatively

similar.

Moreover, in the early stage of the algorithm, in

addition to favoring the vicinity of 0 and 1 as values

for the image, high spatial frequencies will be damp-
ened to bias f toward an image containing few domains

and smooth boundaries between them. Along with it-

erations, this high-frequency filter will progressively be
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tuned down, hence allowing for finer details to be intro-

duced. However, the convergence of the algorithm relies

on the fact that such a procedure is able to capture the

large scale features quickly, and hence at each iteration

only a small correction will be needed. In the clas-
sification of the different types of sparsity introduced

in the introduction, it is observed that the last stages

of the algorithm will definitely rely on the assumption

that boundaries between domains will be sparse (Type
B), while the first stages require that a coarse-grained

image has few pixels of one “color” and thus the coars-

ened image should rather be of Type A. Because of this

observation, we are not able to derive an operational

definition of “complexity” or “simplicity” suited to the
images considered hereafter, and hence we are not in a

position to state precisely the conditions under which

the proposed heuristic procedure converges. However,

some examples shown below illustrate convergence to
a satisfactory solution even if, according to the crite-

rion of Type A complexity, no solution should have

been accessible. This is due to the fact that spatial

correlations reduce complexity. Provided these correla-

tions are “gently” promoted by the procedure, a binary
image may be reconstructed from few projection data.

Hence, the results obtained herein and those of previ-

ous comparable studies [3] suggest that the exact re-

constructability results of Type A could be extended to
other types of signals when space or time correlations

are considered. In this spirit, a measure of complexity

derived from that proposed by Donoho and Tanner [17,

18] is tested in Section 7.

The idea of the implemented regularization is to
note that the low frequency part of the image is ro-

bust with respect to the missing information, whereas

the high frequency part is more fragile. In order to

capture long wavelength modes, it is chosen to resort

to a convolution of the current determination of the im-
age, f (n), with a Gaussian kernel of characteristic size

a, Ga(x) = 1/(2πa2) exp(−x
2/2a2), g(n) = Ga ⋆ f

(n)

where ⋆ stands for a convolution. The convoluted im-

age can be seen as a local average over a centered do-
main of area a2. Hence if the convolution image is

close to 0 or 1, then it is likely that the point is in-

side a subregion of 0’s or 1’s respectively. In contrast,

at the interface between a 0 and a 1 region, the con-

volution will be of order 1/2. If g is substituted to f
as the current determination of the image, a correction

step is applied that will mostly affect the boundaries

of the 0 and 1 regions. However, as the procedure pro-

gresses, the reconstructed image is expected to come
closer and closer to the true one, and hence, the weight

to be given to the “regularization”, or a priori informa-

tion, is progressively reduced. This is easily performed

by reducing the extension of the Gaussian, a to 1. In

this limit, the convolution leaves f (n) essentially un-

changed. Hence, the regularization initially focusses on

the long wavelength components of the reconstructed

image and leaves interfaces to be determined at a later
stage, and progressively, regularization vanishes. In the

proposed algorithm, a fixed, i.e., prescribed pace is cho-

sen, namely a is uniform and progressively reduces to 1.

Thus the regularization is not defined as belonging to a
specific space, not to the kernel of specific operator, but

rather as a progressively less and less intrusive action on

the proposed solution, first erasing the high frequency

components and then preserving finer and finer scale

details. The problem to be solved, namely Wf = π,
f ∈ {0, 1}N×N , is not altered, but the regularization

introduced here is a way to give a hierarchy in the de-

termined information on f , giving the precedence to

long wavelength over short ones. This will be shown on
a series of numerical (artificial) test cases, to lead effi-

ciently to a solution. However, no other evidence than

these encouraging numerical examples is offered.

Because the previous correction step involved a sort-

ing procedure rather than a mere algebraic evolution for
each pixel value, it is difficult to associate the regular-

ization step with the correction step, and hence these

two operations are performed sequentially. In the fol-

lowing, a matrix notation is chosen to indicate the con-
volution by Ga(x), namely, g = Ga ⋆ f is denoted as

g = Gaf although in practice this convolution is per-

formed via fast Fourier transforms. The regularization

step consists of a first binarization, followed by a con-

volution with a Gaussian kernel, Ga

g = GaH(σ) (19)

Note that there is no need to transform σ into f through

ψ−1 for the binarization since H(σ) = H(f − 0.5). The

convolution with a Gaussian kernel is only active in the
neighborhood of interface sites between 0 and 1. The

smoothing of the image produced by the Gaussian con-

volution kernel is thus a way to ease boundary adjust-

ments without impeding nucleation of a small cluster
nor loosing the determined information on other pix-

els. It plays the role of a surface tension as it tends to

smooth out boundaries.

The width of the Gaussian kernel, a, is chosen to be

larger in the first steps of the algorithm, and to decrease
progressively as the iteration number n increases. The

following choice was made in the implementation

a = 1 + αn(a0 − 1) (20)

with a0 ranging typically from 2 to 4 and α of order
0.7-0.9. Their values are dependent on the image “com-

plexity”. They have been chosen to allow for the quick-

est convergence for a series of test cases. Note that
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their precise value affects predominantly the conver-

gence rate but not the quality of the result. Let us

stress that in all cases the regularization part involves

only very small scale modifications of the image. When

a approaches 1, the effect of convolution essentially van-
ishes. The reason for the reduction of the convolution

weight is that the remaining inconsistencies between the

known projection vectors π and the projected estimate

Wf become smaller and smaller. The initial value, a0,
and its decrease rate α are the only adjustable param-

eters of the proposed procedure.

To summarize, the meta-code of the proposed pro-

cedure is given in Algorithm 1. The next section illus-
trates these different steps on a test case.

Algorithm 1: Algorithm consisting of two parts:

Initialization, and iterative correction. η is a small

parameter controlling convergence.

Input : Projection π, Initial a← a0
Initialization

σ ←W⊤ψ(Dπ) /* Eq. 15 */

foreach direction j ← 1 to M do

σ ← σ +Br /* Eq. 17 */

Result: f ← H(σ)

Iterative correction

while ‖r‖ > η do

a← 1 + α(a− 1) /* Eq. 20 */

σ ← ψ (Gaf)
for i← 1 to 2 do

foreach direction j ← 1 to M do

σ ← σ +Br /* Eq. 17 */

f ← H(σ)

Output: Reconstructed image f

4 Illustration of the procedure

All the basic ingredients of the algorithm have been de-

fined. The resulting procedure is now illustrated on a

simple example shown in Figure 2a with a rather large
definition image (1 Mpixel) as compared to typical def-

initions from the literature. It consists of simple shape

domains, with however rather sharp angles, and non

convex domains. In the following the image is recon-
structed from 7 projections (to be compared with the

1600 projections that would be required for a classi-

cal reconstruction). This small number of projections

amounts to 0.45 % of the classical requirement.

The initialization part consists of:

i) computing the σ-image from the backprojection of

ψ-transformed probabilities,

Table 1 Convergence rate of the procedure for the example
of Figure 2.

Iteration Relative Pix. Error Relative Proj. Error
(%) (%)

(init.) 0.81 1.09
1 0.23 0.42
2 0.04 0.11
3 0.001 0.004
4 0 0

ii) applying a correction step.

The resulting images after each of these two steps

are shown in Figures 2b and c respectively. The ψ back-
projection produces a σ image that captures the overall

shape of the domains in the image, but without access

to small details. It should be remembered that the σ

map is convoluted by a discrete kernel, and no attempt

is made here to perform a deconvolution. As expected
all lines that do not cross the 1-valued domain have a

very small σ-value. After a single correction step, the σ

values have been adjusted so that the natural binariza-

tion of the corrected image matches exactly the known
projection along the last visited direction. The result-

ing image is shown in Figure 2c. The latter is already

quite close to the original reference image. The dif-

ference between the two (fraction of pixels having the

wrong f -value) amounts to 0.82 %.

The remainder of the procedure consists of repeat-

ing the correction step. The only difference between the

successive steps is the fact that the width of the Gaus-
sian filter progressively decreases to 1. In the present

example, a0 = 3, and α = 0.75.

Evaluation of the projection error ‖Wf −π‖ is per-
formed, and for the artificial cases considered in this

study, a pixel error is also computed from the differ-

ence ‖fest − forig‖. If the error is less than a threshold

value (or a maximum number of iterations is reached)

the code terminates, otherwise a new correction step is
performed starting from the obtained f .

In the present case, only four correction steps are

needed to reach an error free solution. Table 1 reports
the relative pixel and projection errors as a function of

iteration number.

The program was written in Matlabr, and run on a
single processor PC (2.3-GHz Core i5 processor) with-

out fancy optimization. Computation time for this 1-

Mpixel image is 8.4 s.



Efficient binary tomographic reconstruction 9

y

x

200 400 600 800 1000

200

400

600

800

1000

(a) Reference

y

x

200 400 600 800 1000

200

400

600

800

1000

(b) ψ backprojection

y

x

200 400 600 800 1000

200

400

600

800

1000

(c) 1st Correction

Fig. 2 Illustration of the proposed initialization step. (a) Reference 1-Mpixel image. (b) First raw backprojection, ψ−1(σ)
based on 7 projections. (c) After a single correction step. The reconstructed image are shown as a continuous gray (or color)
values from black (p = 0) to white (p = 1). Note that the pixel error after binarization of this initialization step is only 0.82 %.

4.1 Relation with Batenburg’s algorithm

As earlier mentioned, Batenburg proposed a rather ef-
ficient procedure for binary reconstruction [3,4]. Ac-

tually the spirit of the present approach shares some

similarities with that work. After initialization (per-

formed using a standard FBP algorithm), the proposed
approach by Batenburg is to find successive binary im-

ages that fulfill exactly the projection constraint along

two directions, and to visit successively different pairs of

projection direction. In addition to fulfilling two projec-

tion constraints, the estimate f (n) is chosen to maximize
its projection along a predefined direction g, through

the scalar product f (n)⊤g. Batenburg’s clever observa-

tion was to note that the satisfaction of the two projec-

tions could be rewritten as a max flow/min cut graph
optimization problem. The maximization of the pro-

jection along g was then simply obtained as a simplex-

type problem. The resulting procedure was shown to be

more efficient than all available alternative algorithms.

In fact the present scheme can be seen in a similar spirit
with however some significant differences. First, the

proposed initialization leads to a predetermination of

the image much closer to the sought solution, a very

helpful property for convergence. Second, the proposed

correction step considers a single direction. The prob-
lem is still of simplex type, but so simple that the so-

lution is nothing but the sorting scheme that was pro-

posed. This results in a much simpler code. Note that

Batenburg and Sijbers [5] also considered a single pro-
jection constraint at a time, later on, but this variant

was found to be much less efficient than the original

2-projection constraint.

5 Multiscale acceleration

As presented so far, the algorithm has been tested in

a number of different cases, always successfully, i.e.,



10 Stéphane Roux et al.

y

x

200 400 600 800 1000

200

400

600

800

1000

(a) Iteration # 1

y

x

200 400 600 800 1000

200

400

600

800

1000

(b) Iteration # 2

y

x

200 400 600 800 1000

200

400

600

800

1000

(c) Iteration # 3

Fig. 3 Different stages of the reconstruction after (a) 1, (b) 2 and (c) 3 iterations. The last image differs from the original
model by only 10 pixels (Figure 2(a)).

down to a zero remaining pixel error (provided enough

projections are considered). However, it is possible to
speed up the convergence process using a multiscale

variant. The image f to be reconstructed can be coarse-

grained by gathering 2×2 pixels into super-pixels whose

value is determined by a majority rule (and a random
choice if the sum of pixels is equal to 2). The resulting

problem is simpler in the sense that the projection in-

formation π is reduced by a factor of 2, but the number

of pixels to be determined is reduced by a factor of 4.

Hence the ratio of projection information and the un-
knowns is doubled. The solution to this reduced-scale

problem can be re-expanded giving to each constituent

pixel the same value as that of the mother super-pixel.

This image can be used as the initialization of the re-
laxation step. Such a coarsening operation defines one

level of a pyramidal construction that can be repeated

up to a chosen maximum level nlevel (e.g., nlevel = 5 re-

duces the number of unknown sites by a factor of 1024).

Such a multiscale strategy reduces drastically the re-

quired number of relaxation steps and thus cuts down

the computation time by a significant amount (typical
gains of a factor 2 or more are obtained).

The example shown in Figure 2 requires too few it-
erations for convergence to highlight the benefit of the

multiscale approach. A more complicated texture bina-

rized from an actual tomographic reconstructed image,

of size 1025×1025 pixels is chosen as a test case (it will
be analyzed below, Figure 4). Because of the complex

microstructure, a minimum number of 15 projections

is needed to allow for an exact reconstruction. This

should be compared with the 1500 projections needed

for the original reconstruction. Without multiscale ac-
celeration, 31 iterations are needed, resulting in a com-

putation cost of 189 s. With 5 levels of the multiscale

procedure, the same exact reconstruction is reached in

28 s i.e., about 7 times faster. The number of itera-
tions from level 4 to 0 are successively 3, 8, 6, 3 and 3.

However due to the rapid decrease of computation time

with the level number, most of the computation time
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Fig. 4 Binarized pattern reproduced from an actual tomog-
raphy. No less than 15 projections are needed to complete an
error-free reconstruction using a single scale procedure. Pa-
rameter values are a0 = 4, α = 0.87. (Original tomographic
data were kindly provided by E. Gouillart and C. Zang [41].)

(more than half of it) is spent at level 0. The residual

relative pixel error as a function of iteration number is
shown in Figure 5. It may also be noted that using the

multiscale procedure, a perfect reconstruction could be

obtained for a smaller number of projections (i.e., 13).

6 Test Cases

Up to now, only two examples have been shown for il-
lustration purposes. A variety of other test cases have

been tried with smooth or angular shapes, equal sized

domains or having a wide distribution of characteristic

scales. In all the cases where the number of projec-

tions is sufficient, a successful (i.e., error-free) recon-
struction was achieved, tuning parameters such as a0

or α in a small range if necessary. However, depending

on the complexity of the patterns, the minimum num-

ber of projections differs. When the number of pro-
jections is too small, the error saturates at a plateau

value. The number of projections may be roughly re-

lated to the number of interfaces between 0 and 1 pix-

els, even though high curvatures also play a significant

role. It has been shown mathematically that convex ob-
jects only require at most seven projections to be recon-

structed exactly, and that this number can be reduced

to four for specific directions [21]. Conversely, a com-

plex pattern taken from a real tomography as shown in
Figure 4 required no less than 15 (for monoscale) or 13

(for multiscale) projections for a perfect reconstruction

(for a 1-Mpixel image). An a priori evaluation of the

0 10 20 30
10

−4

10
−3

10
−2

10
−1

Iteration

R
el

a
ti
ve

p
ix

el
er

ro
r

(a) Monoscale

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Iteration

R
el

a
ti
ve

p
ix

el
er

ro
r

4

3
2

1
0

(b) Multiscale

Fig. 5 Semi-log plot of the relative pixel error versus iteration
number using the monoscale approach (a) reaching an error
free solution at the 31-st iteration. The multiscale case is
shown in (b). At the completion of a level, the error naturally
increases when the coarse image is used as an initialization
for the finer one. Arrows indicate the start of a given level.

“complexity” of an image, and the minimum number

of projections needed to reconstruct it, is an interesting
and important question that deserves further studies.

In order to illustrate the performances of the pro-

posed algorithm, we reproduced a series of tests initially

proposed by Batenburg [3]. In the latter reference, a de-

tailed comparison of the algorithm proposed by the au-

thor with two of the most powerful approaches proposed
so far. More precisely, the first one is the extension pro-

posed by Weber et al. [38], of the linear programming

algorithm of Fishburn et al. [20], and the second one is

a greedy algorithm without any smoothness prior [25].

All those benchmark tests are carried out on

257 × 257-“pixel” lattices, and for each type of pattern,
the numbers indicated in the tables correspond to an

average over 200 random samples. Although we tried to

remain as close as possible from the initially proposed
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references, some adjustments were necessary. All the

objects present in the binary image are to fit in a cir-

cle inscribed in the square. In doing so, the number of

objects is preserved rather than their density (so that

if the number of 0-1 interfaces is a crucial parameter,
complexity is not altered). For a dilute collection of

objects such interface sites remain the same. A second

difference worth mentioning is the fact that the pro-

jections used in the present analysis have a fixed size
equal to the width of a pixel in the binary image. In

contrast, in Ref. [3], all distinct point-wise projections

were distinguished, so that the actual amount of infor-

mation (i.e., number of line-sums) may be significantly

larger than the one used in the present case (when the
angle tangent does not coincide with a fraction of low

integers).

6.1 Polygon test cases

The first test case was constructed from the union of n

convex polygons. Each polygon is constructed from a

random set of p points within the largest inscribed cir-

cle, from which a convex hull is considered. The two pa-
rameters (n, p) thus characterize the image. Three such

cases where considered, ranging from a single n = 1

convex polygon (with a large number of points p = 25

although fewer actually are vertices of the convex en-

velope), to a large number n = 25 of such polygons
constructed from few points (p = 4). The intermediate

case consists of n = 5 polygons built from p = 8 points.

The first case is an elementary problem, the two subse-

quent examples exhibit details and non convexity that
are much more difficult to capture. Figure 6 shows an

example of the three choices of (n, p) values.

Those examples were then analyzed with a variable

number of projections M . For each of them, the pro-

portion of perfect reconstructions (out of the 200 trials)
was recorded together with the projection error (i.e.,

the sum of absolute value of differences between orig-

inal data and reconstructed projections, averaged over

all 200 samples), and the pixel error (i.e., the num-
ber of pixel differing in the binary image and its re-

construction, averaged over all 200 samples). Finally

the computation time is recorded. Note that the same

set of parameters was chosen to complete the analy-

sis, namely, three coarse-graining steps were considered,
and the total number of iterations per scale was limited

to a maximum value of 20 (or less if perfect reconstruc-

tion is reached earlier). Data extracted from Ref. [3] are

reported in Table 2, whereas the corresponding result
for the present algorithm is given in Table 3.

Although the geometry of this test case is simple,

the very small number of projection directions makes

the problem difficult. In particular, even without pro-

jection error, the image may not be reconstructed per-

fectly, (see e.g., n = 1, p = 25, M = 4 in Table 3).

The proportion of perfect reconstructions is compara-

ble in Ref. [3] and with the proposed algorithm, apart
for the n = 5, p = 8 andM = 3 case, where the present

code has about half unperfect reconstructions. In most

other cases the differences are not significant, as the

errors are not weighted in this criterion. When consid-
ering the mean projection error, it is observed that it

never exceeds 2 with the present approach. The mean

pixel error is 21 wrong pixels in the worst case. It is to

be stressed that this represents only an extremely small

fraction, 3 × 10−4, of pixels. Thus in terms of errors,
the proposed approach performs generally better than

Ref. [3]. Finally, in terms of computation time, we ob-

serve a reduction in the computation time by a factor

of order 10 to 20. Let us stress that this latter compari-
son is fragile, as it amounts to compare codes written in

different languages, and run on different computers. In

the present case however, the code was not optimized,

and was run on a standard laptop computer.

6.2 Ellipse test case

The second series of tests consists of the union of n

random ellipses whose principal axes are picked at ran-

dom in the interval [rmin, rmax]. The principal axis

of the ellipse is also chosen randomly with a uni-

form distribution over [0, π] (i.e., isotropic distribu-
tion). Hence a test case is characterized by three pa-

rameters (n, rmin, rmax). Figure 7 shows an example of

the five cases considered in the following series. Here

again, the number M of projection directions was var-
ied depending on the complexity of the case. The image

size was here again 257 × 257 “pixels.”

As in the previous case, 200 samples were generated
for each set of parameters, and averages over these sam-

ples are reported in Tables 4 (reproduced from Ref. [3])

and 5 for the proposed algorithm. Let us note that we

reproduce here only global numbers and did not con-

sider statistics over “successful” reconstructions.

The ellipse test cases are more demanding than the

polygon ones, and require a larger number of projec-

tions. The chosen number of projections is clearly for
the smaller values at the lower limit of the minimum

value for a decent reconstruction success rate. Only

the first series with fifteen ellipses and four projections

can be tackled safely with 100-% success for 5 and 6
projections in Table 4 from Ref. [3]. The last series

(200 ellipses) can hardly be considered as satisfactory

with at best 13-% success rate. In contrast, we observe
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Fig. 6 Polygon test cases for the three sets of parameters (n, p) used.

Table 2 Polygon test cases reproduced from Ref. [3].

n p M # perfect (%) Proj. error Pix. error Time (s)
1 25 3 93.5 0.5 24.0 13

4 100.0 0.0 0.0 11

5 8 3 29.5 32.0 538.0 14
4 100.0 0.0 0.0 11
5 100.0 0.0 0.0 10

12 4 4 95.0 12.0 62.0 18
5 100.0 0.0 0.0 18
6 100.0 0.0 0.0 14

that, with the present approach, all series reach a suc-

cess rate above 98.5-% provided enough projections are

taken into account. The projection and pixel errors are

systematically much smaller with the present approach,
even when the overall success rate is low. Finally the

computation time is reduced by a factor from 5 to 10

from that reported by Batenburg [3].

For all the test cases, the proposed algorithm is

shown to perform better than Batenburg’s procedure

both in terms of lower residual error (projection and

reconstructed image) and lower computation time.

7 Complexity

Considering the previous results, let us try to formulate

a measurement of “complexity” relevant for our algo-

rithm. As mentioned in the introduction, Donoho and
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Table 3 Polygon test cases with the present method (number of levels = 3, a0 = 4, α = 0.87).

n p M # perfect (%) Proj. error Pix. error Time (s)
1 25 3 92.5 1.0 3.0 0.36

4 99.0 0.0 0.6 0.45

5 8 3 63.5 1.0 1.7 0.50
4 99.0 1.0 5.7 0.43
5 100.0 0.0 0.0 0.43

12 4 4 90.0 2.0 21.0 1.92
5 97.5 1.0 1.3 1.31
6 100.0 0.0 0.0 1.04

Table 4 Ellipse test case reproduced from Ref. [3].

n rmin rmax M # perfect (%) Proj. error Pixel error Time(s)
15 20 40 4 38.5 170.0 3257.0 36

5 100.0 0.0 0.0 19
6 100.0 0.0 0.0 13

50 5 35 5 4.5 737.0 7597.0 57
6 56.5 577.0 2779.0 43
7 61.0 5.9 1.2 22
8 79.5 7.5 1.3 20

50 5 25 6 17.5 1202.0 6510.0 54
7 54.5 521.0 1289.0 37
8 81.0 6.3 1.1 21
9 65.0 13.2 1.9 21

100 5 25 7 5.5 1589.0 4455.0 61
8 31.5 270.0 457.0 40
9 36.5 31.0 4.5 31

200 5 10 12 2.5 6699.0 6157.0 117
14 13.5 107.0 9.0 68
16 13.0 131.0 9.5 48

Table 5 Ellipse test cases with the proposed algorithm (number of levels = 3, a0 = 4, α = 0.87).

n rmin rmax M # perfect (%) Proj. error Pixel error Time(s)
15 20 40 4 83.5 2. 41.2 2.0

5 99.5 0. 0.005 1.4
6 100.0 0. 0. 1.3

50 5 35 5 73.0 19. 497. 6.3
6 97.5 2. 15. 5.1
7 100.0 0. 0. 4.4
8 99.5 0. 0.4 4.4

50 5 25 6 46.5 43. 1665. 8.6
7 97.0 2. 45. 5.6
8 99.5 1. 15. 5.3
9 100.0 0. 0. 4.6

100 5 25 7 90.5 5. 79. 8.3
8 99.0 1. 10. 7.9
9 99.5 0. 0.02 8.1

200 5 10 12 22.5 152. 2472. 19.8
14 98.5 3. 5. 14.1
16 98.5 3. 5. 14.8
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(e) n = 200, rmin = 5, rmax = 10

Fig. 7 An example for the ellipse test cases for the five sets of parameters (n, rmin, rmax).

Tanner [17,18] have derived an appropriate measure-

ment of complexity in the case where no spatial corre-

lation are present in the image to be reconstructed. In
this case, complexity has to be a function of the frac-

tion of 1-pixels, p, (or 0-pixels whichever is the minority

value). Moreover, a critical value pc given in Eq. 1 al-

lows one to distinguish solvable problems where p < pc
from those where information is lacking, p > pc. Thus
χA = p/pc = 2pδ log(δ) can be seen as a measure of
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complexity for Type A problems where δ = N/M is

the undersampling ratio.

No such result has been derived for Type B prob-

lems, where boundaries play somehow the role played

by minority pixels in Type A. If the fraction of bound-

ary “bonds” (i.e., pairs of neighbouring pixels having a
different value) pb is introduced, it is natural to consider

χB = pbδ log(δ) (21)

as a candidate for quantifying the image complexity for

Type B. Figure 8 is an attempt to quantify the final

pixel error as a function of the average χB measured
from each image series. On this graph, all the test

cases reported earlier (polygons and ellipses) have been

collected, as well as the AlCu tomographic image. This

plot seems to indicate that small values of χB ≤ 3.5 can
be solved exactly, while values above 4 may be out of

reach of the present algorithm. Note however that there

is no formal justification for this choice concerning the

measure of complexity.
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Fig. 8 Relative pixel error as a function of the proposed mea-
sure of complexity, χB.

8 Robustness with respect to noise

To test the robustness of the proposed methodology

with respect to noise, only the case of the microstruc-

ture shown in Figure 4 has been chosen as representa-
tive of a challenging case, in particular considering its

size (i.e., 1024×1024 pixels), and its complex geome-

try. The physics of noise generation in the projections

reflects a number of different phenomena. The ambi-
tion is not to reproduce a specific noise, but rather to

test the robustness of the algorithm. Thus it is chosen

to add a Gaussian white noise to the projection data.

The noise is characterized by its Signal to Noise Ratio,

SNR, such that

SNR = 20 log10

( 〈π〉
η

)

(22)

where η is the standard deviation of the noise.

The number of projections is M = 15, and a stan-

dard set of parameters was chosen to deal for all SNRs.

The number of scales was chosen to be 4, with 30 itera-
tions per scale. The regularization length scale was cho-

sen to be larger than in the preceding examples a0 = 10,

and hence with a faster decay rate α = 0.8. At the

end of the prescribed number of iterations, the rela-
tive pixel and projection errors are computed. Relative

means here that the pixel error is normalized by the to-

tal number of pixels in the reconstructed disk, and the

projection error is normalized by the mean projection

data, 〈π〉.
Figure 9 shows the change of both errors as func-

tions of the SNR. It is observed that both errors have a
similar evolution, and although the process is intrinsi-

cally susceptible to noise (because of the low level of in-

formation provided), convergence to decent reconstruc-

tion is still achieved. For a 1% level of fluctuations in
the projection data (SNR= 40), the relative pixel error

is about 3%. Let us emphasize the fact that spatial

regularization is essentially active in the first few itera-

tions (when a is significantly larger than 1) and hence

no filter is applied in the last stages apart from the
projection constraints that are corrupted by noise. A

post-processing of the data to remove isolated pixels for

instance (or involving a more elaborate filtering) is able

to reduce significantly the resulting error. This section
is included to document the robustness of the proposed

procedure, but the latter has not been designed to be

especially immune to noise, but rather to allow for an

efficient reconstruction for a low number of projections

M .
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Fig. 9 Evolution of pixel or projection errors at the end of the
reconstruction as a function of the noise signal ratio, SNR.
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9 Conclusion

A novel binary reconstruction algorithm has been in-

troduced. It is based on a nonlinear transformation of

the probability for a site to be 1-valued. The proposed

initialization step is a mere backprojection applied to
a non-linear transformed projection data, followed by

a correction step. A correction scheme to meet the

projection constraints and involving a minimal regu-

larization procedure (binarization and convolution by
a small width Gaussian kernel) allows error-free binary

reconstructions to be achieved for a variety of examples

of large image sizes (examples of 1-Mpixel images have

been shown). A multiscale version speeds up conver-

gence. A detailed comparison with a series of test cases
provided in Ref. [3] shows that the proposed algorithm

achieves very good performances (superior success rate

and lower computation time).

Let us emphasize that the number of required pro-

jection data can be as low as 1 % of the required num-

ber for standard reconstructions. This has direct con-

sequences in terms of X-ray dose reduction for medical

applications (provided the severe constraint (or approx-
imation) or looking for a binary image can be accept-

able), or for fast-imaging where acquisition time is lim-

ited.

An appealing route is to provide an efficient com-

puter implementation of the proposed algorithm. Up

to now a basic Matlabr code has been used on a sim-

ple processor PC. GPU implementation is expected to

offer much higher performances.

Finally, extensions of such approaches to discrete

(rather than binary) images is also very challenging as

it would open new perspectives for applications, going
beyond the very restrictive frame of binary images. In

a similar spirit, the application of the proposed binary

algorithm to images that are not binary is an interesting

question to be addressed.
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Ferrié, W. Ludwig, E. Maire, L. Salvo, Advances in syn-
chrotron radiation microtomography, Scripta Mat., 55,
41–46, (2006)

3. K.J. Batenburg, A network flow algorithm for recon-
structing binary images from discrete X-rays, J. Math.
Imaging Vis. 27, 175–191, (2007)

4. K.J. Batenburg, A network flow algorithm for recon-
structing binary images from continuous X-rays, J. Math.
Imaging Vis. 30, 231–248, (2008)

5. K.J. Batenburg, J. Sijbers, Generic iterative subset algo-
rithms for discrete tomography, Discrete Applied Math-
ematics, 157, 438–451, (2009)

6. S. Basu, Y. Bresler, O(N2 log
2
N) Filtered backpro-

jection reconstruction algorithm for tomography, IEEE
Trans. Image Proc., 9, 1760–1773, (2000)

7. S. Basu, Y. Bresler, Error analysis and performance op-
timization of fast hierarchical backprojection algorithms,
IEEE Trans. Image Proc., 10, 1103–1117, (2001)

8. C.L. Byrne, Iterative image reconstruction algorithms
based on cross-entropy minimization, IEEE Trans. Im-
age Processing, 2, 96–103, (1993)

9. C.L. Byrne, Erratum and addendum to ’Iterative image
reconstruction algorithms based on cross-entropy mini-
mization’, IEEE Trans. Image Processing, 4, 226–227,
(1995)

10. C.L. Byrne, Iterative algorithms for deblurring and
deconvolution with constraints, Inverse Problems, 14,
1455–1467 (1998)

11. C.L. Byrne, Block-iterative methods for image recon-
struction from projections, IEEE Trans. Image Process-
ing, 5, 792–794, (1996)

12. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty
principles: exact signal reconstruction from highly in-
complete frequency information, IEEE Trans. Inform.
Theory, 52, 489–509, (2006)

13. B.M. Carvalho, G.T. Herman, S. Matej, C. Salzberg,
E. Vardi, Binary tomography for triplane cardiography,
in IPMI’99, A. Kuba et al. (Eds.), LNCS 1613, 29–41,
(Springer-Verlag, Berlin), (1999)

14. Y. Censor, Binary steering in discrete tomography recon-
struction with sequential and simultaneous iterative al-
gorithms, Linear Algebra and its Applications, 339, 111–
124, (2001)

15. J.N. Darroch, D. Ratcliff, “Generalized iterative scaling
for log linear models”, Annals Math. Statist., 43, 1470–
1480, (1972)

16. D.L. Donoho, “Neighborly polytopes and sparse solution
of underdetermined linear equations”, Technical Report,
Department of Statistics, Stanford University, (2004)

17. D.L. Donoho, J. Tanner, “Counting the faces of
randomly-projected hypercubes and orthants with appli-
cations”, Discrete Comput. Geom., 43, 522–541, (2010)

18. D.L. Donoho, J. Tanner, “Precise Undersampling Theo-
rems”, Proceedings of the IEEE, 98, 913–924, (2010)

19. G.E. Elsinga, F. Scarano, B. Wieneke, B.W. van Oud-
heusden, Tomographic particle image velocimetry, Exp
Fluids 41, 933–947, (2006)

20. P. Fishburn, P. Schwander, L. Shepp, R. Vanderbei, The
discrete Radon transform and its approximate inversion
via linear programming, Discrete Appl. Math., 75, 39–61,
(1997)

21. R.J. Gardner, P. Gritzmann, Discrete tomography: de-
termination of finite sets by X-rays, Trans. Amer. Math.
Soc., 349, 2271–95, (1997)
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