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Abstract

We address the problem of Bayesian variable selection for high-dimensional lin-
ear regression. We consider a generative model that uses a spike-and-slab-like prior
distribution obtained by multiplying a deterministic binary vector, which traduces
the sparsity of the problem, with a random Gaussian parameter vector. The origi-
nality of the work is to consider inference through relaxing the model and using a
type-II log-likelihood maximization based on an EM algorithm. Model selection is
performed afterwards relying on Occam’s razor and on a path of models found by the
EM algorithm. Numerical comparisons between our method, called spinyReg, and
state-of-the-art high-dimensional variable selection algorithms (such as lasso, adap-
tive lasso, stability selection or spike-and-slab procedures) are reported. Competitive
variable selection results and predictive performances are achieved on both simulated
and real benchmark data sets. An original regression data set involving the predic-
tion of the number of visitors of the Orsay museum in Paris using bike-sharing system
data is also introduced, illustrating the efficiency of the proposed approach. An R
package implementing the spinyReg method is currently under development and is
available at https://r-forge.r-project.org/projects/spinyreg.
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1 Introduction

Over the past decades, parsimony has emerged as a very natural way to deal with high-

dimensional data spaces (Candès, 2014). In the context of linear regression, finding a

parsimonious parameter vector can both prevent overfitting, make an ill-posed problem

(such as a “large p, small n” situation) tractable, and allow to interpret easily the data by

finding which predictors are relevant. The problem of finding such predictors is referred

to as sparse regression or variable selection and has mainly been considered either by

likelihood penalization of the data, or by using Bayesian models.

1.1 Penalized likelihood

The most natural sparsity-inducing penalty, the `0-pseudonorm, is linked to the Akaike

information criterion (Akaike, 1973) and to optimal subset selection. As proven by Natara-

jan (1995), it unfortunately leads to an NP-hard optimization problem that is intractable

as soon as the number of predictors exceeds a few dozens. To overcome this restriction,

convex relaxation of the `0-pseudonorm, that is, `1-regularization, have become a basic tool

in modern statistics. The most spread formulation of the `1-penalized linear regression was

introduced by Tibshirani (1996) as the “least absolute shrinkage and selection operator”

(lasso) and by Chen et al. (1998) as “basis pursuit” in a signal processing framework. Sev-

eral algorithms allow fast computations of the lasso, even when the number of predictors

largely exceeds the number of observations. Among them is the popular least angle angle

regression algorithm (LARS) (Efron et al., 2004). The Dantzig selector, introduced by

Candès and Tao (2007) as a refined `1-regularization problem, gives good variable selec-

tion performances while simply involving the resolution of a linear program. However, as

proved by Zhao and Yu (2006), the crude lasso is not model-consistent unless some cum-

bersome conditions on the design matrix. Moreover, Zou and Hastie (2005) showed that

it can be sensitive to highly correlated predictors and Pötscher and Leeb (2009) warned

that its distributional properties can be surprisingly complex. A large number of proposals

have been made to enhance the lasso as a selection operator. The adaptive lasso of Zou

(2006) is a weighted version enjoying nice oracle properties that works extremely well in

practice. “Bolasso”, introduced by Bach (2008), achieves model consistency by combining
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the lasso with a bootstrap step. In a similar fashion, the stability selection of Meinshausen

and Bühlmann (2010) applies many lasso procedures with randomized weights on subsam-

ples of the original data. This technique leads to an effective model selection, even in the

presence of correlated predictors.

1.2 Bayesian modelling

Bayesian models have also been widely studied in a variable selection context (see O’Hara

and Sillanpää (2009) for a recent review). However, most Bayesian techniques have diffi-

culties in treating the case where the number of observations is smaller than the number

of predictors (the so called “large p, small n” situation), mostly because of the exponential

growth of the number of possible models (p predictors lead to 2p models). Another draw-

back is the fact that the most classical linear regression prior, Zellner’s g-prior (for example

reviewed and improved by Liang et al. (2008)), involves to invert the Fisher information

matrix which is impossible in a “large p, small n” situation. Even though some regulariza-

tion attempts of the g-prior have been made by Baragatti and Pommeret (2012), the most

efficient high-dimensional Bayesian techniques essentially rest on spike-and-slab procedures.

Spike-and-slab models, first introduced by Mitchell and Beauchamp (1988), use mixtures

of two distributions as priors for the regression coefficients: a thin one, corresponding to

irrelevant predictors (the spike, typically a Dirac law or a Gaussian distribution with small

variance) and a thick one, corresponding to the relevant variables (the slab, typically a uni-

form or Gaussian distribution of large variance). Notably, the refined spike-and-slab model

of Ishwaran and Rao (2005a) or the PAC-Bayesian approach of Rigollet and Tsybakov

(2011) have been particularly efficient even in very high-dimensional settings. Markov

chain Monte Carlo (MCMC) methods have been usually chosen to select models with the

highest posterior distributions. MCMC techniques, reviewed for example by Robert and

Casella (2004), have an important computational cost and may suffer, as underlined by

O’Hara and Sillanpää (2009), from poor mixing properties in the case of spike-and-slab-

like priors. A few deterministic methods have also recently been proposed to tackle this

issue. The expectation propagation (EP) algorithm was applied to perform approximate

inference for group feature selection with a spike-and-slab model by Hernández-Lobato
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et al. (2013). The expectation maximization (EM) algorithm was used by Ročková and

George (2013) in the case of a hierarchical Bayesian model or by Yengo et al. (2014a) in

the case of a multi-slab empirical Bayes framework.

1.3 Our approach

As an alternative, our approach uses spike-and-slab-like priors induced by a binary vector

which segregates the relevant from the irrelevant predictors. Such vectors, introduced

by George and McCulloch (1993) have been widely used in the Bayesian literature, but

have always been considered as random parameters. In most Bayesian contexts like the

(hierarchical) ones of George and McCulloch (1993) and Ishwaran and Rao (2005b) or

the (empirical Bayes) one of George and Foster (2000), such a binary vector would be

classically endowed with a product of Bernoulli prior distributions. In a PAC-Bayesian

perspective, more complex prior distributions used for example by Alquier and Lounici

(2011) or Rigollet and Tsybakov (2011) led to precise oracle inequalities and competitive

predictive performances. In our work, the originality is to consider a deterministic binary

vector, and to relax it in order to rely on an EM algorithm. This relaxed procedure allows

us to find a family of p models, ordered by sparsity. Model selection is performed afterwards

by maximizing the marginal likelihood over this family of models. This way to treat some

parameters in a Bayesian way, and others in a frequentist one, is particularly motivated by

the unifying multi-level inference approach advocated by Guyon et al. (2010) and by recent

advances in Bayesian theory on the merging partly frequentist empirical Bayes methods and

classical hierarchical Bayesian approaches (Scott and Berger, 2010; Petrone et al., 2014).

The remainder of this document is organized as follows. In Section 2, a sparse genera-

tive model is defined and the general properties of its posterior distribution are exhibited.

Section 3 shows how a relaxation of this model is considered in order to perform infer-

ence through an EM algorithm. Section 4 explains the model selection procedure of our

approach and gives details about Occam’s razor automatic selection as well as a link with

classical frequentist penalized estimators. In Section 5, a new algorithm, called “spinyReg”,

for variable selection in high-dimensional regression is introduced. Section 6 presents a

benchmark comparison between spinyReg and classical frequentist and Bayesian variable
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selection procedures, real and simulated data sets are considered. In Section 7, an original

high-dimensional regression database, called “OrsayVelib”, is introduced and is used to

demonstrate the efficiency of our approach.

1.4 Notation

Vectors and matrices are denoted by bold cases. Given a vector x ∈ Rp, we define its

Euclidean norm as ||x||2 = (
∑p

i=1 |xi|2)
1/2

, his support as Supp(x) = {i ∈ {1, ..., p}, xi 6= 0},

and its `0-pseudonorm as ||x||0 = #Supp(x), where xi denotes the i-th coordinate of x.

We write Mn,p the set of real matrices of dimension n × p. Given a vector x ∈ Rn, we

denote diag(x) the matrix of Mn,n with diagonal x. For two matrices A and B of Mn,p,

we define their Hadamard product as A�B = (aijbij)i≤n,j≤p where aij and bij respectively

denote the (i, j)-th coordinate of A and B. The identity matrix of dimension n is denoted

by In. Given a binary vector z ∈ {0, 1}p, we denote z̄ the binary vector of {0, 1}p whose

support is exactly the complement of Supp(z). Given a binary vector z ∈ {0, 1}p and

a matrix A ∈ Mn,p, we denote Az the extracted matrix of A where only the columns

corresponding to the nonzero indexes of z have been kept. Given a mean vector µ ∈ Rn

and a positive definite covariance matrix S ∈ Mn, the density of the normal distribution

is denoted N ( · ;µ,S). Given a real number y, δy denotes the Dirac function with mass at

y.

2 A sparse generative model

This section introduces a sparse generative model based on a spike-and-slab-like prior, and

describes the general properties of its posterior distribution. Links with related models are

also discussed.

2.1 The model

Let us consider the following regression model
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Figure 1: Graphical representation of the sparse generative model.

Y = Xβ + ε

β = z�w,
(1)

where Y ∈ Rn is the set of n observed responses, X ∈ Mn,p(R) is the design matrix

with p input variables. The vector ε is a noise term with p(ε|γ) = N (ε; 0, In/γ). A

prior distribution p(w|α) = N (w; 0, Ip/α) with an isotropic covariance matrix is further

assumed. Moreover, we denote by z ∈ {0, 1}p a binary deterministic parameter vector,

whose nonzero entries correspond to the active variables of the regression model. It is

worth noticing that such modeling induces a spike-and-slab-like prior distribution for β:

p(β|z, α) =

p∏
j=1

p(βj|zj, α)

=

p∏
j=1

δ0(βj)
1−zjN (βj; 0, 1/α)zj .

(2)

However, we emphasize that, contrary to standard spike-and-slab models (Mitchell and

Beauchamp, 1988) which assume a Bernoulli prior distribution over z, we see z here as

a deterministic parameter to be inferred from the data. As we shall see in Section 3,

this allows us to work with a marginal log-likelihood which involves an Occam’s razor

term, allowing model selection afterwards. In the same spirit, we do not put any prior

distribution on γ nor α. Finally, the graphical model is presented in Figure 1 and we

denote by q =
∑p

j=1 zj the number of relevant variables and Z = diag(z).
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2.2 Posterior distribution

From now on, to simplify notations, the dependency on X in conditional distributions will

be omitted.

Proposition 1. The posterior distribution of w given the data is given by

p(w|Y,Z, α, γ) = N (w; m,S), (3)

where S = (γZXTXZ + αIp)
−1 and m = γSZXTY.

Proof. Using Bayes’ rule, we have

log p(w|Y,Z, α, γ) = log p(Y|w,Z, γ) + log p(w|α) +K1

= −γ
2
‖Y −XZw‖22 −

α

2
‖w‖22 +K2

= −γ
2

wTZXTXZw + γwTZXTY − α

2
‖w‖22 +K3

= −1

2
wTS−1w + wTS−1m +K3.

where K1, K2 and K3 are quantities that do not depend on w. Therefore p(w|Y,Z, α, γ) =

N (w,m,S).

The vector m is the maximum a posteriori (MAP) estimate of β. Next proposition

assures that it recovers the support of the parameter vector. Moreover, its nonzero coeffi-

cients correspond to ridge estimates with regularization parameter α/γ of the model where

only the q predictors corresponding to the support of z have been kept.

Proposition 2. We have Supp(m) = Supp(z) almost surely and

mz = (XT
z Xz +

α

γ
Ip)
−1XT

z Y. (4)

Proof. Using (3), one can write

S−1m = γZXTXZm + αm = γZXTY,

which leads, by separating the lines corresponding to zero and nonzero coefficients of z, to

mz̄ = 0 and to (4). Notice that mz̄ = 0 implies Supp(m) ⊂ Supp(z).
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The vector mz therefore corresponds to the ridge estimator of the model where only

the q predictors corresponding to the support of z have been kept. As a particular instance

of a strictly convex bridge estimator, the coefficients of mz are almost surely nonzero (Fu,

1998, Theorem 1), therefore Supp(m) ⊂ Supp(z) implies that m and z have almost surely

same support.

2.3 Links with spike-and-slab models

Let us briefly link the proposed model to typical spike-and-slab models. The corresponding

frameworks (Mitchell and Beauchamp, 1988; Hernández-Lobato et al., 2013) would add a

hierarchical layer above the model of Figure 1 by using a multivariate Bernoulli prior of

the form

p(z) =

p∏
j=1

τ
zj
j (1− τj)1−zj ,

where τ = (τ1, ..., τp) ∈ [0, 1]p. However, as emphasized by Scott and Berger (2010), the

estimation of τ using empirical Bayes techniques can be extremely delicate and is likely

to lead to poor variable selection performances. For instance, Hernández-Lobato et al.

(2013) underline the fact that, in the case of their spike-and-slab model, the maximization

of the evidence led to a sub-optimal choice of the hyper-parameter τ , and therefore to poor

variable selection. To avoid such drawbacks, the use of Bernoulli priors are not considered

in this paper.

3 Inference

This section now focuses on inferring the model proposed above. To this end, w is seen

as a latent variable while Z = diag(z), α, γ are parameters to be estimated from the data

(X,Y) using an empirical Bayes framework.
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3.1 Inference strategy and relaxation

The estimators of z, α and γ will be the ones that maximize the evidence (or type-II

likelihood) of the data:

p(Y|X, z, α, γ) =

∫
Rp

p(Y|X,w, z, α, γ)p(w|α)dw. (5)

Seing w as a latent variable, a natural optimization procedure is the expectation-maximization

(EM) algorithm introduced by Dempster et al. (1977). However, the maximization of (5)

would be problematic for two reasons – both linked to the discreteness of the model pa-

rameter. First, because the optimization problem in z is combinatorial and 2p values of

z are possible. Then, because in this case, the parameter space is partly discrete and all

theoretical convergence properties of the EM algorithm require a continuous parameter

space (Wu, 1983; McLachlan and Krishnan, 2008).

To overcome these issues, we propose to use a simple relaxation by replacing the model

parameter by a vector zrelaxed in [0, 1]p. This relaxation allows us to efficiently maximize

the new, relaxed version of (5) using an EM approach.

From now on, and until the end of this section, we will only consider the relaxed model

with zrelaxed ∈ [0, 1]p. In order to simplify notations, we denote Z = diag(zrelaxed).

3.2 E-step

At the E-step of the relaxed EM algorithm, one has to compute the expectation of the com-

plete data log-likelihood Ew(log p(Y,w, |Z, α, γ)) with respect to the posterior distribution

p(w|Y,Z, α, γ). Consequently, the parameters S and m of the Gaussian posterior (3) have

to be computed at each step. Notice that these two parameters also allow us to compute

a convenient expression of the evidence.

Proposition 3. The type-II log-likelihood is given by

log p(Y|Z, α, γ) = −n
2

log(2π) +
n

2
log(γ) +

p

2
log(α)− γ

2
‖Y‖22 +

1

2
log det S +

1

2
mTS−1m.

(6)
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Proof. By directly computing the integrand of (5), we find

log p(Y|Z, α, γ) = −n
2

log(2π) +
n

2
log(γ) +

p

2
log(α)

+ log

∫
w∈Rp

1√
(2π)p

exp
(
−γ

2
YTY + γYTXZw − γ

2
wTZXTXZw − α

2
wTw

)
dw,

which leads to

log p(Y|Z, α, γ) = −n
2

log(2π) +
n

2
log(γ) +

p

2
log(α)− γ

2
‖Y‖22

+ log

∫
w∈Rp

1√
(2π)p

exp

(
−1

2
wTS−1w + wTS−1m

)
dw,

which allows us to conclude.

Notice that, by replacing Z by diag(z), the expression (6) remains valid in the non-

relaxed binary case.

3.3 M-step

At the M-step, the expectation of the complete data log-likelihood Ew(log p(Y,w|Z, α, γ))

with respect to p(w|Y,Z, α, γ), is maximized over Z, α, γ.

Proposition 4. Denoting Σ = S+mmT , the expected complete data log-likelihood is given

by

Ew(log p(Y,w|Z, α, γ)) =
n

2
log(γ)− γ

2
YTY − α

2
Tr(Σ) +

p

2
log(α)− p+ n

2
log(2π)

+ γzrelaxedT (m� (XTY))− γ

2
zrelaxedT (XTX�Σ)zrelaxed. (7)

Proof. We have log p(Y,w|Z, α, γ) = log p(Y|w,Z, α, γ) + log p(w|α). Thus, since both

the prior on w and the noise are Gaussian, we can write

log p(Y,w|Z, α, γ) =
n

2
log γ+

p

2
log(α)−p+ n

2
log(2π)−γ

2
(Y−XZw)T (Y−XZw)−α

2
wTw.

Therefore, by expanding and computing the expectation of the expression, we find :

Ew(log p(Y,w|Z, α, γ)) =
n

2
log(γ) +

p

2
log(α)− p+ n

2
log(2π)− γ

2
YTY

− γ

2
Ew(wTZXTXZw) + γYTXZEw(w)− α

2
Ew(wTw).
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From (4), we have Ew(w) = m and, by using the properties of the trace operator,

Ew(wTw) = Ew(Tr(wwT )) = Tr(Ew(wwT )) = Tr(S + mmT ) = Tr(Σ).

Thus, we will also have

Ew(wTZXTXZw) = Ew(Tr(ZXTXZwwT )) = Tr(ZXTXZΣ).

Moreover, since Z = diag(zrelaxed), we can compute

YTXZm = zrelaxedT (m� (XTY))

and

Tr(ZXTXZΣ) = zrelaxedT (XTX�Σ)zrelaxed.

By replacing the values of the terms we have just computed, we eventually find the appro-

priate value of the evidence.

Maximizing the expectation of the complete data log-likelihood (7) with respect to the

parameter γ, α, zrelaxed leads to the following M-step updates.

Proposition 5. The values of γ, α, zrelaxed maximizing (7) are

γ̂−1 =
1

n

{
YTY + zT (XTX�Σ)z− 2zT (m� (XTY))

}
(8)

α̂ =
p

Tr(Σ)
(9)

ẑrelaxed = argmax
u∈[0,1]p

{
−1

2
uT (XTX�Σ)u + uT (m� (XTY))

}
(10)

Notice that the zrelaxed update (10) is a quadratic program (QP) which is strictly convex

if, and only if Σ�XTX is positive definite. In fact, the next proposition assures that it is

the case if and only if X has no null column. Therefore, in all practical cases, the objective

function of this program is strictly convex and fast convex optimization procedures such

as the L-BFGS-B method of Byrd et al. (1995) can be used.

Proposition 6. The matrix XTX � Σ is positive definite if and only if X has no null

column.
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Proof. According to the Schur product theorem (Bapat and Raghavan, 1997, chap. 3), since

XTX and Σ are positive semidefinite, XTX � Σ is also positive semidefinite. Therefore,

XTX�Σ is positive definite if and only if its determinant is different from zero.

If one of the columns of X is null, then the same column of Σ�XTX is also null and

det(Σ�XTX) = 0. The proposed condition is therefore necessary.

If none of the columns x1, ...xp of X are null, then Oppenheim’s inequality (Oppenheim,

1930; Markham, 1986) leads to

det(Σ�XTX) ≥ ||x1||22...||xp||22 det(Σ). (11)

Since Σ = S + mTm, the determinant matrix lemma assures that

det(Σ) = (1 + mTS−1m) det(S),

and, since S and S−1 are positive definite, det(S) > 0 and mTS−1m ≥ 0. Therefore, we

find

det(Σ) = (1 + mTS−1m) det(S) ≥ det(S) > 0,

which, combined to (11), leads to det(Σ � XTX) > 0. The condition is therefore also

sufficient.

3.4 Pseudo-code

Algorithm 1 presents a pseudo-code for the EM algorithm of the relaxed model.

3.5 Links with automatic relevance determination

Interestingly, this relaxed model is somehow related to the automatic relevance determina-

tion (ARD) which uses a prior of the form p(β|a) = N (0; diag(a)) and for which the most

classical way of inference is also an EM algorithm (MacKay, 1999; Tipping, 2001).

However, our method avoids several drawbacks of this technique. First, we do not

assume any hyperprior on zrelaxed while Tipping (2001) uses a product of flat Gamma

priors. More importantly, as pointed out by Wipf and Nagarajan (2008), the convergence

of the EM algorithm is extremely slow and not theoretically guaranteed in the case of the

ARD model. However, with our approach, since we only need the order of the coefficients
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Algorithm 1: EM algorithm for the relaxed model

Input: X,Y

Output: zrelaxed

Initialize γ = 1, α = 1, zrelaxed = (1, ..., 1);

repeat

// E-step

S = γ(ZXTXZ + αIp)
−1 ;

m = γSZXTY ; Σ = S + mmT ;

// M-step

Compute α̂ and γ̂ using (8) and (9);

Compute ẑrelaxed using (10) and the L-BFGS-B method;

until convergence of the evidence;

of zrelaxed (see Section 4), we do not have to wait for the full convergence of this parameter.

In practice, in all the experiments that we carried out, we only had to perform less than a

few hundreds of iterations of the algorithm to obtain convergence of the evidence in order

to perform variable selection. Notice that the fact that the evidence converges faster than

the parameters of the model is a quite general property of EM algorithms (Xu and Jordan,

1996). Moreover, conversely to ARD-like models, our model additionally includes a “ridge

parameter” α which, according to Occam’s razor (see Section 4), also controls the sparsity.

This also leads to an objective function different from the classical ARD one.

4 Model selection

In practice, the vector zrelaxed has to be binarized in order to select the relevant input

variables. A common choice would consist in relying on a threshold τ such that zj is set

to 1 if zj ≥ τ , and to 0 otherwise. However, numerical experiments showed that such

a procedure would lead to poor estimates of z. In order to perform an efficient variable

selection, we will use the outputs of the relaxed EM algorithm to create a path of models

and, relying on Occam’s razor, we will afterward maximize the type-II likelihood over this
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path to finally select the relevant variables.

4.1 Occam’s Razor

One of the key advantages of the approach proposed is that it maximizes a marginal log-

likelihood, which automatically penalizes the model complexity by adding a term to the

sum of squared errors.

Proposition 7. Up to unnecessary additive constants, the negative type-II log-likelihood

can be written as

− log p(Y|z, α, γ) = − log p(Y|m, z, γ) + pen(z, α, γ)

=
γ

2
||Y −Xzmz||22 + pen(z, α, γ)

(12)

where

pen(z, α, γ) = − log p(m|α)− 1

2
log det S (13)

=
α

2
‖m‖22 −

logα

2
‖m‖0 −

1

2
log det(γXT

z Xz + αIq) a.s (14)

is the Occam factor.

Proof. First, replacing w by m in the log-likelihood leads to

log p(Y|m,Z, α, γ) = −n
2

log(2π) +
n

2
log(γ)− γ

2
‖Y‖22 −

γ

2
mTZXTXZm + γYTXZm

therefore, since mTS−1m = γmTZXTY = γYTXZm, we have

log p(Y|m,Z, α, γ) = −n
2

log(2π) +
n

2
log(γ)− γ

2
‖Y‖22 −

γ

2
mTZXTXZm + mTS−1m.

Furthermore, log p(m|α) = −p
2

log(2π) + p
2

log(α)− α
2
mTm. By summing the terms of the

right-hand side of (12), we find the same expression of the type-II log-likelihood as in (6),

which proves (12). To prove (14), let us note that

−1

2
log det S =

1

2
log det(γZXTXZ + αIp) =

logα

2
(p− ‖z‖0)−

1

2
log det(γXT

z Xz + αIq).

Then, since ‖z‖0 = ‖m‖0 almost surely (see Proposition 2), we find

−1

2
log det S =

logα

2
(p− ‖m‖0)−

1

2
log det(γXT

z Xz + αIq) a.s.

which leads to (14).
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The sparse generative model therefore automatically adds a `0-`2 penalty to the likeli-

hood of the model at the MAP value of w. This is somehow similar to the “elastic net”

penalty of Zou and Hastie (2005), combined with a penalty linked to the volume of the

gaussian posterior N (w; m,S). Notice that, when α is small, the Occam factor will be

extremely sparsity-inducing but the coefficients will have a large variance. When α is close

to 1, this penalty will lead to moderately sparse but notably shrinked solution. Moreover,

if we write λ = (α− logα)/2 and κ = α/(α− logα), we obtain almost surely the expression

pen(z, α, γ) = λ
(
(1− κ) ‖m‖0 + κ ‖m‖22

)
− 1

2
log det(γXT

z Xz + αIq),

involving a convex combination of the `0 and `2 penalties in an elastic net fashion. The

elastic net can therefore be seen as some kind of strictly convex approximation of Occam’s

automatic penalty.

Interestingly, the term pen(z, α, γ) exactly corresponds to Occam’s razor described by

MacKay (1992) and detailed by Bishop (2006, chap. 4). Such a term has been widely

used for model selection purposes. Let us emphasize that pen(z, α, γ) is related to the

penalization term of the Bayesian information criterion (BIC). Indeed, if a broad Gaussian

prior distribution for the vector w is considered and if the corresponding matrix S is

assumed to have full rank, then Occam’s razor is approximately (−1/2)q log n. Contrary

to BIC which relies on an asymptotic Laplace approximation, we obtained here an analytical

expression of the evidence.

In our model, the minimization of Equation (12) assures that the selected model realizes

a tradeoff between the log-likelihood and an automatic penalty term. Note that a PAC-

Bayesian study of the performance of Occam’s penalty – similarly to the study of BIC-like

penalties by Bunea et al. (2007) for instance – would be particularly interesting. However,

to the best of our knowledge, such a work has yet to be done.

5 SpinyReg: an algorithm for sparse regression

We called our algorithm, which successively runs the Algorithm 1 and performs model

selection over the path of models using Algorithm 2, spinyReg.
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5.1 Prediction

The spinyReg algorithm is essentially a variable selection algorithm. In order to perform

prediction, the natural estimator of the model is ẑ where

m̂ = γ(γdiag(ẑ)XTXdiag(ẑ) + αIp)
−1diag(ẑ)XTY.

However, as it was stated at the end of Subsection 3.1, this estimator is exactly the ridge

estimator performed on a small model where only the predictors corresponding to nonzero

coefficients of ẑ are kept. Since we do not wait for the full convergence of the parameters

in the EM algorithm, we would rather recommend to perform an ordinary least squares

(OLS) estimation or a ridge regression with only a small amount of regularization on the

same small model. This is the choice we made in the numerical simulations hereafter.

5.2 Initialization

The choice of initialization zrelaxed = (1, ..., 1) appears particularly natural because it helps

to avoid the unwanted apparition of true zero coefficients in zrelaxed. Indeed, if a coefficient

of zrelaxed by the M-step update (10), then it can not go back to a positive value. This

behavior is typical of ARD-like iterative procedures (MacKay, 1999; Tipping, 2001).

Contrary to ARD models, we do not need true zeros in the vector zrelaxed. Therefore,

another solution to avoid their apparition would be to perform the quadratic program (10)

over [ηn, 1 − ηn] were (ηn)n≤1 is a vanishing real sequence. The resulting algorithm would

be a generalized EM (GEM) algorithm satisfying Wu’s convergence conditions (Wu, 1983),

contrary to the classical EM algorithm for ARD (Tipping, 2001; Wipf and Nagarajan,

2008). However, because we do not wait for the convergence of zrelaxed, setting the initial

coefficients at 1 is sufficient in practice to avoid true zeros. Regarding the parameter α,

the form of the Occam factor suggests that using a small value such as α = 10−3 will lead

to sparse solutions. This is the choice we made in the numerical simulations hereafter.

5.3 Computational cost

At each iteration, the most expensive step is the inversion of the p× p matrix S during the

E-step. It would imply a O(p3) complexity, not allowing us to deal with high-dimentional
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data. However, using the Woodbury identity, one can write when p > n,

S =
1

α
Ip +

1

α2

(
ZXT

)(1

γ
In +

1

α
XZ2XT

)−1
(XZ) .

Thus, the final computational cost has therefore a O(p2 min(n, p)) complexity, which is

more suitable for high-dimensional problems.

Overall, MCMC-based Bayesian variable selection methods for regression have a very

large computational cost. To the best of our knowledge, the fastest efficient spike-and-

slab algorithm for linear regression is the EP procedure of Hernández-Lobato et al. (2013).

Each iteration of the EP algorithm costs O(n2p) operations, and in practice it needs more

iterations than our relaxed EM algorithm to converge. complexity of the LARS algorithm

is O(pqn+ pq2 + q3) (Bach et al., 2012). SpinyReg therefore realizes a complexity tradeoff

between slow MCMC Bayesian techniques and fast `1-based methods.

Let us also emphasize that, whereas frequentist methods use cross-validation to optimize

the prediction performance, spinyReg automatically estimates its hyper-parameters. In

particular, its inference procedure includes the estimation of the penalty term α which

is linked to the sparsity level. Therefore, the computational cost of spinyReg has to be

compared to the one of `1-based methods with the cross-validation included.

5.4 Path of Models

We rely on ẑrelaxed to find a path of models which are likely to have a high evidence. We

build a path by assuming that the larger the coefficients of ẑrelaxed are, the more likely they

are to correspond to relevant variables.

We define the set of vectors (ẑ(k))k≤p as the binary vectors such that, for each k, the

k top coefficients of ẑrelaxed are set to 1 and the others to 0. For example, ẑ(1) contains

only zeros and a single 1 at the position of the highest coefficient of ẑrelaxed. The set of

vectors (ẑ(k))k≤p defines a path of models to look at for model selection. Note that this path

allows us to deal with a family of p models (ordered by sparsity) instead of 2p, allowing our

approach to deal with a large number of input variables. Thus, the evidence is evaluated for

all ẑ(k) and the number q̂ of relevant variables is chosen such that the evidence is maximized:

q̂ = argmax1≤k≤pp(Y|ẑ(k), α̂, γ̂) and ẑ = ẑ(q̂). (15)
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Algorithm 2: Model selection algorithm

Input: X,Y,α̂,γ̂,ẑrelaxed

Output: z

for k = 1..p do

Compute ẑ(k);

q̂ = argmax1≤k≤pp(Y|ẑ(k), α̂, γ̂) ;

ẑ = ẑ(q̂) ;

6 Numerical comparisons

In this section, we illustrate the behavior of spinyReg on simulated and real data sets, and

compare it to the most efficient state-of-the-art methods.

6.1 Simulation setup

In order to consider a wide range of scenarios, we use three different simulation scenarios:

“uniform”, “Toeplitz” and “blockwise”. The simulation of the parameter w and of the

noise ε is common for the three schemes: w ∼ N (0, Ip/α) and ε ∼ N (0, In/γ). The design

matrix X is simulated according to a Gaussian distribution with zero mean and a covariance

matrix R depending on the chosen scheme. The correlation structure of R = (rij)i,j=1,...,p

is as follows:

• “uniform”: rii = 1 for all i = 1, ...p and rij = ρ for i, j = 1, . . . , p and i 6= j,

• “Toeplitz”: rii = 1 for all i = 1, ...p and rij = ρ|i−j| for i, j = 1, . . . , p and i 6= j,

• “blockwise”: R = diag(R1, ..., R4) is a 4-blocks diagonal matrix where R` is such that

r`ii = 1 and r`ij = ρ for i, j = 1, . . . , p/4 and i 6= j.

These three correlation structures are represented on Figure 2.

Then, Z is simulated by randomly picking q active variables among p. The predictive

vector Y is finally computed according to Equation (1).
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Uniform Blockwise Toeplitz

Figure 2: Covariance structures for the simulation setup.
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Figure 3: Evolution of the evidence of the relaxed model along the iterations of the EM

algorithm.

6.2 An introductory example

We consider here an introductory example which aims at highlighting the main features

of the proposed approach. For this experiment, the Toeplitz simulation setup is used with

p = 30, q = 5, ρ = 0.25, α = 1 and γ = 1. From this setup, two data sets were simulated

with respectively n = 100 and n = 30 observations. The second setting corresponds to a

difficult scenario where n = p whereas the first one should be easier to fit. Notice that the

dimensionality is kept relatively low mainly for visualization purpose. Figure 3 shows the

evolution of the evidence of the relaxed model along the iterations of the EM algorithm.
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Toeplitz setup with ρ = 0.25, p = 30 and n = 100

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
● ●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30
Variables

Z
re

la
xe

d

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−70

−60

−50

−40

0 5 10 15 20
Variables

E
vi

de
nc

e

Toeplitz setup with ρ = 0.25, p = 30 and n = 30

Figure 4: Variable selection with spinyReg on the two introductory examples (p = 30 and

n = 150 or n = 30). The left panels present the values of ẑrelaxed (dark blue) and the actual

binary values of z (pale blue). The right panels show the values of evidence computed on

the path of models.

Figure 4 presents the results of the application of spinyReg on those two data sets. The

left panels present in dark blue the values of ẑrelaxed (sorted in decreasing order) and the

corresponding true values of z (pale blue points) used in the simulations. The right panels

show the values of evidence computed on the path of models.

Regarding the first example, one can see that the five largest values of ẑrelaxed actually
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correspond to the five active variables. This confirms that spinyReg succeeds here in finding

the relevant variables in the regression model. The second panel confirms that spinyReg

would select five variables among the 30 original ones. On this quite simple example,

spinyReg yields a true positive rate (TPR) equals to 1 and a false positive rate (FPR)

equals to 0.

For the second and much more difficult situation (bottom row of Figure 4), the estimated

values for zrelaxed are less discriminative. Indeed, the values of ẑrelaxed are smaller than in the

simpler case. However, even though the ranking of variables induced by ẑrelaxed respects the

partition between active and inactive variables, Occam’s razor leads to a too conservative

choice and misses one active variable. On this more difficult data set, spinyReg yields a

true positive rate (TPR) equals to 0.8 and a false positive rate (FPR) equals to 0.

6.3 Benchmark study on simulated data

We now compare the performance of spinyReg with three of the most recent and popu-

lar variable selection methods based on `1 regularization: the lasso of Tibshirani (1996),

the adaptive lasso of Zou (2006) and the stability selection of Meinshausen and Bühlmann

(2010). We also added two very recent spike-and-slab approaches: the multi-slab framework

of CLERE (Yengo et al., 2014a) and the EP procedure of Hernández-Lobato et al. (2013).

To this end, we simulated 100 data sets for each of the three simulations schemes (uniform,

Toeplitz and blockwise), for three data set sizes (n = p/2, n = p, n = 2p) and two values

for the correlation parameter (ρ = 0.25 and ρ = 0.75). The other simulation parameters

were p = 100, q = 40, α = 1 and γ = 1. The measures used to evaluate the method per-

formances are the prediction mean square error on test data (MSE, hereafter), the F-score

(the harmonic mean of precision and recall, which provides a good summary of variable

selection performances) and the estimated value of q (number of relevant predictors).

Lasso and Stability selection were trained using the R package quadrupen (Grandvalet

et al., 2012). We used the package parcor (Kraemer et al., 2009) to train the adaptive

lasso and the package clere (Yengo et al., 2014b) to train CLERE. The spike-and-slab

approach of Hernández-Lobato et al. (2013), which uses expectation propagation, will be

subsequently denoted SSEP and was trained using the code available on the authors’ web
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Figure 5: Scenario “blockwise” with ρ = 0.75.

pages.

We present here only the results for two simulation setups: the “blockwise” one with

ρ = 0.75 and the “Toeplitz” one with ρ = 0.25. All the other results are available as sup-

plementary material. Note that similar conclusions can be drawn on these other scenarios.

Figure 5 presents the F-score, MSE and q̂ of the 6 studied methods for the blockwise sim-

ulation setup with ρ = 0.75 and for the three data set sizes, while Figure 6 presents these

measures for the Toeplitz simulation setup with ρ = 0.25 and for the three data set sizes.
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Figure 6: Scenario “Toeplitz” with ρ = 0.25.

The first row of Figure 5 and Figure 6 gives the F-score. This measure allows us to

figure out how the methods behave in terms of detection of the relevant variables. We can

see that spinyReg and SSEP outperform other methods and have close variable selection

performances. SpinyReg appears to be at his best in the “n = p/2” case on these runs.

The second row of Figure 5 and Figure 6 provides the MSE values for the studied

methods. Most of the methods perform well except stability selection and CLERE when

n ≤ p. In particular, spinyReg has the best prediction performance for n = p/2 with the
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highly correlated blockwise case.

The last row of Figure 5 and Figure 6 gives the number q of active variables estimated

by the 6 methods. We remind that the actual number of active variables is q = 40 for these

simulations (represented by the dashed lines on Figure 5). It is worth noticing that lasso

has a clear tendency to overestimate the number of active variables, particularly when n

becomes large. Conversely, stability selection has the opposite behavior and underestimates

q. Its very conservative behavior has the advantage that it avoids false-positives. It turns

out that spinyReg provides consistently a good estimate of the actual value of q.

6.4 Study on classical regression data sets

We now consider four real-world data sets: the classical prostate data set used for example

by Tibshirani (1996), the eyedata data set of Scheetz et al. (2006), which contains gene

expression data of mammalian eye tissue samples, the OzoneI data set included in the

spikeslab package (Ishwaran et al., 2010) and which uses the ozone data set of Breiman

and Friedman (1985) with some additional interactions and the DiabetesI data set which

is also available in the spikeslab package and uses the diabetes data set of Efron et al.

(2004) with some additional interactions. Applying the same methods as before, we trained

our data randomly using 80% of the observations and computed the test error on the

remaining data. Repeating this procedure 100 times, we computed the mean and the

standard deviation of the test error and of the number of variables selected. Results are

reported in Table 1. We did not compute the test error for methods which did not succeed

in selecting variables.

We can see that spinyReg obtains competitive predictive results on all data sets. More-

over, we can note that it is less conservative than most other algorithms. On the challenging

eyedata data set for example, while the two other Bayesian methods fail to select at least

one variable, spinyReg selects three quarters of the predictors and has the lowest MSE.

The three `1 based methods select only a few variables and have higher MSE. It is worth

noticing that we tried to apply the elastic net of Zou and Hastie (2005) (which, using a `1-`2

regularization, is able to select more variables than most classical `1 procedures) to this

data set. Elastic net selected all variables. This behavior is close to the one of spinyReg
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Prostate (n = 77, p = 8) Eyedata (n = 96, p = 200)

MSE×100 Selected variables MSE×100 Selected variables

Lasso 63.6± 21.8 3.33± 0.877 1.26± 0.964 16.7± 5.56

Adalasso 58.4± 15.9 4.42± 1.57 1.50± 1.248 2.4± 0.700

Stability Selection 61.6± 14.4 1.94± 0.239 1.58± 0.850 1.7± 0.823

Clere 59.8± 19.7 2.87± 0.825 - -

SSEP 56.6± 15.0 2.76± 0.474 - -

SpinyReg 58.3± 15.4 3.34± 0.607 1.25± 0.920 143± 9

OzoneI (n = 162, p = 134) DiabetesI (n = 353, p = 64)

MSE Selected variables MSE/1000 Selected variables

Lasso 18.9± 4.96 10.3± 2.27 3.22± 0.407 7.43± 2.41

Adalasso 16.84± 4.48 8.32± 3.16 3.02± 0.395 9.31± 2.25

Stability Selection 17.9± 5.25 9.68± 1.10 2.97± 0.387 7.77± 0.423

Clere 19.6± 5.48 5.43± 2.55 3.15± 0.384 2.33± 0.587

SSEP 29.6± 10.2 74.8± 5.45 3.70± 0.647 62.0± 1.36

SpinyReg 18.9± 5.46 10.79± 2.69 3.13± 0.376 8.5± 1.45

Table 1: Results on real-world data sets

and reminds the interesting analogy between the Occam factor (12) used in spinyReg and

the elastic net penalty.

Let us finally highlight that the medium prediction rank of spinyReg is the second best,

behind the adaptive lasso. Let us also emphasize that all frequentist methods were trained

using cross-validation which optimizes prediction performance. Conversely, SSEP, CLERE

and spinyReg automatically estimate their hyper-parameters. In particular, the inference

procedure of spinyReg includes the estimations of the penalty term α which is linked to

the sparsity level.
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7 Prediction of the frequentation of the Orsay mu-

seum using bike-sharing data

In this section, we introduce a new regression problem, which aims at predicting the number

of visitors of the Orsay museum (Paris) using the activity of the Paris bike-sharing system

(Vélib’ ).

7.1 Predicting a touristic index using open data

The emergence of open data systems has brought about a surge of complex data illustrating

various social behaviors. In this challenging context, the analysis of bike-sharing systems

(BSSs) provides a new insight into the touristic patterns of a city. We therefore wanted to

see how well, in a city like Paris, bike-sharing data could predict a touristic index, such as

the number of visitors of an important museum.

With nearly three million annual visitors, the Orsay museum is one of the ten most

visited museums in the world (Skeggs, 2014). Known for having the vastest collection of

impressionist paintings in the world, it holds for example Manet’s Le Déjeuner sur l’herbe

or Van Gogh’s Nuit étoilée sur le Rhône. The frequentation of the museum at each hour

was given as a courtesy by the museum services.

The Paris bike-sharing system, called Vélib’, was launched by JCDecaux and the city

of Paris in 2007 and is nowadays certainly the most active BSS in Europe. Statistical

studies of the Vélib’ system have been for example conducted by (Bouveyron et al., 2014;

Njato Randriamanamihaga et al., 2014). The predictive variables that will interest us for

our regression problem are the percentages of parked bikes (or loadings) for all the Vélib’

stations of Paris. These percentages are available through the open data API provided by

JCDecaux1.

7.2 The “OrsayVelib” database

At each hour, the number of visitors present in the museum constitutes the response variable

of our regression problem. The predictors are the loadings at each hour of the p = 1158

1The real time data are available at https://developer.jcdecaux.com/ with an API key.
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Vélib’ stations in Paris. Only the hours corresponding to opening days (from 8am to 6pm,

except Mondays) of the museum are kept. The month of September 2014 constitutes the

learning set (with n = 316 observations), and the first two weeks of October 2014 the test

set (see Figure 7).

This data set, thereafter called the “OrsayVelib” database, has several interesting as-

pects:

• While most “large p, small n” regression problems inherit their dimensionality from

genomics or signal processing, this data set is purely related to social sciences. This

illustrates the fact that modern social data can also lead to high-dimensional chal-

lenging statistical problems.

• Since the variables are the Vélib’ stations, a sparse solution can be easily interpretable

and visualizable. We would expect the relevant predictors to correspond – at least to

some extend – to stations used by the visitors of the Orsay museum. In particular,

the behavior of the stations closest to the museum are expected to be of important

interest. For visualization purposes, one can plot on a map the location of the selected

variables, being able to efficiently interpret the selection.

• The learning/test segregation of the data harshly punishes overfitting. Indeed, while

September 2014 (the learning month) corresponded to exceptionally good weather

conditions in Paris, whereas October had some rainy days. Since BSS data are

naturally heavily linked to the weather, this means that overfitting algorithms will

struggle with predicting the number of predictors on rainy days (such as October

8th). This interesting behavior is exhibited in the next subsection.

To illustrate the behavior of the data, Figure 7 provides the curve of the number of

visitors during the learning and test phases and Figure 8 shows the loadings of four Vélib’

stations during the first week of September. Two of these stations correspond to touristic

areas with different behaviors: one is the closest one to the Orsay museum and one is one

of the closest ones to the Eiffel tower. The other two correspond to large railway stations

(which also happen to be large subway stations). We will show in the next subsection that
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Figure 7: Number of visitors during the learning and test phases. Only opening hours of

the museum (8am to 7pm, from Tuesday to Sunday) are shown.
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Figure 8: Loadings of four Vélib’ stations during the first week of September. Only opening

hours of the museum (8am to 7pm, from Tuesday to Sunday) are shown.
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Ridge SSEP Lasso Adalasso SpinyReg

MSE×104 145.66 144.38 132.08 159.17 127.36

Selected variables 1158 1146 167 155 45

Table 2: Test error and number of selected predictors for each method.

these stations are of particular interest if we aim at predicting the number of visitors of

the museum.

7.3 Results

We applied the algorithms of Section 6 to the OrsayVelib database. Since the sparsity

of this regression problem is not absolutely certain, we also added a non-sparse method

to the benchmark: ridge regression with a cross-validated regularization parameter. The

test errors and sparsity patterns obtained are detailed in Table 2 (for the sake of clarity,

only the five best methods are displayed). One can notice that spinyReg has the lowest

generalization error and that it selects fewer variables than its competitors.

Figure 9 allows to compare the true number of visitors during the test phase with the

predicted values of the four methods. We can notice that, as expected, all algorithms strug-

gle with October 8th, which was a rainy day. On this specific day, spinyReg is (especially

in the afternoon) the closest one to the truth. In a similar fashion, spinyReg is the only

method that accurately predicts the small augmentation of the first three days of October.

Eventually, one can plot the location of the selected variables on the map of Paris. For

the sake of clarity, we only did it for the two best methods: lasso and spinyReg. Figure 10

presents the maps of selected stations by both methods. Green dots correspond to positive

coefficients and red dots to negative coefficients. The dot size indicates the magnitude of

the coefficient (the larger the dot, the larger the absolute value of the coefficient). The

black dot corresponds to the location of the Orsay museum.

The lasso selection appears to be very broad and difficult to interpret. In particular, the

lasso does not select the closest station to the museum. Conversely, the spinyReg selection

is more interpretable: one can see that it does select the closest stations to the museum,

and that their regression coefficients are positive (which means that these stations are
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Figure 9: Ground truth (dashed line) and predicted values for the number of visitors at

each hour.
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Figure 10: Stations selected by the lasso (left) and by spinyReg (right). Green dots corre-

spond to positive coefficients and red dots to negative coefficients (the larger the dot, the

larger the absolute value of the coefficient). The black dot corresponds to the location of

the Orsay museum.

likely to be full when the museum is crowded). Around the neighborhood of the museum,

there is a ring of stations with almost exclusively negative coefficients (Eiffel tower, Paris

Nord and Montparnasse railway stations, place de la Bastille) which can be interpreted

as stations from where the visitors of the museum rent their bikes. Beyond this ring, the

selected stations essentially correspond to popular public parks (bois de Vincennes, parc

Montsouris, parc André Citroën, bois de Boulogne). This is not surprising since their

frequentation is also linked to the touristic activity of the city.

As a summary, spinyReg both succeeds in providing an interpretable selection of Vélib’

stations while having the most effective prediction performance.

8 Conclusion

We considered the problem of Bayesian variable selection for high-dimensional linear regres-

sion through a sparse generative model. The sparsity is induced by a deterministic binary
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vector which multiplies with the Gaussian regressor vector. The originality of the work

was to consider its inference through relaxing the model and using a type-II log-likelihood

maximization based on an EM algorithm. Model selection can be performed relying on

Occam’s razor and on a path of models found by the EM algorithm. Numerical experi-

ments on simulated data have shown that spinyReg performs well compared to the most

recent competitors both in terms of prediction and of selection, especially in moderately

sparse cases and with highly correlated predictors. SpinyReg was finally applied for the

prediction of a touristic index from open data. The OrsayVelib, a new high-dimensional

regression database, was introduced to this end and allowed us to illustrate the powerful

aspects of the proposed method.
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SUPPLEMENTARY MATERIALS

Additional benchmark results: Boxplots corresponding to all scenarios described in

Section 6 (.pdf file)
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R. B. O’Hara and M. J. Sillanpää. A review of bayesian variable selection methods: what,

how and which. Bayesian analysis, 4(1):85–117, 2009.

A. Oppenheim. Inequalities connected with definite hermitian forms. Journal of the London

Mathematical Society, 1(2):114–119, 1930.

S. Petrone, J. Rousseau, and C. Scricciolo. Bayes and empirical bayes: do they merge?

Biometrika, 2014.

B. M. Pötscher and H. Leeb. On the distribution of penalized maximum likelihood es-

timators: The lasso, scad, and thresholding. Journal of Multivariate Analysis, 100(9):

2065–2082, 2009.

P. Rigollet and A. Tsybakov. Exponential screening and optimal rates of sparse estimation.

The Annals of Statistics, 39(2):731–771, 2011.

C. P. Robert and G. Casella. Monte Carlo statistical methods, volume 319. Springer, 2004.
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