

Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?

Benoit Ricci, Pierre Franck, Muriel Valantin-Morison, David Bohan, Claire

Lavigne

▶ To cite this version:

Benoit Ricci, Pierre Franck, Muriel Valantin-Morison, David Bohan, Claire Lavigne. Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 2013, 15, pp.62-70. 10.1016/j.ecocom.2013.02.008. hal-01003336

HAL Id: hal-01003336 https://hal.science/hal-01003336

Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Postprint Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1	Do species population parameters and landscape characteristics affect the relationship
2	between local population abundance and surrounding habitat amount?
3	
4	
5	Benoît Ricci ^{1,2,*} , Pierre Franck ¹ , Muriel Valantin-Morison ³ , David A. Bohan ² , Claire Lavigne ¹
6	
7	
8	¹ INRA (French National Institute for Agricultural Research), UR 1115 Plantes et Systèmes de culture
9	Horticoles, F-84000 Avignon, France
10	
11	² INRA (French National Institute for Agricultural Research), UMR 1347 Agroécologie, BP 86510,
12	F-21000 Dijon, France
13	
14	³ INRA (French National Institute for Agricultural Research), UMR 0211 Agronomie, F-78850
15	Thiverval-Grignon, France
16	
17	
18	
19	*Corresponding author:
20	Tel.: +33 3 80 69 33 27; fax: +33 3 80 69 32 22
21	E-mail address: benoit.ricci@dijon.inra.fr (B. Ricci).
22	Address: INRA, UMR 1347 Agroécologie, 17 rue de Sully, BP 86510, F-21065 Dijon, France
23	

Manuscrit d'auteur / Author manuscript

Postprint Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 Abstract

2 In Landscape Ecology, correlational approaches are typically used to analyse links between local population abundance, and the surrounding habitat amount to estimate 3 4 biologically-relevant landscape size (extent) for managing endangered or pest populations. The direction, strength, and spatial extent of the correlations are then sometimes interpreted in 5 terms of species population parameters. Here we simulated the population dynamics of 6 7 generalized species across spatially explicit landscapes that included two distinct habitat types. We investigated how characteristics of a landscape (structure), including the variation 8 9 in habitat quality and spatial aggregation of the habitat, and the precise population-dynamic properties of the simulated species (dispersal and growth rates) affect the correlation between 10 population abundance and amount of surrounding, favourable habitat in the landscape. To 11 12 evaluate the spatial extent of any correlation, proportions of favourable habitats were calculated in several circular buffers of increasing radii centred on sample patches of 13 14 favourable, where population abundance was recorded.

We found that the value of the correlation coefficients depended both on population 15 dynamics parameters and landscape characteristics. Correlation coefficients increased with 16 17 the variation in habitat quality and with aggregation of favourable habitat in the landscape. The distance to highest correlation was sensitive to the interaction between landscape 18 characteristics and the population dynamic properties of the simulated species; in particular 19 20 between the variation in landscape quality and the dispersal rate. Our results corroborate the 21 view that correlational analyses do provide information on the local population dynamics of a species in a given habitat type and on its dispersal rate parameters. However, even in 22 23 simplified, model frameworks, direct relationships are often difficult to disentangle and global landscape characteristics should be reported in any studies intended to derive population-24 dynamic parameters from correlations. Where possible, replicated landscapes should be 25

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

- 1 examined in order to control for the interaction between population dynamics and landscape
- 2 structure. Finally, we recommend using species-specific, population-dynamic modelling in
- 3 order to interpret correctly the observed patterns of correlation in the landscape.

4

5 Keywords

dispersal, habitat quality, spatial aggregation, metapopulation, spatially explicit model.

7

8

9

6

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 . DOI : 10.1016/j.ecocom.2013.02.008 Postprint Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 1. Introduction

Understanding species abundance, as function of the habitat characteristics of a
landscape and the population-dynamic properties of the species, is important for guiding
landscape management policy for biodiversity conservation (Jeanneret et al., 2003; Aldridge
and Boyce, 2007; Ockinger and Smith, 2007), and the control of invasive species (SebertCuvillier et al., 2008; McKee et al., 2009) and of crop pests (Bianchi et al., 2006).

7 Correlations between local population abundance in focal sampling patches and the surrounding habitat amount in buffers of increasing size have been used to identify both the 8 9 important landscape features that compose the habitat of a species and their scale of effect (Brennan et al., 2002). This 'focal sampling patches approach' has been widely used by 10 Conservation Ecologists for a number of years (Vos and Chardon, 1998) and is now used for 11 12 pests in agro-ecosystems with a view to landscape-level management (e.g. Schmidt et al., 13 2005; Decante and Van Helden, 2006; Zaller et al., 2008; Ricci et al., 2009; Rusch et al., 14 2010). Observed correlations between population abundance and the amount of surrounding habitat have been interpreted in an intuitive fashion; a positive correlation between population 15 abundance and the area of a landscape feature indicates that this feature is a "good quality" 16 17 habitat for the species, and vice versa. Numerous empirical studies have thus interpreted the direction and the value of landscape correlations in terms of quality of the habitat (Roschewitz 18 et al., 2005; Bianchi et al., 2006; Moser et al., 2009; Ricci et al., 2009; Veres et al., 2012). 19 20 The spatial extent of the correlations has also been interpreted in terms of underlying 21 ecological processes (Wiegand et al., 1999; Jepsen et al., 2005; Turner, 2005; Schroder and Seppelt, 2006). For example, the amount of habitat in a given buffer can be treated as a simple 22 23 metric of patch connectivity that explains the frequency of colonization events (Moilanen and Nieminen, 2002; Bender et al., 2003). Some authors have investigated the spatial extent at 24 which correlations arise, using empirical approaches, in order to shed light on the scale of 25

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 DOL: 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 effect of particular landscape features of species habitat (Thies et al., 2003; Carrière et al., 2006). The maximal extent of significant correlation (e.g. Carrière et al., 2006), range of 2 distances that provide significant correlations (e.g. Roschewitz et al., 2005; Thies et al., 2005) 3 and the distance that has the strongest correlation (e.g. Thies et al., 2003) are statistics that 4 have all been used to infer the spatial scale of landscape characteristics. More recently, it has 5 become clear that landscape correlation effects depend both on population-demographic 6 processes and landscape structure. Jackson and Fahrig (2012) demonstrated through simulated 7 8 population-dynamic models that the scale of effect (measured as the distance that has the strongest correlation) depends on species population parameters, most notably species-9 specific dispersal. The spatial distribution of a species over a landscape depends, in turn, not 10 11 only on its population dynamics but also on the landscape composition and structure 12 (Tischendorf, 2001, Campagne et al., 2009).

13 The impact of landscape structuring (habitat amount and spatial aggregation) on the 14 outcome of focal sampling patches approaches has been found to depend on efficiency of 15 dispersal over the landscapes. The efficient movement of individuals among habitats, at the 16 landscape scale, depends both on the dispersal abilities of a species and on the subsequent realised probability of success of immigration; a probability that is directly related to the 17 aggregation of good quality habitat (Ricketts, 2001; Baguette and Van Dyck, 2007; Reeve et 18 19 al., 2008). These population-dynamic effects of aggregation of the habitat on the correlation between local abundance and surrounding habitat amount remain to be deeply explored (but 20 21 see Wiegang et al. 1999).

The relative proportion of high *vs.* low quality habitat, and the intensity of the contrast between these habitat types are also important factors affecting landscape correlations. By definition, high quality habitat provides enough resources to allow higher population growth rates and/or carrying capacities than low quality habitat (Moilanen and Hanski, 1998). Low

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 quality habitats may act as population dynamic sinks (Pulliam, 1988) and/or slow down population expansions from high quality habitats (Thomas and Kunin, 1999). Models of 2 heterogeneous landscape usually simulate extreme cases, with only patches of favourable 3 habitat set in an unfavourable matrix (Wiegand et al 1999; Jackson and Fahrig, 2012). In real 4 landscapes, however, species are often able to grow and survive across a variety of different 5 habitat types with a range of levels of success. The effects of the quality contrast between 6 habitats and the relative proportions of each habitat in landscape on focal sampling patches 7 8 approach correlations have yet to be documented, although we would expect that heterogeneity in habitat qualities should markedly impact the magnitude of landscape 9 correlation. 10

This paper explores how species population parameters (dispersal, growth rate) and 11 landscape properties (amount and spatial aggregation of favourable habitat) mediate the 12 13 correlations between local abundance in focal sampling patches and surrounding habitat 14 amount. Using a spatial population dynamic model, we simulate the spatial distribution of 15 population abundance in landscape composed of low and high quality habitat at differing 16 levels of spatial aggregation. We sample the population abundance in 25 focal patches in each landscape and calculate the correlation between local population abundance in these focal 17 patches and the amount of high quality habitat across buffers of increasing size. We analyse 18 19 how this correlation is influenced by: i) variation in habitat quality, both across differing relative amounts of high and low quality habitat and for a variety of quality contrast between 20 21 habitat types; and, ii) an interaction of landscape structure (level of spatial aggregation of each habitat) and species dispersal parameters (dispersal rate and dispersal function). 22

Manuscrit d'auteur / Author manuscript

23

24

25

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 2. Material and Methods

2 2.1. General approach

3 Our scheme of spatially-explicit simulation modelling took place in two clear steps (Fig. 1 and Table 1). In the first set, we investigated the effect of variation in habitat quality on the 4 overall pattern of correlation by varying both the proportion of low vs. high quality habitat 5 and the difference in population growth rate between high and low quality habitats. In the 6 second set, we addressed the impact of landscape spatial aggregation and dispersal on the 7 pattern of correlation by varying the amount of aggregation of high quality habitat and the 8 9 population dispersal parameters (dispersal rate and dispersal type). This second step in the simulation modelling fixed as constant the habitat quality at the values which provided 10 maximal correlations in the first step of the simulation scheme. 11

12

14

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

13 2.2. Landscape modelling

2.2.1. Landscape composition

The simulations took place across landscapes of 3600 cells in a regular 60×60 grid. The 15 square cells had sides of one arbitrary unit, D, were either of high quality habitat H (in 16 proportion P_H), in which any population would have a high growth rate ($r_H = 0.07$), or of low 17 quality habitat L (in proportion 1- P_H), in which a population would had a low growth rate 18 19 (r_L) . Contrasted effects between high and low quality cells, were simulated by varying the growth rate differences between H- and L-habitats ($\delta = r_H - r_L$). In the first set of simulations, 20 each combination of proportions of H-cells ($P_H = 0.10, 0.25, 0.50, 0.75$ or 0.90) and habitat 21 22 contrasts ($\delta = 0.02, 0.04, 0.06$) was considered in order to compare landscapes with differing qualities (Fig. 1 and Table 2). In the second set of simulations, P_H and δ were fixed as 23 24 constants, respectively at 0.5 and 0.06, as this combination of values was found to maximize the correlation coefficients in step 1 (see results below). 25

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1

2 2.2.2. Spatial aggregation of habitat quality within the landscape

For the first set of simulations, we generated random landscapes (S_0) in which L-cells and H-cells were distributed in a spatially random pattern on the grid for each proportion of high quality cells (10 replicates for each P_H value). For the second set of simulations, we generated landscapes with spatial aggregation of habitat quality, for the given value of $P_H =$ 0.5, using the method detailed by Wiegand et al. (1999). At 250 spatially random locations (x_0), we calculated two-dimensional Gaussian functions of form:

9
$$G(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-x_0)^2}{2\sigma^2}\right)$$

10 These functions were superimposed, forming a surface of different elevations that we split by a horizontal plane thus classifying areas of the landscape above or below the plane into either 11 H-cells or L-cells. The height of the plane was chosen so that the proportion of cells H was 12 13 equal to 0.5. Two values of σ were used to design landscapes with aggregation of habitat quality with either relatively small (σ =1, designated landscape-type S_1) or relatively large 14 (σ =3, designated landscape-type S₂) clusters of high and low quality cells. Ten replicates of 15 each S_1 and S_2 landscapes were generated for the second set of simulations and we reused the 16 10 replicates of S_0 from the first set. Example maps of the generated landscapes are provided 17 in Fig 2 (see also Fig. A1 and Fig. A2 in the Supplementary Material). 18

19

20 2.3. Population dynamics

21 2.3.1. Population growth

Each cell hosted a population initially composed of two individuals that grew logistically. The carrying capacity of each cell was set to K=100 and the growth rate was r_H or r_L depending on whether the population was in a H- or L-cell, respectively. The growth rate in

Postprint	
Version définitive du manuscrit publiée dans / Final versior Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10 Journal homepage: www.elsevier.com/locate/ecocom	
1 H-cells was kept constant (r_H =0.07), defining	g a reference situation. In the first set of
2 simulations, growth rates in L-cells were eith	er $r_L = 0.01$ or 0.03 or 0.05 in order to vary cell
3 quality contrasts ($\delta = r_H - r_L = 0.06, 0.04, 0.$	02) between H- and L-habitats (Fig. 1). In the
4 second set of simulations, δ was kept constant	t (δ =0.06, r_L =0.01).
5 Preliminary simulations showed that t	he maximal difference between the mean
6 population abundance in H- and L-cells, in ra	ndom landscapes, occurred after 75 time steps
7 (See Fig. A3 in the Supplementary Material).	75 time steps was therefore chosen as the
8 terminal duration of each simulation.	
9	
10 2.3.2. Dispersal	
11 At each time step, a proportion <i>m</i> (dispers	sal rate) of the population in each cell dispersed
12 to other cells according to one of four, predef	ined dispersal models:
13 • Stepping stone (Step): individuals disp	persing from a given cell had an equal
14 probability of moving to each of the f	our nearest cells situated at a distance of 1. This
15 model corresponds to a classical two	dimensional stepping stone.
16 • Twelve nearest neighbours (12nn): in	dividuals dispersing from a given cell had an
17 equal probability of moving to each o	f the twelve nearest cells; corresponding to a
18 maximal distance of 2 from the source	e cell.
19 • Long distance dispersal (2Dt): this dis	spersal model intended to simulate a process in
20 which most individuals moved to near	rby cells, while a few individuals dispersed to
21 cells further away. A bivariate Studen	t's dispersal distribution (2Dt) was used to
22 determine the probability of a individu	ual dispersing from one cell arriving in any
23 other, as given by:	
24 $P = \frac{b-1}{\pi a^2} \left(1 + \frac{d^2}{a^2} \right)^{-b}$	
	0

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 . DOI : 10.1016/i.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

where *d* is the distance between the two cells, *a* is a scale parameter and *b* is a
parameter that determines the weight of the distribution tail. The parameters *a* and *b*were set at *a* = 3 and *b* = 3.5, so that the mean distance of dispersal was approximately
2 and about 25% of dispersal events were above this mean distance. The probability
was then normalized to ensure that all dispersing individuals from any source cell
found a target cell. *Random*: all individuals dispersing from a cell moved randomly with equal probability

to other cells (Wright, 1931). This dispersal model was used as a control, with the expectations that no significant correlations should be observed.

The probability distributions associated to these four models have different average

11 dispersal distances (\overline{d}). The average dispersal distance progressively increases from the *Step*

12 model (\overline{d} =1) to the *Random* dispersal model (\overline{d} =31.28 in a 60 x 60 grid), with the *12nn*

13 $(\overline{d} = 1.47)$ and the 2Dt $(\overline{d} = 2.12)$ models displaying intermediate average distances of

14 dispersal (see Fig. A4 in the Supplementary Material for the shapes of the dispersal

functions). Only the *12nn* dispersal model was used for the first set of simulations. The four
dispersal models were contrasted in the second set of simulations (Fig. 1).

17

18 2.4. Details of the two simulation sets

19 2.4.1. Set 1

In the first set of simulations (Fig. 1), the effect of the variation in landscape-level habitat quality, Q, on correlation patterns was assessed on random landscapes, S_0 , using constant dispersal parameters (dispersal model *12nn* and *m*=0.075). Q was calculated as the coefficient of variation of growth rates over all cells from the grid:

24
$$Q = \frac{\sqrt{P_H(r_H - \bar{r})^2 + (1 - P_H)(r_L - \bar{r})^2}}{\bar{r}},$$

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 DOL: 10.1016/j.acccom.2013.02.008

8

9

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 where P_H is the proportion of high quality habitat, r_H the growth rate in high quality habitat, r_L

- 2 the growth rate in low quality habitat and \bar{r} the mean growth rate over the landscape
- 3 calculated as:
- $4 \qquad \bar{r} = P_H r_H + (1 P_H) r_L$

Q varied across the five values of *P_H*, each with 10 replicates, and the three values of quality
contrast between the habitats (δ = r_H - r_L = 0.06, 0.04, 0.02), yielding a total of 150
simulations (Table 2).

8

Manuscrit d'auteur / Author manuscript

9 2.4.2. Set 2

In a second set of simulations (Fig. 1), we assessed the effect of landscape spatial
aggregation and dispersal on the patterns of correlation. For this set of simulations, we fixed

12 as constant landscape-level variation in habitat quality at Q=0.75 (i.e. $P_H=0.5$ and $\delta=0.06$),

13 which the preceding set of simulations demonstrated to provide maximal correlation

14 coefficients. Simulations were run over 10 replicates of each of the three levels of aggregation

15 of habitat quality (S_0 , S_1 and S_2) for each combination of the four dispersal models (*Step*,

16 *12nn*, 2Dt and Random) and three different dispersal rates (m=0.05, 0.075 and 0.100). This

17 gave a total of 360 simulations (30 landscapes x 4 dispersal models x 3 dispersal rates).

18

19 2.5. Correlations between local population abundances and amount of

20 surrounding high quality habitats

For each suite of demographic and landscape parameters, the simulation results were analysed after 75 time steps using a focal sampling patches approach. We randomly picked 25 H-cells, as focal patches, such that each of these selected cells was situated at a: i) distance d>4 from the border of the grid to avoid border effects; and, ii) distance d>8 from any other focal cell to avoid overlapping of buffer zones (maximum buffer radius = 4; see example

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 maps in Fig. 2). We then calculated and evaluated the significance of Spearman correlations 2 between population abundances in each of the 25 focal cells and the proportions of H-cells surrounding the focal cells. In order to describe and compare correlation patterns among 3 4 simulations, correlation coefficients were calculated in four buffer zones (D1, D2, D3 and D4)of different radii d surrounding each focal cells (d=1, 2, 3 and 4, respectively). Three 5 6 commonly used indicators were recorded to describe correlation patterns (Table 1): the value 7 *Rm* of the highest correlation coefficient, and two measures of the scale of effect namely the 8 distance Dm at which Rm was achieved (e.g. Jackson and Fahrig, 2012), and the greatest distance Ds at which a significant correlation occurred (e.g. Carrière et al., 2006). Ds was 9 assumed to be 0 when no correlation was significant. 10

11

12 **3. Results**

All significant correlations (85% of correlations) were positive in simulations with the *Step*, *12nn* and *2Dt* dispersal models, indicating that local population abundances in sampling cells were higher in cells surrounded by a large proportion of H-cell. Correlations averaged $0.65 \pm sd 0.22$ for the three dispersal models (Table 3). As expected, in the *Random* dispersal model used as reference, 6% of correlations were significant, which is little more than that expected by chance.

19

20

3.1. Effects of the variation in habitat quality on the correlation patterns

The shape of the correlation coefficient curves with increasing Q was similar for all buffer zones, rising to a maximum before declining (Fig. 3A). For the *D1* and *D2* buffers, the value of the correlation reached a maximum at Q=0.750, while for the *D3* and *D4* buffers this was at Q=1.039. The maximal correlation, *Rm*, followed a similar trajectory, increasing with Q to a maximum at Q=0.75 (Fig. 3B). The correlation coefficients were globally smaller for

the smallest buffer, *D1*, and larger for the buffer, *D2* (Fig. 3A). The mean of the distance of
the highest correlation, *Dm*, was 2.61. *Dm* did not present a clear response to variation in *Q*(Fig. 3C). The greatest distance with a significant correlation, *Ds*, showed the same tendency
as the maximal correlation, *Rm*, increasing with *Q* to a maximum at *Q*=0.75 (Fig. 3D).
The value of *Q*=0.75 was chosen to perform the second set of simulations. This *Q*gave an intermediate value of the proportion of high quality habitat (*P_H*=0.5) and the highest
contrast in growth rates between high and low quality habitat (*δ* = 0.06, Table 2).

3.2. Effects of aggregation of the habitat and dispersal on the correlation

10 patterns

9

For each of the four buffer radii, the correlation between the local population 11 12 abundance in each cell and the proportion of surrounding H-habitat increased with the spatial 13 aggregation of the habitat across the landscape (Fig. 4). The correlation patterns also depended on the dispersal model (Fig. 5), particularly for the two first buffer radii (D1 and 14 15 D2), for which the correlation was higher for the Step than for the 12nn dispersal model and also higher for the 12nn than for the 2Dt dispersal model. The correlation value was not 16 influenced by the dispersal rate (mean correlation for m=0.05: 0.47 ± sd 0.34; m=0.075: 0.49 17 \pm sd 0.35; *m*=0.1: 0.50 \pm sd 0.37). 18

Rm increased with increasing spatial aggregation of the habitat and decreased with
increasing dispersal distance, irrespective of the level of aggregation of the habitat (Fig. 6A). *Dm* increased both with increasing dispersal distances and level of aggregation of the habitat
(Fig. 6B). *Ds* was higher in landscapes with spatial aggregation than in random landscapes,
but did not vary with the dispersal distance (Fig. 6C).

24

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 DOI : 10.1016/j.ecocom.2013.02.008 Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 4. Discussion

In the present study, we show that both species population parameters and landscape characteristics simultaneously affect patterns of landscape correlation. The value and distance of maximal correlation were sensitive to variation in habitat quality, dispersal distances and the level of aggregation of the habitat; the greatest distance of significant correlation was affected by landscape variation in habitat quality.

7

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

8 4.1. Effects of the variation in habitat quality on the correlation patterns

9 As expected, the correlations between local population abundance in sampling cells 10 and the surrounding amount of favourable habitat were positive in the case of non-random dispersal (Fig. 3). The correlation increased with increasing variation in the habitat quality of 11 the whole landscape, up to a maximal value that corresponded to equal proportions of H- and 12 13 L-habitat (i.e. maximal habitat heterogeneity) and maximal difference in quality between H-14 and L-habitat types. These results provide support for our interpretation that higher correlations are a consequence of highly contrasted habitat qualities and/or high global 15 proportion of high quality habitat over the landscape. This might result from the proportion of 16 high quality habitats, within buffers, following a binomial distribution, with maximum 17 variance at $P_H = 0.5$. This cannot be the only explanation, however, as correlations were 18 19 higher at $P_H = 0.25$ than at $P_H = 0.75$ (both for $\delta = 0.04$ and $\delta = 0.06$), which would not be expected for the binomial distribution. A practical issue for Landscape Ecologists is, 20 21 therefore, that ranking habitat quality for species based on values of correlation will produce 22 misleading or anomalous results if the proportions of habitat are not constant over the landscape (Tischendorf, 2001; Rusch et al., 2011). 23

We found that, the scale of effect measured as *Dm* neither depended on proportion of
good quality habitat nor on differences of quality, *δ*, between H- and L-habitats; H- and L-

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 habitat quality differences largely determined the local population size and global abundance 2 over the landscape. This finding contrasts with the conclusion of Jackson and Fahrig (2012) that "population size (and the underlying population growth rate that leads to population size) 3 may be a strong negative predictor of scale of effect". As with Jackson and Fahrig (2012), the 4 exact mechanism for our result is difficult to pinpoint. However, the discrepancy between the 5 results may be due to differences in the modelling approaches used for dispersal. In our first 6 set of simulations, dispersal distances were short implying that, at each time step, it was only 7 8 the population abundance within the close neighbourhood that affected abundance of focal patch. In Jackson and Fahrig (2012), individuals could move longer distances, and the 9 10 abundance of the whole population abundance may impact abundance of focal patch. Such 11 'heavy-tails' to the distribution of dispersal distances can lead to 'super-diffusion' (Clark, 12 1998; Viswanathan et al., 2011) and decrease the correlation pattern between local abundance 13 and surrounding habitat amount.

14

4.2. Effects of the aggregation of the habitat and dispersal parameters on the correlation patterns

17 Our findings for the aggregation of the type of habitat quality and species dispersal were more intuitive. The value of a correlation depended on the dispersal model, with the 18 strength of the correlations decreasing with increasing average dispersal distance (Fig. 5). The 19 20 effect was consistent with increasing dispersal homogenizing the abundance of populations 21 among cells, through an exchange of individuals (Bowler and Benton, 2009). Dispersal 22 reduces correlation values because all cells will tend to have similar population abundances. 23 Long distance dispersers will also tend not to perceive small scale landscape heterogeneities because heterogeneity among buffers decreases as dispersal distances increase (Baguette and 24 Van Dyck, 2007). Correlation coefficients also increased between random landscapes and 25

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

landscapes with aggregated habitat (Fig. 6), probably in part because the level of aggregation
increased the apparent contrast between H- and L-habitat landscape composition. However,
there was no effect of the level of aggregation, despite the highly contrasted maps we used
(Fig. A2 in the Supplementary Material). Increasing the aggregation of the habitat within the
landscape impacts the connectivity of good quality habitat cells, independent of habitat
proportion, and affects the spatial structure of populations over the landscape (Tischendorf,
2001).

8 As explained, we found that landscape correlations depended on the dispersal model (Fig. 5), with the strength of the correlation decreasing with increasing average dispersal 9 distance; and effect consistent with homogenization. However, where migration is restricted 10 11 to the near neighbourhoods, strong spatial structuring of population abundances can result. 12 Populations close to high quality habitat would tend to have higher abundances (e.g. Ockinger 13 and Smith, 2007); thus increasing correlation. We did not, though, detect an expected 14 influence of dispersal rate on the pattern of correlation. The value of the correlation was more 15 related to the spatial distribution of displacement events than to the rate (frequency) of 16 displacements. Interestingly, the variation in correlation coefficients achieved with the different dispersal models was consistent across the three levels of aggregation of the habitat 17 18 across the landscape.

19

20 4.3. Accuracy of the indices describing correlation patterns

The indices of correlation that might be used by landscape ecologists (*Rm*, *Dm* and *Ds*) were found to be related both to population dynamics parameters and global landscape characteristics. The highest correlation coefficient, *Rm*, appeared to summarize all the correlation effects. High values of *Rm* occurred in landscapes with aggregated habitat and/or landscapes with a high variation in habitat quality and for species with lower distances of

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

dispersal. This would suggest that correlations are unlikely to be observed for species with 1 relatively long distance dispersal, with respect to the scales of habitat heterogeneity. 2 Landscape characteristics and population dispersal also impacted the distances of 3 observed correlations between the local population abundance and the proportion of high 4 quality cells. In empirical studies, the maximal extent of significant correlation (e.g. Carrière 5 et al., 2006), the range of distances that provided significant correlations (e.g. Roschewitz et 6 al., 2005; Thies et al., 2005) and the distance providing the strongest correlation (e.g. Thies et 7 8 al., 2003) have been used to infer both the spatial scales that species are influenced by landscape characteristics and, more rarely, dispersal ability. Here, we analysed Dm and Ds as 9 10 two synthetic variables to evaluate the distance effects of favourable habitat quantity. Dm was 11 found to be very sensitive to the dispersal model and increased with average dispersal distance, as has been assumed in empirical studies. However, it was also sensitive to the 12 13 aggregation of the habitat (Fig. 6). As a consequence, we believe it would be difficult to derive the mean dispersal distance of a given species using the measurement of the distance of 14 15 the highest correlation, Dm, alone. We also found that Ds did not depend on population 16 dynamics parameters or on landscape structure (for landscapes with aggregated habitat), but increased only with the variation in habitat quality. It thus does not appear to be a very useful 17 statistic to infer dispersal. Perhaps most interestingly, all the indices of correlation we 18 19 considered in this study were found not to be affected by the rate of dispersal. This would 20 suggest to us that estimates of dispersal rate cannot be derived from observed patterns of 21 correlation.

23

22

24 4.4. Modelling context

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 . DOI : 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 In this study, we used representations of simple natural landscapes and population 2 dynamics in order to understand qualitative landscape-correlation relationships. We chose to focus solely only on the representation of the spatial variation of habitat quality and to keep it 3 4 stable along the simulations, which would likely not be the case in all landscapes (Le Féon et al., 2012). The dynamics of the populations were also greatly simplified and rather than 5 modelling particular taxa, we considered only simple, general processes. This generic 6 approach allowed us to highlight general trends that can be readily interpreted and gave 7 8 important insight into analysing correlation patterns between local population abundances and landscape features. However, some of the simulation characteristics we used may be more 9 10 representative of some systems than others. The modelled local population dynamics 11 described the dynamics of an annual species with population growth during a favourable 12 season, bracketed by large death rates in winter that re-set the populations to low levels for the 13 start of the following year. This population dynamic system resembles that of many pest 14 arthropods in temperate agriculture.

15

Manuscrit d'auteur / Author manuscript

Manuscrit d'auteur / Author manuscript

16 5. Conclusion

17 Our results indicate that global landscape structure and composition affect the patterns of correlation between population abundance and amounts of favourable habitat. Such global 18 19 landscape characteristics therefore need to be considered in analyses that intend to derive 20 population dynamic parameters from empirical, landscape correlation studies. Inferring either 21 the quality of a habitat from the intensity of the correlation or the distance of dispersal from 22 the distance of the highest correlation requires knowledge of whether the habitat is aggregated 23 or not. Our work confirms that it is necessary to control for the interaction between landscape structure and population dynamics parameters, such as dispersal distance, possibly by using 24 landscape replication, and to report details about the proportion and spatial distribution of the 25

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15,

Postprint Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom				
1	investigated habitats to facilitate comparison among studies in different landscapes. These			
2	results also reaffirm the importance of modelling to predict, test and correctly interpret			
3	observed patterns of correlation (Zurell et al., 2010).			
4				
5				
6	Acknowledgments			
7	We are grateful to Alain Franc and Etienne K. Klein who provided useful advice on			
8	modelling spatial dynamics and insect dispersal. This work was supported by the ECOGER			

9 programme ('Ecco des Vergers') and a doctoral grant to BR funded by INRA and the PACA

10 region.

11

12

Manuscrit d'auteur / Author manuscript

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 References

- 2 Aldridge, C.L., Boyce, M.S., 2007. Linking occurrence and fitness to persistence: Habitat-
- 3 based approach for endangered Greater Sage-Grouse. Ecol. Appl. 17, 508-526.
- 4 Baguette, M., Van Dyck, H., 2007. Landscape connectivity and animal behavior: functional
- 5 grain as a key determinant for dispersal. Landscape Ecol. 22, 1117-1129.
- Bender, D.J., Tischendorf, L., Fahrig, L., 2003. Using patch isolation metrics to predict
 animal movement in binary landscapes. Landscape Ecol. 18, 17-39.
- 8 Bianchi, F.J.J.A., Booij, C.J.H., Tscharntke, T., 2006. Sustainable pest regulation in
- 9 agricultural landscapes: a review on landscape composition, biodiversity and natural pest
- 10 control. Proc. R. Soc. Lond. B Biol. Sci. 273, 1715-1727.
- Bowler, D.E., Benton, T.G., 2009. Impact of dispersal on population growth: the role of interpatch distance. Oikos 118, 403-412.
- 13 Brennan, J.M., Bender, D.J., Contreras, T.A., Fahrig, L., 2002. Focal patch landscape studies
- 14 for wildlife management: optimizing sampling effort across scales. In: Liu J, Taylor WW
- 15 (eds) Integrating landscape ecology into natural resource management. Cambridge16 University Press, Cambridge.
- 17 Campagne, P., Buisson, E., Varouchas, G., Roche, P., Baumel, A., Tatoni, T., 2009. Modeling
- 18 landscape structure constraints on species dispersal with a cellular automaton: Are there
- 19 convergences with empirical data? Ecol. Complex. 6, 183-190.
- 20 Carrière, Y., Ellsworth, P.C., Dutilleul, P., Ellers-Kirk, C., Barkley, V., Antilla, L., 2006. A
- GIS-based approach for areawide pest management: the scales of Lygus hesperus
 movements to cotton alfalfa, weeds, and cotton. Entomol. Exp. Appl. 118, 203-210.
- 23 Clark, J.S., 1998. Why trees migrate so fast: confronting theory with dispersal biology and the
- 24 paleorecord. Am. Nat. 152, 204-224.

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

- 1 Decante, D., Van Helden, M., 2006. Population ecology of *Empoasca vitis* (Gothe. and
- 2 Scaphoideus titanus, Ball) in Bordeaux vineyards: Influence of migration and landscape.
- 3 Crop Prot. 25, 696-704.
- 4 Jackson, H.B., Fahrig, L., 2012. What size is a biologically relevant landscape? Landscape
- 5 Ecol. 27, 939-941.
- Jeanneret, P., Schupbach, B., Pfiffner, L., Walter, T., 2003. Arthropod reaction to landscape
 and habitat features in agricultural landscapes. Landscape Ecol. 18, 253-263.
- Jepsen, J.U., Baveco, J.M., Topping, C.J., Verboom, J., Vos, C.C., 2005. Evaluating the effect
 of corridors and landscape heterogeneity on dispersal probability: a comparison of three
 spatially explicit modelling approaches. Ecol. Model. 181, 445-459.
- 11 Le Féon, V., Burel, F., Chifflet, R., Henry, M., Ricroch, A., Vaissière, B.E., Baudry, J., 2012.
- 12 Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric.
- 13 Ecosyst. Environ. In press, doi:10.1016/j.agee.2011.06.020.
- 14 McKee, G.J., Goodhue, R.E., Zalom, F.G., Carter, C.A., Chalfant, J.A., 2009. Population
- 15 dynamics and the economics of invasive species management: The greenhouse whitefly in
- 16 California-grown strawberries. J. Environ. Manage. 90, 561-570.
- Moilanen, A., Hanski, I., 1998. Metapopulation dynamics: Effects of habitat quality and
 landscape structure. Ecology 79, 2503-2515.
- Moilanen, A., Nieminen, M., 2002. Simple connectivity measures in spatial ecology. Ecology
 83, 1131-1145.
- Moser, D., Drapela, T., Zaller, J.G., Frank, T., 2009. Interacting effects of wind direction and
 resource distribution on insect pest densities. Basic Appl. Ecol. 10, 208-215.
- 23 Ockinger, E., Smith, H.G., 2007. Semi-natural grasslands as population sources for
- 24 pollinating insects in agricultural landscapes. J. Appl. Ecol. 44, 50-59.
- 25 Pulliam, H, 1988. Sources, sinks, and metapopulation regulation. Am. Nat. 132, 652-661.

Version définitive du manuscrit publiée dans / Final version of the manuscript published ir	۱:
Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008	
Journal homepage: www.elsevier.com/locate/ecocom	

- 1 Reeve, J.D., Cronin, J.T., Haynes, K.J., 2008. Diffusion models for animals in complex
- 2 landscapes: incorporating heterogeneity among substrates, individuals and edge
- 3 behaviours. J. Anim. Ecol. 77, 898-904.

4 Ricci, B., Franck, P., Toubon, J.F., Bouvier, J.C., Sauphanor, B., Lavigne, C., 2009. The

- 5 influence of landscape on insect pest dynamics: a case study in southeastern France.
 - Landscape Ecol. 24, 337-349.
- Ricketts, T.H., 2001. The matrix matters: Effective isolation in fragmented landscapes. Am.
 Nat. 158, 87-99.
- 9 Roschewitz, I., Hücker, M., Tscharntke, T., Thies, C., 2005. The influence of landscape

context and farming practices on parasitism of ceral aphids. Agric. Ecosyst. Environ.
108, 218-227.

Rusch, A., Valantin-Morison, M., Sarthou, J.P., Roger-Estrade, J., 2010. Biological control of
 insect pests in agroecosystems: effects of crop management, farming systems, and

14 seminatural habitats at the landscape scale: a review. Adv. Agron., vol 109 (ed D.L.

15 Sparks), pp 219-259. Elsevier Academic Press Inc., San Diego.

Rusch, A., Valantin-Morison, M., Sarthou, J.P., Roger-Estrade, J., 2011. Multi-scale effects of
landscape complexity and crop management on pollen beetle parasitism rate. Landscape
Ecol. 26, 473-486.

Schmidt, M.H., Roschewitz, I., Thies, C., Tscharntke, T., 2005. Differential effects of
landscape and management on diversity and density of ground-dwelling farmland spiders.

21 J. Appl. Ecol. 42, 281-287.

Schroder, B., Seppelt, R., 2006. Analysis of pattern-process interactions based on landscape
 models - Overview, general concepts, and methodological issues. Ecol. Model. 199, 505 516.

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 DOI : 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

- 1 Sebert-Cuvillier, E., Simon-Goyheneche, V., Paccaut, F., Chabrerie, O., Goubet, O., Decocq,
- 2 G., 2008. Spatial spread of an alien tree species in a heterogeneous forest landscape: a
- 3 spatially realistic simulation model. Landscape Ecol. 23, 787-801.
- 4 Thies, C., Steffan-Dewenter, I., Tscharntke, T., 2003. Effects of landscape context on
- 5 herbivory and parasitism at different spatial scales. Oikos 101, 18-25.
- 6 Thies, C., Roschewitz, I., Tscharntke, T., 2005. The landscape context of cereal aphid-
- 7 parasitoid interactions. Proc. R. Soc. Lond. B Biol. Sci. 272, 203-210.
- 8 Thomas, C.D., Kunin, W.E., 1999. The spatial structure of populations. J. Anim. Ecol. 68,
 9 647-657.
- 10 Tischendorf, L., 2001. Can landscape indices predict ecological processes consistently?
 11 Landscape Ecol. 16, 235-254.
- Turner, M.G., 2005. Landscape ecology: What is the state of the science? Annu. Rev. Ecol.
 Evol. Syst. 36, 319-344.
- Veres, A., Petit, S., Conord, C., Lavigne, C. 2012. Does landscape composition affect pest
 abundance and their control by natural enemies? Agric. Ecosyst. Environ. In press,
 doi:10.1016/j.agee.2011.05.027.
- Viswanathan, G.M., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., 2011. The physics of
 foraging: an introduction to random searches and biological encounters. Cambridge
- 19 University Press, Boston.
- Vos, C.C., Chardon, J.P., 1998. Effects of habitat fragmentation and road density on the
 distribution pattern of the moor frog Rana arvalis. J. Appl. Ecol. 35, 44-56.
- Wiegand, T., Moloney, K.A., Naves, J., Knauer, F., 1999. Finding the missing link between
 landscape structure and population dynamics: A spatially explicit perspective. Am. Nat.
 154, 605-627.

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

- 1 Zaller, J.G., Moser, D., Drapela, T., Schmoger, C., Frank, T., 2008. Effect of within-field and
- 2 landscape factors on insect damage in winter oilseed rape. Agric. Ecosyst. Environ. 123,
- 3 233-238.
- 4 Zurell, D., Berger, U., Cabral, J., Jeltsch, F., Meynard, C., Muenkemueller, T., Nehrbass, N.,
- 5 Pagel, J., Reineking, B., Schroeder, B., Grimm, V., 2010. The virtual ecologist approach:
- 6 simulating data and observers. Oikos 119, 622-635.

Postprint Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 **TABLES**

2 Table 1. Variable names and description.

Category	Parameter name	Description
Population growth	r _H	Growth rate in high quality habitat
	r_L	Growth rate in low quality habitat
	$\delta = r_H - r_L$	Growth rate difference between habitats
Dispersal	т	Dispersal rate
	disp	Dispersal model (qualitative)
Landscape	P_H	Proportion of high quality habitat
	S	Aggregation of habitat quality across the landscape (qualitative)
	Q	Variation in habitat quality
Correlation description	Rm	Maximal correlation
	Dm	Distance of maximal correlation
	Ds	Greatest distance with a significant correlation

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 . DOI : 10.1016/i.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

- 1 Table 2. Variation in habitat quality (Q) for different proportions P_H of high quality habitat
- 2 and different values of growth rate contrast δ between high and low quality habitats.

P_H	δ = 0.06	$\delta = 0.04$	$\delta = 0.02$
0.10	1.125	0.353	0.115
0.25	1.039	0.433	0.158
0.50	0.750	0.400	0.167
0.75	0.472	0.289	0.133
0.90	0.281	0.182	0.088

4

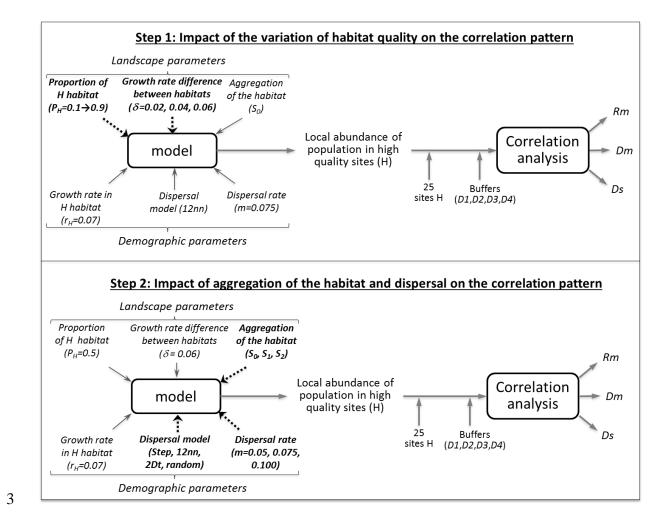
3

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 . DOI : 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

- 1 Table 3. Mean correlation between population abundance and surrounding proportion of high
- 2 quality habitat, and percentage of significant positive or negative correlations.

Disperal model	Mean correlation	Percentage of significant and positive correlations	Percentage of significant and negative correlations
Step	0.73 (± SE 0.011)	92.2	0
12nn	0.66 (± SE 0.011)	86.7	0
2Dt	0.56 (± SE 0.012)	76.9	0
Random	0.01 (± SE 0.011)	2.2	4.2

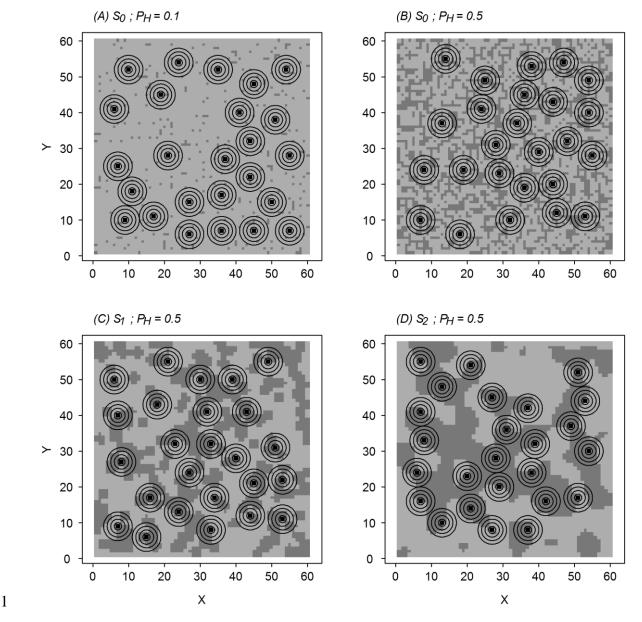

3

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 . DOI : 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

1 FIGURES CAPTION

Manuscrit d'auteur / Author manuscript



Manuscrit d'auteur / Author manuscript

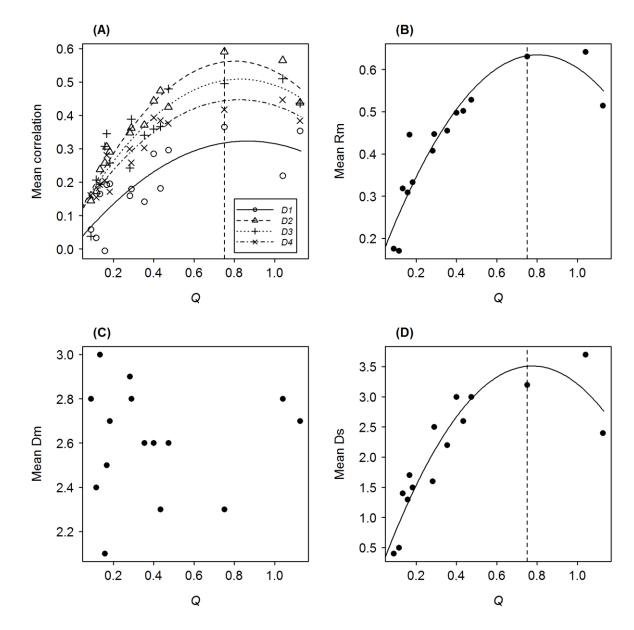
Fig. 1. Simulation designs for each one of the two studied questions. On the left part of the
scheme describing the landscape and population demographic parameters used in the
simulating model (Table 1), variable parameters are indicated in bold with dashed arrows and
fixed parameters are indicated with small full-line arrows. On the right part of the scheme
describing the correlation analysis, three output parameters were computed to describe
intensity (*Rm*) and spatial extent of the correlations (*Dm* and *Ds*) according to simulations.

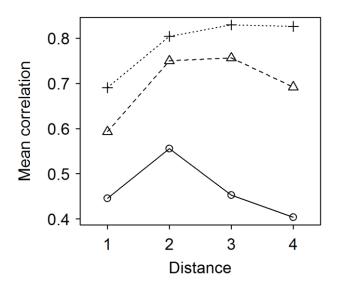
Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 DOL : 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

2 Fig. 2. Maps of some landscape configuration used for the simulations, including position of the selected cells and the four buffer zones (D1, D2, D3, D4) used for the calculation of 3 correlations: random landscape with a proportion of H-habitat $P_H = 0.1$ (A) and 0.5 (B), 4 5 landscapes with low (C) and high (D) level of aggregation of the habitat. Cells corresponding to L-habitat are represented by light grey dots; cells corresponding to H-habitat by dark grey 6 7 dots. The 25 selected H-cells used for the correlation between population abundance and the proportion of surrounding H-habitat are indicated by black dots and are surrounded by the 8 9 four buffer zones of increasing radius distances.

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom




Fig. 3. Effect of the variation of habitat quality Q on (A) the correlation between local
population abundance and surrounding proportion of H-habitat, (B) the highest correlation,
(C) the distance of the highest correlation and (D) the greatest distance at which a significant
correlation occurred. Each point is a mean value over the ten replicates of a given value of Q.
Curves are second-order polynomial regressions: (A)-D1: R²=0.64; (A)-D2: R²=0.94; (A)-D3:
R²=0.77, (A)-D4: R²=0.91; (B): R²=0.87; (D): R²=0.87.

8

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 DOI: 10.1016/j.ecocom.2013.02.008

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

Fig. 4. Effect of the aggregation of the habitat ($\circ S_0$, $\triangle S_1$, + S_2) on the value of the correlation between local population abundance and surrounding proportion of H-habitat in buffer zones of increasing radius distances (*D1*, *D2*, *D3* and *D4*). Each point is a mean over ten replicates of a given level of aggregation (S_0 , S_1 , S_2) and the combination of dispersal parameters, except the *Random* dispersal model (three dispersal rates *m* and three dispersal models *Step*, *12nn*, *2Dt*).

8

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

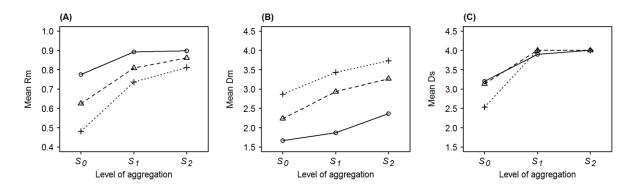


Fig. 5. Effect of the dispersal model (○ *Step*, △ *12nn*, + *2Dt*) on the value of the correlation
between local population abundance and surrounding proportion of H-habitat in buffer zones
of increasing radius distances (*D1*, *D2*, *D3* and *D4*). Each point is a mean over the
combinations of other parameters (three dispersal rates (*m* = 0.05, 0.075, 0.100), three levels
aggregation of the habitat (*S*₀, *S*₁, *S*₂) and ten replicates of a given landscape structure).

Comment citer ce document : Ricci, B. (Auteur de correspondance), Franck, P., Valantin-Morison, M., Bohan, D., Lavigne, C. (2013). Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 15, 62-70 , DOI : 10.1016/j.ecocom.2013.02.008

1

Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Ecological Complexity (2013), Vol. 15, p. 62-70, DOI: 10.1016/j.ecocom.2013.02.008 Journal homepage: www.elsevier.com/locate/ecocom

2 **Fig. 6.** Effect of aggregation of the habitat (S_0, S_1, S_2) and the dispersal model (\bigcirc Step, \triangle 3 $12nn_{1} + 2Dt$) on (A) the highest correlation, Rm_{2} (B) the distance of the highest correlation, Dm; and (C) the greatest distance at which a significant correlation occurred, Ds. Each point 4 is a mean value over the three dispersal rates and the ten replicates of a given level of 5 6 aggregation (S_0, S_1, S_2) .

7

1

Manuscrit d'auteur / Author manuscript