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Abstract

The purpose of this paper is to introduce a concept of equivalence between machine learn-
ing algorithms. We define two notions of algorithmic equivalence, namely, weak and strong
equivalence. These notions are of paramount importance for identifying when learning prop-
erties from one learning algorithm can be transferred to another. Using regularized kernel
machines as a case study, we illustrate the importance of the introduced equivalence concept
by analyzing the relation between kernel ridge regression (KRR) and m-power regularized
least squares regression (M-RLSR) algorithms.

1 Introduction

Equivalence is a fundamental concept that defines a relationship between two objects and allows
the inference of properties of one object from the properties of the other. In the field of machine
learning, several theoretical concepts have been proposed in order to estimate the accuracy of
learning algorithms, among which complexity of the hypothesis set [, [2] [3], stability [4] and
robustness [5], but little can be said concerning how these learning properties can be moved from
one learning algorithm to another one. This raises the question of how equivalence between two
learning algorithms might be defined such that some learning characteristics could be transferred
between them.

When are two learning algorithms equivalent? More precisely, given {Z, A;, A;}, i = 1,2, where
Z is a training set, 4; is a learning algorithm that constructs to every training set Z a decision
function f , and ); is a tuning parameter that balances the trade-off between fitness of f7 , to
the data Z and smoothness of f% ,, under what conditions is A; equivalent to A>? Many learning
algorithms can be formulated as an optimization problem. In this case, it is often thought that
two learning algorithms are equivalent if their associated optimization problems are. One purpose
of this paper is to point out that showing that two optimization problems are equivalent is not
adequate evidence that the underlying learning algorithms are exchangeable with each other or even
share some learning properties. Indeed, restricting the analysis of equivalence between learning
algorithms to that of their optimization problems tends to omit details and ignore steps forming
the whole learning mechanism such as the selection of the tuning parameter A or the change of
the learning set Z. The notion of equivalence between learning algorithms needs thus to be clearly
defined.

The concept of algorithmic equivalence in machine learning has never been properly defined;
the degree of difference between an optimization problem and its associated learning algorithm is
not defined anywhere, nor has an exact definition. In this work, we rigorously define two notions of
equivalence for learning algorithms and show how to use these notions to transfer stability property
from a learning algorithm to another. Algorithmic stability is of particular interest since it provides
a sufficient condition for a learning algorithm to be consistent and generalizing [6]. The first notion
of equivalence we define, called weak-equivalence, is related in some way to the equivalence between



the associated minimization problems. By weak equivalence, we would like to emphasize here that
this equivalence holds only when the algorithms are evaluated on a given training set Z. This
matches in some manner the equivalence between the optimization problems since the objective
function to minimize is evaluated only for the set Z of training examples (z;,y;);—,, which is fixed
in advance. The second notion is stronger, in the sense that two learning algorithms are strongly
equivalent when their equivalence does not depend on the training set Z.

As a case study, we consider regularized kernel methods which are learning algorithms with
a regularization over a reproducing kernel Hilbert Space (RKHS) of functions. In particular, we
study the regularized least squares regression problem when the RKHS regularization is raised
to the power of m [, [§], where m is a variable real exponent, and design an efficient algorithm
for computing the solution, called M-RLSR (m-power regularized least squares regression). Using
our algorithmic equivalence concept, we analyze the relation between M-RLSR and kernel ridge
regression (KRR) algorithms.

In this paper, we make the following contributions: 1) we formalize the concept of equivalence
between two learning algorithms and define two notions of algorithmic equivalence, namely, weak
and strong equivalence (Section . 2) We show that the weak equivalence is not sufficient to
allow the transfer of learning properties, such as stability, while strong equivalence is. Moreover,
we provide sufficient assumptions under which the transfer of stability still holds even in the weak
equivalence case (Section . 3) As a case study, we consider the equivalence between KRR and
M-RLSR. More precisely, we derive a semi-analytic solution to the M-RLSR optimization problem,
we design an efficient algorithm for computing it, and we show that M-RLSR and KRR algorithms
are weakly and not strongly equivalent (Section .

2 Notations and Backround

In the following, X will denote the input space, Y the output space, Z" = (X x V)", Z = U,>1 2",
Z € Z atraining set, H C V¥ the Banach space of hypotheses (for instance a separable reproducing
kernel Hilbert space (RKHS)). Here and throughout the paper we use both notations | Z| and #(Z)
to denote the cardinal of the set Z.

Following the work of Bousquet and Elisseeff [4], a learning algorithm is defined as a mapping
that takes a learning set made of input-output pairs and produces a function f that relates inputs
to the corresponding outputs. For a large class of learning algorithms, the function f is obtained
by solving an optimization problem. So before talking about algorithmic equivalence, it is helpful
to discuss equivalence between optimization problems. A mathematical optimization problem [9]
has the form

minimize I(f)
subject to Li(f) <b;,, i=1,...,q.

Here f is the optimization variable of the problem, the function [ : H — R is the objective
function, the functions I; are the (inequality) constraint functions, and the constants b; are the
limits for the constraints. A function f* is called optimal, or solution of the problem, if it has
the smallest objective value among all functions that satisfy the constraints. We consider here
only strictly convex objective and constraint functions, so that the minimization problem have an
unique solution and f* is well defined. Two optimization problems are equivalent if both provide
the same optimal solution.

The machine learning literature contains studies showing equivalence between learning algo-
rithm (see, e.g., [I0 [IT], 12]); however, most of them have focused only on the equivalence that
may occur between the associated optimization problems. In this sense, an equivalence between
two optimization problems offers a way to relate the associated learning algorithms. However, this
is not sufficient to decide whether the optimization equivalence allows to transfer theoretical prop-
erties from one learning algorithm to the other. A work that have indirectly supported this view



is that of Rifkin [13], who studied learning algorithms related to Thikonov and Ivanov regularized
optimization. In [I3, Chapter 5], it was shown that even though these optimization problems are
equivalent, i.e., they give the same optimal solution, the associated learning algorithms have not
the same stability properties. From this point of view, equivalence between minimization prob-
lems does not imply that the underlying algorithms share the same learning characteristics. This
consideration is closely related to our goal of identifying when properties of a learning algorithm
can be moved from one to another. The concept of algorithmic equivalence emerges in response to
this question.

3 Weak and Strong Equivalence Between Learning Algo-
rithms

In this section, we provide a rigorous definition of the concept of equivalence between machine
learning algorithms. The idea here is to extend the notion of equivalence of optimization problems
to learning algorithms. We first start by recalling the definition of a learning algorithm as given by
Bousquet and Elisseeff [4], and for simplicity we restrict ourselves to learning algorithms associated
to strictly convex optimization problems.

Definition 3.1 (Learning Algorithm). A learning algorithm A is a function A:Z — H which
maps learning set Z onto a function A(Z), such that

A(Z) = argEI;a{in R(Z,g), (1)

where R(Z,-) is a strictly convez objective function.

Since we consider only strictly convex objective functions, the minimization problem has an
unique solution and is well defined. From this definition, the following definition of equivalence
between algorithm naturally follows.

Definition 3.2 (Equivalence). Let Z be a training set. Two algorithms A and B are equivalent
on Z if and only if A(Z) = B(Z).

In other words, let A (resp. B) be a learning algorithm associated to the optimization problem
R (resp. S), then A and B are equivalent on Z if and only if the optimal solution of R(Z,-) is
the optimal solution of S(Z,-). It is important to point out that the optimal solutions of R and
S are computed for a set Z, and even though they are equal on Z, there is no guarantee that this
remains true if Z varies. This means that the two algorithms A and B provide the same output
with the set Z, but this may not be necessarily the case with another set Z’.

In this paper, we pay special attention to regularized learning algorithms. These algorithms
depend on a regularization parameter that plays a crucial role in controlling the trade-off between
overfitting and underfitting. It is important to note that many widely used regularized learning
algorithms are families of learning algorithms. Indeed, each value of the regularization parameter A
defines a different minimization problem. As an example, we consider Kernel ridge regression [14]
which is defined as follows

argmm% S F@)? A (2)

fen (z.9)€Z

In the following, we denote by A(-) a regularized learning algorithm indexed by a regularization
parameter in R* . In other words, VA € R%, A(-) = A(XA)(-) = A(],-) defines a learning algorithm
as in definition Note that all the results we will state can be naturally extended to a larger
class of family of learning algorithms.



Equivalence of regularized learning algorithms. We now define the notion of weak
equivalence between regularized learning algorithms as an extension of definition [3:2} To illustrate
this equivalence, we provide some basic examples in this section and an in-depth case study in
Section

Definition 3.3 (Weak Equivalence). Let A(-) and B(-) two regularized learning algorithms on
R x Z. Then A(-) and B(-) are said to be weakly equivalent if and only if 3I®a_,p : R} x Z — RY
such that

1.VZ € Z, ®a_B(-, Z) is a bijection from R* into RY,
2.VZ C Z, VAeRL, A(N) and B(®PaB(A, Z)) are equivalent on Z.

In the particular case where ® o _,g does not depend on Z, this assertion becomes much stronger
than the weak equivalence, and will be referred as strong equivalence.

Definition 3.4 (Strong Equivalence). Let A(-) and B(-) two regularized learning algorithms on
R x Z. Then A(-) and B(-) are said to be strongly equivalent if and only if it exists Po_B, a
bijection from R into R such that A(-) = B(®a_B(-)) where the equality is among functions
from R into H=.

This notion of weak equivalence is frequently encountered in machine learning algorithms. For
instance, it naturally occurs when using Lagrangian duality and when transiting from Ivanov’s to
Thikonov’s method [I3, Chapter 5]. Note that weak and strong equivalence between two learning
algorithms have some immediate implications for interpreting their regularization paths (see the
supplementary material for more details). The natural question which now arises is whether by
knowing some learning properties of A and the weak equivalence of A and B it is possible to
deduce learning properties for B. This question is studied in the next section.

4 Consequences of Equivalence Between Learning Algorithms

We now study the consequences of the algorithmic equivalences defined in the previous section.
In particular we investigate wether these notions of equivalence allow the transfer of learning
properties from one learning algorithm to another. We first begin by the following proposition
which presents a main of the weak equivalence.

Proposition 4.1 Let A()\) and B(X) two weakly equivalent reqularized learning algorithms. Then
Z CX inf A Z)=inf B 7).
VZcXxY, iof AQN)(Z)= inf B(A)(Z)

PrOOF : This Proposition directly follows from Definition [3.3

Proposition means that the optimal solutions given by two weakly equivalent (regularized)
learning algorithms are the same. However, without further assumptions, weak equivalence is of
little consequence to the transfer of learning properties from one to the other, such as stability,
consistency or generalization bounds. Indeed, these properties are defined for a varying training set
either by altering it (such as in stability) or by making it increasingly large (such as in consistency).
To illustrate this idea, we will address in particular the question whether weakly equivalence allows
or not the transfer of stability.

Transfer of stability. In the following we choose to focus on uniform stability which is an
important property of a learning rule that allows to get bounds on the generalization performance
of learning algorithms. Following [4], the uniform stability of a regularized learning algorithm is
defined as follows.

Notation. ¢ : ) x Y +— R, denotes a loss function on Y, and VZ € Z, V1 < i < |Z|, Z¢
denotes the set Z minus its i-th element.



Definition 4.2 (Uniform stability). Let f : NT xR% — Ry be such that YA > 0,1imy, o 8(n,A) =
0. A regularized learning algorithms A is said to be - uniformly stable with respect to ¢ if

VAERY, VZEZ Vi<i<n Way)eXxY |Uy A\ Z) - Ly, A\ Z)| < B2, N).

We now give an example to show that weak equivalence is not a sufficient condition for the
transfer of uniform stability.

Example: Let A(-) denotes the KRR as defined by (2)) and B(+) denotes a modified KRR where
the regularization term is A/|Z| instead of A\. A and B are weakly equivalent with ®o_,g(\, Z) =
A Z|. Under some widely used hypotheses on the kernel and on the output random variable Y [4],
A is known to be 8 uniformly stable with 8(n,\) = C1(1 4+ Cy/v/A)/nA where C; and Cy are
constants, and n is the size of the training set Z (see e.g. [4] or [15] for more details). Similarly, it
is easy to see that B satisfies the same property but with 8(n,A) = C1(1 + C’g/m)/)\, which no
longer tends to co as n increases. Indeed, the regularization term in the learning algorithm B())
decreases as |Z| increases, and this leads to a decrease of the stability of the learning algorithm.

It is important to note that if A and B are strongly equivalent, then unlike in the weak
equivalence case, many properties of B are transferred to A. The following Lemma illustrates this
idea in the case of stability.

Lemma 4.3 If A and B are strongly equivalent and if B is B(-,-) uniformly stable, then A is
B(-, PaB () uniformly stable.

PROOF : Let (z,y) € X x Y, Z € Z and XA € RY. It is easy to see that

6y, ANZ) () —£(y, AN Z) (@) | = E(y, B(@a-B(N), Z)(2))—L(y, B(@aoB(N), Z')(2))],
< B(1Z], am(N). -

We have shown that, contrarily to strong equivalence, weak equivalence is not sufficient to
ensure the transfer of learning properties such as uniform stability.

In the following, we introduce two additional assumptions which are a sufficient condition for
the transfer of the uniform stability under the weak equivalence. In order to clearly express these
assumptions, we first introduce a metric on training set, that is to say a metric on unordered
sequences of different lengths. To the best of our knowledge, this is a new metric, which allows to
easily express learning properties such as stability. We will refer to this metric as the generalized
Hamming metri(ﬂ (see e.g. [16] for more details on the usual Hamming metric).

Definition 4.4 Let n > 0, Z! = {z%,7z}l} and Z? = {z%,zi} Let 3(n) denotes the
set of all the permutations of {1,...,n} and H denotes the usual Hamming metric on sequences.
Vo € ¥(n), we denote by Z} the sequence of n elements, whose i-th element is z1(i). We define

o G, (X xI)" x (X x V)" RY, such that G, (Z',2?) = mingex(n) H(zZL 7?),

e H: Z x Z+— RT, such that
#(Z1) — #(Z2) + min G Z,Z5) if #(Z1) > #(Z
(Z1) (Z2) 5 (1) Za) #(ZQ)( o) if #(Z1) > #(Zs),

Zy) — #(Z i G VA th S€.
#(Z2) — #(Z1) —|—Zcz2’#n(1%r)1:#(21) wz)(Z,Z1)  otherwise

H(Zy,Z,) = (3)

The idea of this metric is to consider the number of deletion (i.e. removing an element),
insertion (adding an element) and change (changing the value of one element) that allows to move
from one training set to another (permutations of two elements among a training set are free). The
following proposition proves that H is indeed a metric on Z.

I Note that the Hamming metric and the generalized Hamming metric do not coincide on the set of ordered
sequences.



Proposition 4.5 The function H: Z x Z +— R defined in definition[{.]] is a metric over Z.
PROOF : see the supplementary material. O

Remark 4.6 The generalized Hamming metric can be used to reformulate the notion of stability.
For instance, A is B uniformly stable if and only if A is B lipschitz with respect to the metric H.

With the help of the metric H, we now introduce two assumptions on the regularity of the
functions ® 5 _,g and A.

Assumption 1 ®a_,g(A, ) is C Lipschitz decreasing with respect to H, i.e. 3¢ > 0 and C : N
R, decreasing, lim,,_,o, C(n) =0, such that

LVYXNERY, VZ1,Z3€Z, |2aB(A Z1) — PasB(N Z2)| < cH(Zy, Zs),
2 VNERL, VeEZ VI<i<|Z, |[®ass(A\Z)—da.n 2z <C(2)).

Assumption 2 Let v > 0. A is v Lipschitz with respect to its first variable, i.e. VZ € Z,
VAL Az € R, [AC)(Z) — AQo)(Z)lln < 21h — Aol-

These two assumptions are a sufficient condition to the transfer of stability in the weak equiv-
alence case, as shown in the following Proposition.

Proposition 4.7 Let A and B be two weakly equivalent reqularized learning algorithms satisfying
Assumptions[1] and[4 Moreover, let 8 be as in Definition[{.3 and locally Lipschitz with respect to
its second variable. Suppose that 3k > 0 such that Ve € X, Vf € H, ||f(z)|ly < &| fllx. Then:

If B is 8 uniformly stable, then A is 3 uniformly stable with VAERY, B'(-,A) = O(B(-, \) + C(+)).

PROOF : Let (z,y) € X x Y, Z € Z,n=|Z| and A € R’ . First note that since / is o-admissible,
by using X' = ®a (), Z) and \' = ®5_,5()\, Z),

)
€ (y, A(A, —L(y, AN Z")(@)) | = £ (y, BN, Z)(2)) = £ (5, BN, Z')(2)) |,
<l|t(y,B ( )( ) = (. B, Z)(x)) | + 1€ (y, BN, Z%)(x)) — £ (3, B(N", Z')(2)) |,
< B(n,\') + <m||B(>\'7 ZH =B\, ZY) |, < B(n) + ory|N — X',
< B(n, ) 4+ 6C(n) + oryC(n),

where in the last line we used the fact that g is locally Lipschitz with respect to A, hence 36(A, |A —
X|) > 0 such that B(n,)\) < B(n,\) + §|A — N|. Now, since ®_,p is C-Lipschitz decreasing,
[N — Al =00 0, hence the conclusion. O

Remark 4.8 Proposition[{.7] can be extended to some non o-admissible loss such as the the square
loss by using the same ideas as in [ and [15].

The next section is devoted to present an in-depth case study of weak equivalence. It introduces
a new regularized learning algorithm, M-RLSR, and studies the equivalence between KRR and
M-RLSR.

5 Case Study: M-RLSR

Notation. In this section, m > 0 is a real number, X’ a Hilbert space, ¥ = R, H C R¥ a separable
reproducing kernel Hilbert space (RKHS), and &k : X x X — R its positive definite kernel. For all
set of n elements of X x R, we denote by Z = {(z1,y1), .., (Tn, yn)} the training set, and by K the



Algorithm 1 M-Power RLS Regression Algorithm (M-RLSR)

Input: training data Z = {(1,91), .., (¥n,yn)}, parameter A € R* , exponent m € R,

1. Kernel matrix: Compute the Gram matrix, K = (k(xi’xj))lgi,jgn
2. Matrix diagonalization: Diagonalize K in an orthonormal basis
K:QDQT ; di=Dg, V1I<i<n
3. Change of basis: Perform a basis transformation
=Q'Y ; y=Y;,V1<i<n
4. Root-finding: Find the root Cy of the function F' defined in

5. Solution: Compute « from @ and reconstruct the weights
2y

—_— d =
2d; + AmnCjy and -~ a = Qo

()1<i<n =

Gram matrix associated to k for Z with (Kz); ; = k(z;,x;). Finally, let Y = (y1,...,4,) " be the
output vector.

The algorithm we investigate here combines a least squares regression with an RKHS regular-
ization term raised to the power of m. Formally, we would like to solve the following optimization

problem:

fz = argmin = 5" (y — £(20)? + NI @
fen M4
where m is a suitable chosen exponent. Note that the classical kernel ridge regression (KRR)
algorithm [14] is recovered for m = 2. This problem has been studied from a theoretical point of
view (see [7,[8]), and in this section we propose a practical way to solve it. The problem is well
posed for m > 1. We now introduce a novel m-power RLS regression algorithm, generalizing the
kernel ridge regression algorithm to an arbitrary regularization exponent.

5.1 M-RLSR Algorithm

It is worth recalling that the minimization problem with m = 2 becomes a standard kernel
ridge regression, which has an explicit analytic solution. In the same spirit, the main idea of our
algorithm is to derive analytically from a reduced one-dimensional problem on which we apply
a root-finding algorithm.

By applying the generalized Representer Theorem from [I7], we obtain that the solution of
can be written as fz = >, a;k(.,z;), with a; € R. The following theorem gives an efficient way
to compute the vector a = (ay, ..., a,) .

Theorem 1 Let Q an orthonormal matriz and D a diagonal matriz such that K = QDQT. Let
y! be the coordinates of QTY, (d;)1<i<n the elements of the diagonal of D, Cy € Ry and m > 1.
Then the vector a = Qa’ with

9!
- Yi Vi<i<n

= S amnGy SIS ©)

is the solution of if and only if Cy is the root of the function F': Ry — R defined by

n

1,y2 m/271 .
Z (2d; + AmnC)? ) ¢ (6)

=1



PROOF : The proof of Theorem [2| can be found in the supplementary material. O

It is important to note that for m > 1, F' has a unique root Cy and that since F' is a function
from R to R, computing Cy using a root-finding algorithm, e.g. Newton’s method, is a fast and
accurate procedure. Our algorithm uses these results to provide an efficient solution to regularized
least squares regression with a variable regularization exponent m (see Algorithm 1).

5.2 Equivalence Between M-RLSR and KRR

Here we will show that M-RLSR and KRR are only weakly equivalent but not strongly equivalent.
The idea is that, when m > 1, the objective function of the M-RLSR optimization problem is
strictly convex, and then by Lagrangian duality it is equivalent to its unconstrained version. The
weak equivalence is proved in the following proposition.

Proposition 5.1 VYm > 1, VZ € Z,3Fz,, : Rt — R", bijective, such that VA > 0, M-RLSR
with reqularization parameter A and KRR with reqularization parameter Ao = Fz ,,(\) are weakly
equivalent. Moreover,

mA
(ﬁA—>B(>\; Z) = TCO(Za m, )‘)5
where Co(Z,m, \) is the unique root of the function F defined in .

PrOOF : For m > 1, the equivalence between constrained and unconstrained strictly convex
optimization problems [I8, Appendix A] implies that 3T, zx > 0 such that the minimization
problem defined by on Z it is equivalent to the following constrained problem:

1
argmin — > (y = f(@))*, st |l < Tz
fen 2] (@ ez

The constrain is equivalent to || f||7, < I‘i{fgw thus we deduce that Az (m, Z, ) > 0 such that
with regularization parameter A is equivalent to

1
arg min — Z (y — f(I>)2 + Xa(m, Z, )\)”fH?-Lv
fen 2| (wgez

i.e., the KRR minimization problem with a regularization parameter Aa(m, Z, ). Hence M-RLSR
with X is weakly equivalent to KRR with Ao(m, Z, A). It is easy to see from @D that the function
Fyz m that maps A to the corresponding Az has the form Fz,,(\) := 5 Co(Z, m, \)A. O

Since ®a (A, Z) heavily depends on Z, M-RLSR and KRR are not strongly equivalent but
only weakly equivalent. Moreover, Assumptions 1 and 2 are not satisfied in this case, hence stability
of M-RLSR cannot be deduced from that of KRR. A stability analysis of M-RLSR. can be found
in the supplementary material.

5.3 Experiments on Weak Equivalence

In this subsection, we conduct experiments on synthetic and real-world datasets to illustrate the fact
that M-RLSR and KRR algorithms are only weakly equivalent but not strongly equivalent. We use
the Concrete Compressive Strength (1030 instances, 9 attributes) real-world dataset extracted from
the UCI repositoryﬂ Additionally, we also use a synthetic dataset (2000 instances, 10 attributes)
described in [19]. In this dataset, inputs (x1,...,210) are generated independently and uniformly
over [0, 1] and outputs are computed from y = 10sin(rz122) +20(z3 —0.5)% + 1024 + 525 + N (0, 1).

2 http://archive.ics.uci.edu/ml/datasets,
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Difference between solutions Difference between solutions

71 2 7 4

Figure 1: The norm of the difference between the optimal solutions given by M-RLSR and KRR on
two datasets randomly split into 4 parts 21, ..., Z,;. While the difference on Z; is zero for the two
algorithms since they are weakly-equivalent, they give different solution for Z;, Z; and Zs. (left)
Concrete compressive strength dataset: m = 1.5, A = le — 2 (obtained by 10-fold cross validation)
and Ay = 5.6e — 4 (computed from Proposition[5.1)). (right) Synthetic dataset: m = 1.2, A =le—5
(obtained by 10-fold cross validation) and Ay = 6.5¢ — 7 (computed from the Proposition [5.1]).

We randomly split these datasets into 4 parts of equal size Z1,...,7Z4. Using Z;, m is fixed
and the regularization parameter A is chosen by a 10-fold cross-validation for M-RLSR. Then the
equivalent A» for KRR is computed using Proposition[5.1} For each part Z;,1 < i < 4, we calculate
the norm of the difference between the optimal solutions given by M-RLSR and KRR. The results
are presented in Figure [l The difference between the solutions of the two algorithms is equal to
0 on Z;, but since both algorithms are only weakly equivalent, the difference is strictly positive
on Zs, Z3, Zy, showing that the algorithms are not strongly equivalent. Additional experiments
regarding the M-RLSR and its algorithmic properties can be found in the supplementary material.

6 Conclusion

We have presented a novel way of theoretically analyzing and interpreting relations between ma-
chine learning algorithms, namely the concept of algorithmic equivalence. More precisely, we have
proposed two notions of equivalence of learning algorithms, weak and strong equivalence, and we
have shown how to use them to transfer learning properties, such as stability, from one learning
algorithm to another.

Although this work has focused in particular on the transfer of stability using the concept
of algorithmic equivalence, we believe that it can be extended to study the transfer of other
algorithmic properties such as sparsity, robustness and generalization. Future work will also aim
at further quantifying the equivalence relations introduced by providing efficient tools that can
help to decide whether two learning algorithms are weakly or strongly equivalent.
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A Weak Equivalence and Regularization Path

Let Z € Z be a fixed training set, and A and B two weakly equivalent algorithm. By definition of
the weak equivalence A(-)(Z) = B(®a_B(+, Z))(Z). This formulation highlights the consequence
of the weak equivalence with the regularization path: the regularization path of B can be obtained
from the the regularization path of A with the bijective transformation ®a_,g(-, Z) of the variable
A. It is important to note that ®a_,g (-, Z) depends on Z, i.e. the relation between the regularization
path of A and B depends on Z. The same can be said for the error curves, but Proposition 4.1
ensure that they share the same minimum value (see figure 1).

B Proof of Proposition 4.6

PROOF : It is easy to see that H is symmetric and H(Z;, Z3) > 0 and is equal to 0 if and only
if Z1 = Z5. Now, in order to prove the sub-additivity of H, let Z1, 7 and Z3 € Z. Note that
G, counts the number of elements which differs between two unordered sequences, and thus is
sub-additive.

We only write here the case #(Z2) > #(Z1) > #(Z3), the other cases are done likewise. Let
fori=1,3

7Z? = arg min Guz)(Z, Z;).
ZCZs, #(Z)=#(Z;)

Without any loss of generality, suppose that #(Z%2) > #(Z32). Then,

H#(Zy) > #(Z%) + G(Z, Z2), where Z = arg min Guz2)(Z, 7Z2). (7)
ZCZ3 #H(2)=#(Z3)

H(Zy, Zo)+H(Z32, Z3) =#(Z2) —#(Z1) +Cp(2,) (21, Z0) +#(Z2) = #(Z3) + G2 (25, Z3)
>4 (Zs) —#(Z3) + G200 (23, Z1) + G yp(25) (23, Z3) + Gy 24)( 2, Z3)
> #(Zs) — #(Z3) + Gz (23, Z1) + G#(zg)(Z, Z3)
> #(Z2) — #(Z3) + Zczl,#n(lg)l:#(zg) Gu(z)(Z, Z3)
> #(Z1) — #(Z3) + min Gy (252, Z3) = H(Z1, Z3)

ZCZ1,3#(2)=#(23)

where, in the second line we used @, third line we used the sub-additivity of G, fourth line we
used the fact that Z C Z2, and last line we used #(Z2) > #(Z1) > #(Z3). O

C Proof of Theorem 1

Remember that we are trying to solve the following problem :

n

fz = argmin 3 (s — £(:)? + NI, (8)

fen NI

where m is a suitable chosen exponent.
For the convenience of the reader, let us rewrite the theorem we are going to prove
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Figure 2: Error curves for KRR, modified KRR defined by (??) and M-RLSR with m=1.5 on the
dataset Yatch hydrodynamic(left) and (right), both extracted from the UCI repository,

Theorem 2 Let Q an orthonormal matriz and D o diagonal matriz such that K = QDQT. Let
y! be the coordinates of Q1Y , (d;)1<i<n the elements of the diagonal of D, Co € Ry and m > 1 .
Then the vector a = Qa’ with

;o 2y;

="t V1I<i< 9
@i 2d; + dmnCy ’ == )

is the solution of if and only if Cy is the root of the function F': Ry — R defined by

n

zyz m/2—1 o
Z (2d; + dmnC)? ) = (10)

i=1

PROOF :
First notice that, the objective function to minimize is Gateaux differentiable in every direction.
Thus, since fz is a minimum, we have:

n

0= ~2k(.2:)(yi — fz(x:) + A fz )52 f2,

i=1
ie.,

— fz(x )
= Zk _Jv JEANTv
Iz = Z ) e

That is to say, fz can be written in the following form:

fZ = Zaik(.,l‘i), (11)

with «; € R. Notice, that we have recovered exactly the form of the representer theorem, which can
also be derived from a result due to Dinuzzo and Schélkop [17]. Now by combining and ,
the initial problem becomes

o =argmin(Y — Ka)' (Y — Ka) +nA(a" Ka)™/?, (12)
acR™

where a = (o;)1<i<n is the vector to determine. The following theorem gives an explicit formula
for o that solves the optimization problem (12)).
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By computing the Gateaux derivative of the objective function to minimize in , we obtain
that o must verify

Y =Ka+ )\%(aTKa)m/Q_la.

Then, since K is symmetric and positive semidefinite, 3@ an orthonormal matrix (the matrix of
the eigenvectors) and D a diagonal matrix with eigenvalues (d;)1<i<, > 0 such that K = QDQ".
Hence,

Y =QDQTa+ A" ((QT )" DQT )™
= Q'Y =DQTa+ 2" ((QT )" D@QTa))™?71Q a.

Given this, one can define a new representation by changing the basis such that Y’ = QTY and
o = Q" o. We obtain
Y' = Do + A%(Q/TDal)m/Q—la/.

Now if we write the previous equation for every coefficient of the vectors, we obtain that
n
{yg_ e z+A— Z )Pl VI<i<n.

Note that (Z?Zl djaf)m/Q_l is the same for every equation (i.e. it does not depend on i), so we
can rewrite the system as follows, where C' € R

_ Zd] /Qm/21

and

o
Y 2d; + dmnC

which is well defined if d; + AmnC' # 0, which is the case when C' > 0. Since C > 0 by definition,
the only possibly problematic case is C' = 0, but this implies that Y = 0, which is a degenerated
case. Now we just need to calculate C, which verifies:

(13)

V1<i<n.

n

Zd /2 m/2—=1 _ Z zy, )m/271
(2d; + dmnC)? '

=1

Thus to obtain an explicit value for o/, we need only to find a root of the function F defined as

follows :
< 4d;yl? m/2—1
F — Yy _C.
() (; (2d; + )\mnC)2) ¢

We have proven that any solution of can be written as a function of Cy, a root of F. But
for m > 1, F is strictly concave, and F(0) > 0, hence it has at most one root in R;. Thus since
lime 400 F(C) = —00, F has exactly one root, which proves Theorem O

D Stability Analysis of M-RLSR

The notion of algorithmic stability, which is the behavior of a learning algorithm following a change
of the training data, was used successfully by Bousquet and Elisseeff [4] to derive bounds on the
generalization error of kernel-based learning algorithms. In this section, we extend the stability
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results of [4] to cover the m-power RLSR algorithm. We show here that the algorithm is stable for
m > 2.

In this section we denote by X and Y a pair of random variables following the unknown distri-
bution D of the data, X representing the input and Y the output, by Z¢ = Z \ (x;,%;) the training
set from which was removed the element i. Let c(y, f,x) = (y — f(x))? denotes the cost function
used in the algorithm. For all f € H, let R.(f,Z) =1/n)<,<, c(¥i, f,x;) be the empirical error
and R, (f,Z) = Re(f, Z) + A|| || be the regularized error. Let us recall the definition of uniform
stability.

Definition D.1 An algorithm Z — fz is said 8 uniformly stable if and only if Vn > 1, V1 < i < n,
VZ a realization of n i.i.d. copies of (X,Y),¥(x,y) € X xY a Z independent realization of (X,Y),
we have |C(y,fz7l’) - C(y7fZ775x)| < 6

To prove the stability of a learning algorithm, it is common to make the following assumptions.
Assumption 3 3C, > 0 such that |Y| < Cy a.s.
Assumption 4 3k > 0 such that sup,cy k(z,z) < K?

Lemma D.2 If Hypotheses[3 and [{] hold, then ¥n > 1, V1 < i < n, VZ a realization of n i.i.d.
copies of (X, Y) V(z,y) € X x Y a Z independent realization of (X,Y),

ey, fz,0) =y, fzi,0)| < Clfz(x) = fz:(2)],
with C =2 <Cy+n(i5)’i‘>.

PROOF : Since H is a vector space, 0 € H, and

MFZI™ < 55— o) + AL
i=1

IN

1 n
- > My = Ol + Ao]l5; < ¢,
k=1
where we used the definition of fz as the minimum of (8)) and Hypothesis[3] Using the reproducing
property and Hypothesis [} we deduce that

1

CZ\"
[fz(x)] < VE(z, 2)l fzln < Bl fzln <k (;) :

The same reasoning holds for fz:. Finally,

‘C(yvawx) - C(yafZivx)‘
= |(y = f2(2))* = (y = fz:(2))?]

2

o2\
<2 Cy+f~c</\y> |fz(x) = fz:(z)|.

O

The stability of our algorithm when m > 2 is established in the following theorem, whose proof
is an extension of Theorem 22 in [4]. The original proof concerns the KRR case when m = 2. The
beginning of our proof is similar to the original one; but starting from 7 the proof is modified
to hold for m > 2, since the equalities used in [4] no longer holds when m > 2,. We use inequalities
involving generalized Newton binomial theorem instead.
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Theorem 3 Under the assumptions@ (md algorithm Z — fz defined in is B stable Ym >= 2
with .
B=Ck (27"20’{> .
An
PROOF : Since ¢ is convex with respect to f, we have V0 <t <1
C(ya fZ+t(fZ‘ - fZ)?x) - C(ymvax)
t(c(yhfziax) - C(yafZ7x)) .
Then, by summing over all couples (xy, yx) in Z¢,
Re(fZ‘i’t(fZi - fZ),Zi) - Re(fZ,Zi)
t (Re(fZia Z’L) - Re(fZa Z’L)) .

By symmetry, holds if Z and Z; are permuted. By summing this symmetric equation and
(14), we obtain

(14)

Re(fZ +t(.fZ’ - fZ)7ZZ) 7R6(fZ7ZZ‘)

) ) 15
$ Rfpe+1f7 — £, 2) = Relfes 75 <0 15)

Now, by definition of fz and fy:,
Rr(fZ,Z)_Rr(fZ+t(fZi_fZ)aZ) (16)

+Ro(f71,2") = Re(fzi +t(fz — f2:), Z') < 0.
By using and we get

C(yi’fZaxi) - C(yiafZ +t(fZ’7 - fZ)vl'i)
+ M ([ fz13 — Ifz +t(fzi — f2)|% (17)
HIfzill% = N fzi +t(fz — fz:)lI3) <0,

This inequality holds V¢ € [0,1]. By choosing t = 1/2 in , we obtain that

le(yi, fz,xi) — c(yi, fz + 5 (fZl Iz),x;)]

szer " m
| +lfzll3 ),
M

> o (12l - 2 72

Let u = (fZ + fZ7)/2 and v = (fZ — sz)/2 Then,
llu+oll3 + llw = vll5 = 2 lullz =2 ”sz

m fzi + fz||"
= U2l + 1l — 2| 2 Sz
H
m/2 m/2

= (lull3 + vl +2 (w,0)5) ™" =2 (lull3)
m/2 m/2

(lllF +lol3 =2 (w, v)5) ™ =2 (I0ll3,)

_|_
> 2 (Jull2, + [[ol12) ™% = 2 (lul3) ™% = 2 (J0]12) ™"
>0,

fzi = fz||"
2

o—2

H

where in the last transition we used both Newton’s generalized binomial theorem for the first
inequality and the fact that m/2 > 1 for the second one. Hence, we have shown that

fZl + fz||™ ‘ sz 2"

1120 - 2| 225

+ £z

(19)

H
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Now, by combining and , we obtain by using Lemma

Ifz = fzill3
2m—1 1
< o (C(yi»fz + i(fz — fz), %) — C(yi7fz,$i)>
C
< 2m*2m||fzi (zi) = fz(xi)lly
C
<22 i~ falle

which gives that

\fz = fzi

Cr\m™1
< (ogm—2== .
ws (75

This implies that, V(x,y) a realization of (X,Y),
ey, fz,2) = c(y, fzi,2)| < Cllfz(x) = fz:(@)]ly

Ck =
< 2m727 .
<Ck ( )\n)

For 1 < m < 2, the problem is well posed but the question whether the algorithm is stabFe
or not in this case remains open. Future studies need to be conducted to further address this issue
explicitly.

E Additional Experiments on M-RLSR

In this section, we conduct experiments on synthetic and real-world datasets to evaluate the effi-
ciency of the proposed algorithm. We use the following real-world datasets extracted from the UCI
repositoryﬂ Concrete Compressive Strength (1030 instances, 9 attributes), Concrete Slump Test
(103 instances, 10 attributes), Yacht Hydrodynamics (308 instances, 7 attributes), Wine Qual-
ity (4898 instances, 12 attributes), Energy Efficiency (768 instances, 8 attributes), Housing (506
instances, 14 attributes) and Parkinsons Telemonitoring (5875 instances, 26 attributes). Addi-
tionally, we also use a synthetic dataset (2000 instances, 10 attributes) described in [I9]. In this
dataset, inputs (1, ...,210) are generated independently and uniformly over [0, 1] and outputs are
computed from y = 10 sin(7z122) +20(x3 — 0.5)2 4+ 1024 + 525 + N(0, 1). In all our experiments, we
use a Gaussian kernel k,(z,2") = exp(—||z — 2/||3/p) with p = 25 >z — z;|3, and the scaled

root mean square error (RMSE), defined by —1 \/% > i(yi — f(24))2, as evaluation measure.

max y;

E.1 Speed of Convergence

We compare here the convergence speed of M-RLSR with m < 1 and KRR on Concrete compressive
strength, Yacht Hydrodynamics, Housing, and Synthetic datasets. As before, each dataset is
randomly split into two parts (70% for learning and 30% for testing). The parameters m and A
are selected using cross-validation: we first fix A to 1 and choose m over a grid ranging from 0.1
to 1, then A is set by cross-validation when m is fixed. For KRR, Ay is computed from A and m
using Proposition 5.1.

Figure [3| shows the mean of RMSE over ten run for the four datasets with M-RLSR and KRR
when varying the number of examples of training data from 10% to 100% with a step size of 5%.
In this figure, we can see that M-RLSR with m < 1 can improve the speed of convergence of KRR.

3 mttp://archive.ics.uci.edu/ml/datasets,
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Figure 3: RMSE curve of M-RLSR (blue) and KRR (red) algorithms as a function of the dataset
size. (top left) Concrete compressive strength (m = 0.1). (top right) Yacht Hydrodynamics (m =
0.5). (bottom left) Housing (m = 0.4). (bottom right) Synthetic (m = 0.1).

This confirms the theoretical expectation for this situation [7], that is a regularization exponent
that grows significantly slower than the standard quadratic growth in the RKHS norm can lead to
better convergence behavior.

E.1.1 Prediction Accuracy

We evaluate the prediction accuracy of the M-RLSR algorithm using the datasets described above
and compare it to KRR. For each dataset we proceed as follows: the dataset is split randomly
into two parts (70% for training and 30% for testing), we set A = 1, and we select m using cross-
validation in a grid varying from 0.1 to 2.9 with a step-size of 0.1. The value of m with the least
mean RMSE over ten run is selected.Then, with m now fixed, A is chosen by a ten-fold cross
validation in a logarithmic grid of 7 values, ranging from 107> to 102. Likewise, Ao for KRR is
chosen by 10-fold cross-validation on a larger logarithmic grid of 25 equally spaced values between
10~7 and 103.

RMSE and standard deviation (STD) results for M-RLSR and KRR are reported in Table
It is important to note that the double cross-validation on m and A for M-RLSR, and the cross-
validation on the greater grid for the KRR takes a similar amount of time. Table [l shows that the
m-power RLSR algorithm is capable of achieving a good performance results when m < 2. Note
that the difference between the performance of the two algorithms M-RLSR and KRR decreases
as the grid of A becomes larger, but in practice we are limited by computational reasons.
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Table 1: Performance (RMSE and STD) of m-power RLSR (M-RLSR) and KRR algorithms on
synthetic and UCI datasets. m is chosen by cross-validation on a grid ranging from 0.1 to 2.9 with
a step-size of 0.1.

KRR M-RLSR

Dataset RMSE STD m  RMSE STD

Compressive | 8.04e-2  3.00e-3 | 1.6 7.3le-2 3.67e-3
Slump 3.60e-2  5.62¢-3 | 1.1 3.52¢-2  6.49e-3
Yacht Hydro | 0.165 1.13e-2 | 0.1 1.56e-2 7.53e-3
Wine 8.65e-2 6.18¢-3 | 1.3 8.17e-2  6.07e-3
Energy 4.12e-2  1.79e-3 | 1.1 3.79e-2  2.87e-3
Housing 10.6e-2  7.98e-3 | 1.3 T7.26e-2  9.92e-3
Parkinson 8.05e-2 4.51e-3 | 0.3 5.56e-2 3.29e-3
Synthetic 3.19e-2  1.56e-3 | 0.4 1.26e-2 5.85e-4
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