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Quantifying repulsiveness of determinantal point
pProcesses

Christophe Ange Napoléon Biscio' and Frédéric Lavancier!

I Laboratoire de Mathématiques Jean Leray, University of Nantes, France

Abstract

Determinantal point processes (DPPs) have recently proved to be a useful class
of models in several areas of statistics, including spatial statistics, statistical
learning and telecommunications networks. They are models for repulsive
(or regular, or inhibitive) point processes, in the sense that nearby points of
the process tend to repel each other. We consider two ways to quantify the
repulsiveness of a point process, both based on its second order properties,
and we address the question of how repulsive a stationary DPP can be. We
determine the most repulsive stationary DPP, when the intensity is fixed, and
we investigate repulsiveness in the subclass of R-dependent stationary DPPs
(for a given R > 0), i.e. stationary DPPs with R-compactly supported kernels.
Finally, in both the general case and the R-dependent case, we present some
new parametric families of stationary DPPs that can cover a large range of
DPPs, from the homogeneous Poisson process (which induces no interaction)
to the most repulsive DPP.

Keywords: pair correlation function, R-dependent point process, covariance
function, compactly supported covariance function.

1 Introduction

Determinantal point processes (DPPs) were introduced in their general form by
O. Macchi in 1975 [26] to model fermions in quantum mechanics, though some
specific DPPs appeared much earlier in random matrix theory. DPPs actually arise
in many fields of probability and have deserved a lot of attention from a theoretical
point of view, see for instance [18] and [32].

DPPs are repulsive (or regular, or inhibitive) point processes, meaning that
nearby points of the process tend to repeal each other (this concept will be clearly
described in the following). This property is adapted to many statistical problems
where DPPs have been recently used, for instance in telecommunication to model
the locations of network nodes [0, 27] and in statistical learning to construct a dic-
tionary of diverse sets [22]. Other examples arising from biology, ecology, forestry
are studied in [24] and its associated on-line supplementary file.



The growing interest for DPPs in the statistical community is due to that their
moments are explicitly known, parametric families can easily been considered, their
density on any compact set admits a closed form expression making likelihood in-
ference feasible and they can be simulated easily and quickly. Section 2l summarizes
some of these properties and we refer to [24] for a detailed presentation. These fea-
tures make the class of DPPs a competitive alternative to the usual class of models
for repulsiveness, namely the Gibbs point processes. In contrast, for Gibbs point
processes, no closed form expression is available for the moments, the likelihood
involves an intractable normalizing constant and their simulation requires Markov
Chain Monte Carlo methods.

However, DPPs can not model all kinds of repulsive point patterns. For instance,
as deduced from Section [3 stationary DPPs can not involve a hardcore distance be-
tween points, contrary to the Matérn’s hardcore point processes, the RSA (random
sequential absorption) model and hardcore Gibbs models, see [19, Section 6.5]. In
this paper, we address the question of how repulsive a stationary DPP can be. We
also investigate the repulsiveness in the subclass of R-dependent stationary DPPs,
i.e. stationary DPPs with R-compactly supported kernels, that are of special in-
terest for statistical inference in high dimension, see Section Ml In both cases, we
present in Section [Bl some parametric families of stationary DPPs that cover a large
range of DPPs, from the homogeneous Poisson process to the most repulsive DPP.

To quantify the repulsiveness of a stationary point process, we consider its second-
order properties. Let X be a stationary point process in R? with intensity (i.e. ex-
pected number of points per unit volume) p > 0 and second order intensity function
p?(x,7). Denoting dr an infinitesimal region around z and |dz| its Lebesgue mea-
sure, p|dz| may be interpreted as the probability that X has a point in dx. For
x # y, p?(z,y)|dr||dy| may be viewed as the probability that X has a point in
dxr and another point in dy. A formal definition is given in Section Note that
p?)(x,7) only depends on y — x because of our stationarity assumption.

In spatial statistics, the second order properties of X are generally studied
through the pair correlation function (in short pcf), defined for any z € R? by

p?(0, )
2
Note that z in g(z) is to be interpreted as the difference between two points of X.
Since p(z) is unique up to a set of Lebesgue measure zero (see [4]), so is g. As it is
implicitly done in the literature, see [19, 34], we choose the version of g with as few
discontinuity points as possible. It is commonly accepted, see for example [34], that
if g(x) = 1 then there is no interaction between two points separated by z, whereas

there is attraction if g(z) > 1 and repulsiveness if g(z) < 1.
Following this remark, we introduce below a way to compare the global repulsive-
ness of two stationary point processes with the same intensity.

g(r) =

Definition 1.1. Let X and Y be two stationary point processes with the same in-
tensity p and respective pair correlation function gx and gy. Assuming that both
(1 —gx) and (1 — gy) are integrable, we say that X is globally more repulsive than

Yoif [(1—=gx)> [(1—gy).



The quantity [(1—g) is already considered in the on-line supplementary material
of [24] as a measure for repulsiveness. It can be justified in several ways. First, it is
a natural geometrical method to quantify the distance from ¢ to 1 (corresponding
to no interaction), where the area between g and 1 contributes positively to the
measure of repulsiveness when g < 1 and negatively if ¢ > 1. Second, as explained
in the on-line supplementary file of [24], denoting P the law of X and P, its reduced
Palm distribution, p f (1—g) corresponds to the limit, when r — oo, of the difference
between the expected number of points within distance r from the origin under P
and under P!. Recall that P} can be interpreted as the distribution of X conditioned
to have a point at the origin. In close relation, denoting K and K, the Ripley’s K-
functions of X and of the homogeneous Poisson process with intensity p, respectively,
J(1 = g) = lim, oo (Ko(r) — K(r)), see [28, Definition 4.6]. Third, the variance of
the number of points of X in a compact set D is Var(X (D)) = p|D| — p* [,.(1 —
g(y — x))dxdy, see [19]. Thus, the intensity p being fixed, maximizing [(1 — g)
is equivalent to minimize Var(X(D))/|D| when D — R? provided D and g are
sufficiently regular to apply the mean value theorem. Finally, it is worth mentioning
that for any stationary point processes, we have [(1 — g) < 1/p, see [23, Equation
(2.5)].

Additional criteria could be introduced to quantify the global repulsiveness of a
point process, relying for instance on [(1—g)? for p > 0, or involving higher moments
of the point process through the joint intensities of order k > 2 (see Definition 2.T]).
However the theoretical study becomes more challenging in these cases and we do
not consider these extensions.

In practice, repulsiveness is often interpreted in a local sense. This is the case
for hardcore point processes, where a minimal distance § is imposed between points
and so g(x) = 0 whenever |z| < § where for a vector x, |z| denotes its euclidean
norm. As already mentioned, a DPP can not involve any hardcore distance, but
we may want its pcf to satisfy g(0) = 0 and stay as close as possible to 0 near the
origin. This leads to the following criteria to compare the local repulsiveness of two
point processes. We denote by Vg and Ag the gradient and the Laplacian of g,
respectively.

Definition 1.2. Let X andY be two stationary point processes with the same inten-
sity p and respective pair correlation function gx and gy. Assuming that gx is twice
differentiable at 0 with gx(0) = 0, we say that X is more locally repulsive than Y if
either gy(0) > 0, or gy is not twice differentiable at 0, or gy is twice differentiable
at 0 with gy (0) = 0 and Agy (0) > Agx(0).

As suggested by this definition, a stationary point process is said to be locally
repulsive if its pcf is twice differentiable at 0 with ¢g(0) = 0. In this case Vg(0) = 0
because g(x) = g(—x). Therefore to compare the behavior of two such pcfs near
the origin, specifically the curvatures of their graphs near the origin, the Laplacian
operator is involved in Definition As an example, a stationary hardcore process
is locally more repulsive than any other stationary point process because g(0) = 0
and Ag(0) = 0 in this case. On the other hand, a concave pcf is not differentiable
at the origin and for this reason the associated point process is less locally repulsive



than any stationary process with a twice differentiable pcf that vanishes at the origin.

We show in Section B that Definitions [[LT] and agree in the natural choice of
what can be considered as the most repulsive DPP. As a result, a realization of the
latter on [—5,5]? is represented in Figure[Il (d) when p = 1. For comparison, letting
p = 1 for all plots, Figure [[l shows: (a) the homogeneous Poisson process, which is a
situation without any interaction; (b)-(c) two DPPs with intermediate repulsiveness,
namely DPPs with kernels (5.1)) where o0 = 0 and o = 0.2, 0.4 respectively, as pre-
sented in Section .1} (e) the type II Matérn’s hardcore process with hardcore radius
%. Notice that % is the maximal hardcore radius that a type II Matérn hardcore
process with unit intensity can reach, see [19, Section 6.5]. These models are sorted
from (a) to (e) by their ascending repulsiveness in the sense of Definition This is
clearly apparent in Figure[Il (f), where their theoretical pcfs are represented as radial
functions (all aforementioned models being isotropic). Figure lillustrates that even
if stationary DPPs cannot be as repulsive as hardcore point processes, which may
be an important limitation in practice, they nonetheless cover a rather large variety
of repulsiveness from (a) to (d) in Figure [l

(a) (b) (©)
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Figure 1: Realizations on [—5,5]? of (a) the homogeneous Poisson process, (b)-(d)

DPPs with kernels (5.1) where 0 =0 and a = 0.2,0.4, ﬁ, (e) the type II Matérn’s

hardcore process with hardcore radius ﬁ (f) Their associated theoretical pcfs. The

intensity is p = 1 for all models and (d) represents the most repulsive stationary
DPP in this case.



We recall the definition of a stationary DPP and some related basic results
in Section 2 Section [3is devoted to the study of repulsiveness in stationary DPPs,
both in the sense of Definition [LI] and Definition [L2l In Section M, we focus on
repulsiveness for the subclass of stationary DPPs with compactly supported kernels.
Then, in Section B, we present three parametric families of DPPs which cover a large
range of repulsiveness and have further interesting properties. Section [0 gathers the
proofs of our theoretical results.

2 Stationary DPPs

In this section, we review the basic definition and some properties of stationary
DPPs. For a detailed presentation, including the non stationary case, we refer to
the survey by Hough et al. [18].

Basics of point processes may be found in [4, B]. Let us recall that a point
process X is simple if two points of X never coincide, almost surely. The joint
intensities of X are defined as follows.

Definition 2.1. If it exists, the joint intensity of order k (k > 1) of a simple point
process X is the function p® : (RY)* — R* such that for any family of mutually
disjoint subsets Dy, ..., Dy in R?,

k
EHX(Di):/ / pW @y, .. zy)dey . day,
i=1 Dy Dy,

where X (D) denotes the number of points of X in D and E is the expectation over
the distribution of X.

In the stationary case, p*)(x1,...,2;) = p® (0,29 — 21,..., 2% — 21), so that
the intensity p and the second order intensity function p® introduced previously
become the particular cases associated to k = 1 and k£ = 2 respectively.

Definition 2.2. Let C : R? — R be a function. A point process X on R? is a
stationary DPP with kernel C, in short X ~ DPP(C), if for all k > 1, its joint
intensity of order k satisfies the relation

pM (21, ... 2) = det[C)(z, . . ., z1)

for almost every (zy,...,x;) € (RY)F, where [C](xy, ..., xx) denotes the matriz with
entries C(z; —x;), 1 <1i,j <k.

It is actually possible to consider a complex-valued kernel C, but for simplicity
we restrict ourselves to the real case. A first example of stationary DPP is the
homogeneous Poisson process with intensity p. It corresponds to the kernel

C(I) = pl{xzo}, Vr € RY (2.1)

However, this example is very particular and represents in some sense the extreme
case of a DPP without any interaction, while DPPs are in general repulsive as
discussed at the end of this section.



Definition does not ensure existence or unicity of DPP(C'), but if it exists,
then it is unique, see [I8]. Concerning existence, a general result, including the non
stationary case, was proved by O. Macchi in [26]. It relies on the Mercer represen-
tation of C' on any compact set. Unfortunately this representation is known only
in a few cases, making the conditions impossible to verify in practice for most func-
tions C. Nevertheless, the situation becomes simpler in our stationary framework,
where the conditions only involve the Fourier transform of C. We define the Fourier
transform of a function h € L'(R?) as

F(h)(t) = /Rd h(x)e* ™ tdx, Vvt € R (2.2)

By Plancherel’s theorem, this definition is extended to L?(R%), see [33]. If C is a
covariance function, as assumed in the following, we have FF(C)=C so F ' =F
and from [29, Theorem 1.8.13], F(C) belongs to L*(R%).

Proposition 2.3 ([24]). Assume C is a symmetric continuous real-valued function

in L2(R%). Then DPP(C) ewists if and only if 0 < F(C) < 1.

In other words, Proposition 2.3 ensures existence of DPP(C') if C'is a continuous
real-valued covariance function in L?(R?) with F(C) < 1. Henceforth, we assume
the following condition.

Condition K(p). A kernel C is said to verify condition IC(p) if C' is a symmetric
continuous real-valued function in L*(RY) with C(0) = p and 0 < F(C) < 1.

The assumption 0 < F(C) < 1 is in accordance with Proposition 2.3 while
the others assumptions in condition IC(p) are satisfied by most statistical models
of covariance functions, the main counterexample being (2.I)). Standard parametric
families of kernels include the Gaussian, the Whittle-Matérn and the generalized
Cauchy covariance functions, where the condition F(C') < 1 implies some restriction
on the parameter space, see [24].

From Definition 2.2 all moments of a DPP are explicitly known. In particular,
assuming condition K(p), then the intensity of DPP(C) is p and denoting g its pcf
we have

1—g(x) = (2.3)

for almost every € R?. Consequently ¢ < 1, and so we have repulsiveness. More-
over, the study of repulsiveness of stationary DPPs, as defined in Definitions [L.1]
and [[L2 reduces to considerations on the kernel C' when condition IC(p) is assumed.

3 Most repulsive DPPs

We first present the most globally repulsive DPPs, in the sense of Definition [L.1
They are introduced in the on-line supplementary file associated to [24], from which
the following proposition is easily deduced.
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Proposition 3.1 ([24]). In the sense of Definition[I1, DPP(C') is the most globally
repulsive DPP among all DPPs with kernel satisfying condition K(p) if and only if
F(C) is even and equals almost everywhere an indicator function of a Borel set with
volume p.

According to Proposition 3.1l there exists an infinity of choices to the most
globally repulsive DPP in the sense of Definition[[.1l This is illustrated in the on-line
supplementary material. A natural choice is DPP(Cp) where F(Cp) is the indicator
function of the euclidean ball centered at 0 with volume p. In dimension d, this gives

Cp=F (1{|-|dﬁmd}> with 7 = {F(d/Q + 1)/7T%}d and by [16, Appendix B.5],

pL(4+ 1) Jg (2/AT(4 + 1)ipaa])

/4

Cp(x) = , Vz € RY, (3.1)

]2

where J d is the Bessel function of the first kind. For example, we have

[ ] fOI‘ d - 1’ CB<I‘) = Sinc(x) — Sin(wp‘x‘)’

||

.. J1(2y/mp|x|)

e for d =2, Cp(x) = jinc(z) = \/EI(T‘/EH
This choice was already favored in [24]. However, there is no indication from
Proposition B.1] to suggest Cp instead of another kernel given by the proposition.
This choice becomes clear if we look at the local repulsiveness as defined in Defini-

tion

Proposition 3.2. In the sense of Definition [1.2, the most locally repulsive DPP
among all DPPs with kernel satisfying condition K(p) is DPP(Cp).

Thus, from Propositions 3.1l and [3.2] we deduce the following corollary.

Corollary 3.3. The kernel Cp is the unique kernel C' verifying condition K(p) such
that DPP(C') is both the most globally and the most locally repulsive DPP among
all stationary DPPs with intensity p> 0.

Borodin and Serfaty in [3] characterize in dimension d < 2 the disorder of a point
process by its "renormalized energy”. In fact, the smaller the renormalized energy,
the more repulsive the point process. Theorem 3 in [3] establishes that DPP(Cp)
minimizes the renormalized energy among the most globally repulsive stationary
DPPs given by Proposition 3.1l This result confirms Corollary B.3 that the most
repulsive stationary DPP, if any has to be chosen, is DPP(Cg). However, except
when the DPPs are given by Proposition B.1], all stationary DPPs have an infinite
renormalized energy (see [3, Theorem 1]), which indicates that the renormalized

energy is not of practical use to compare the repulsiveness between two arbitrary
DPPs.



4 Most repulsive DPPs with compactly supported
kernels

In this section, we assume that the kernel C' is compactly supported, i.e. there
exists R > 0 such that C(x) = 0 if |x| > R. In this case X ~ DPP(C) is an
R-dependent point process in the sense that if A and B are two Borel sets in R?
separated by a distance larger than R, then X N A and X N B are independent, which
is easily verified using Definition This situation can be particularly interesting
for likelihood inference in presence of a large number of points. Assume we observe
{x1,...,2,} on a compact window W C R? then the likelihood is proportional
to det[C](z1, .. .,2,) where C' expresses in terms of C' and inherits the compactly
supported property of C, see [24, 26]. While this determinant is computationally
expensive to evaluate if C' is not compactly supported and n is large, the situation
becomes more convenient in the compactly supported case, as this yields a sparse

matrix [C](zy,...,z,) provided R is small with respect to the size of W. We are
thus interested in DPPs with kernels satisfying the following condition.

Condition K (p, R). A kernel C or DPP(C) is said to verify condition K.(p, R) if
C verifies condition KC(p) and C'is compactly supported with range R, i.e. C(x) =0
for |z| > R.

The following proposition shows that any kernel satisfying condition K(p) can be

arbitrarily approximated by kernels verifying K.(p, r) for r large enough. We define
the function h by

1
|z[> =1

h(z) = exp ( ) 1ej<1}, Vo €R% (4.1)

For a function f € L*(RY), put ||f|| = +/ [ |f(t)[?dt and denote [f x f] the self-

convolution product of f.

Proposition 4.1. Let C be a kernel verifying condition K(p) and h be defined
by (Ad)). Then, for all r > 0, the function C, defined by

Co(z) = ||h1||2 B B (27:”) Clz), VreR, (4.2)

verifies K.(p,r). Moreover, we have the convergence

lim C, = C, (4.3)

r——+00
uniformly on all compact sets.

In particular, by taking C' = Cp in Proposition 4.1] it is always possible to find
a kernel C,. verifying KC.(p,r) that yields a repulsiveness (local or global) as close
as we wish to the repulsiveness of Cp, provided that r is large enough. However,
given a maximal range of interaction R, it is clear that the maximal repulsiveness
implied by kernels verifying KC.(p, R) can not reach the one of C'g, since the support

8



of Cp is unbounded and DPP(Cp) is the unique most repulsive DPP according to
Corollary 3.3l In the following, we study the DPP’s repulsiveness when the range
R is fixed.

In comparison with condition K(p), the assumption that C' is compactly sup-
ported in condition C.(p, R) makes the optimization problems related to Defini-
tions much more difficult to investigate. As a negative result, we know very
little about the most globally repulsive DPP, in the sense of Definition [T, under
condition IC.(p, R). From relation (23)), this is equivalent to find a kernel C' with
maximal L?-norm under the constraint that C' verifies K.(p, R). Without the con-
straint F(C') < 1, this problem is known as the square-integral Turdn problem with
range R, see for example [21]. For this less constrained problem, it is known that a
solution exists, but no explicit formula is available, cf. [7]. For d = 1, it has been
proved that the solution is unique and there exists an algorithm to approximate it,
see [13]. In this case, numerical approximations show that the solution with range
R verifies condition K.(p, R) only if R < 1.02/p. This gives the most globally repul-
sive DPP verifying K.(p, R) in dimension d = 1, when R < 1.02/p, albeit without
explicit formula. Its pcf is represented in Figure For other values of R, or in
dimension d > 2, no results are available, to the best of our knowledge.

Let us now turn to the investigation of the most locally repulsive DPP, in the
sense of Definition [[.2] under condition K.(p, R). Recall that without the compactly
supported constraint of the kernel, we showed in Section [3] that the most locally
repulsive DPP, namely DPP(Cp), is also (one of) the most globally repulsive DPP.

For v > 0, we denote by j, the first positive zero of the Bessel function J, and
by J! the derivative of .J,. We refer to [I] for a survey about Bessel functions and
their zeros. Further, define the constant M > 0 by
i Tl ()

SY

prt
We have Mp = 72/8 ~ 1.234 when d = 1, Mp'/? = jy/n'/? ~ 1.357 when d = 2 and
Mp'/3 = 7'/3 ~ 1.465 when d = 3.

Proposition 4.2. If R < M, then, in the sense of Definition [I.2, there exists an
unique isotropic kernel Cr such that DPP(CR) is the most locally repulsive DPP
among all DPPs with kernel verifying K.(p, R). It is given by Cr = u * u where

u(z) = K —— = 1{|$|<§}, (4.4)

—2
with x> = 2 (Ji (j%)) .

In this proposition Cg is only given as a convolution product. Nonetheless, an
explicit expression is known in dimension d = 1 and d = 3, see [§]. On the other
hand, the Fourier transform is known in any dimension since F(Cr) = F(u)?. We



get from the proof in Section 6.3} for all z € R?,

2

(4.5)

d) Joa(nRle])
2

F(OR) (@) = pn RY2, (—

d—2
2

(nRlal) (2., - (xRlz|)’)

If R > M, we have not been able to obtain a closed form expression of the most
locally repulsive stationary DPP. However, under some extra regularity assumptions,
we can state the following general result about its existence and the form of the
solution.

Condition M(p, R). A function u is said to verify condition M (p, R) if u(x) = 0
for |z| > £, u is a radial function and u € L?*(RY) with [ju[? = p.

Proposition 4.3. For any R > 0, there exists an isotropic kernel Cr such that
DPP(CR) is the most locally repulsive DPP among all D P Ps with kernel C verifying
Ke(p, R). It can be expressed as Cr = u*u where u satisfies M(p, R). Furthermore,
if we assume that sup,egpe F(C)(z) = F(C)(0) and u is twice differentiable on its
support, then u is of the form

Ja—2 (|z]/c
u(z) = <5+7M> 1{‘x‘<§}’ (4.6)

d—2
|| 2

where a > 0,8 > 0 and ~y are three constants linked by the conditions M(p, R) and
Jpau(x)dz < 1.

In the case R < M, this proposition is a consequence of Proposition where
g =0 a= R/(Zj%) and v = k. When R > M, it is an open problem to find
an explicit expression of the kernel Cr without any extra regularity assumptions.
Even in this case, (4.6) only gives the form of the solution and the constants «, 3
and 7 are not explicitly known. In particular the choice f = 0 does not lead to
the most locally repulsive DPP when R > M, contrary to the case R < M. In
fact, the condition M(p, R) allows us to express £ and 7 as functions of «, R and p,
but then some numerical approximation are needed to find the value of « in (4.6]),
given R and p, such that DPP(CF) is the most locally repulsive DPP. We detail
these relations in Section [5.3] where we start from (4.6]) to suggest a new parametric
family of compactly supported kernels.

Contrary to what happens in the non compactly supported case of Section 3, the
most locally repulsive DPP is not the most globally repulsive DPP under K.(p, R).
This is easily checked in dimension d = 1 when R < 1.02/p implying R < M: In
this case the most globally repulsive DPP under KC.(p, R) is DPP(Tg), where Tk is
the solution of the square-integral Turan problem with range R and the most locally
repulsive DPP is DPP(Cg) where Cy is given by (4.4]). However, according to the
results of Section [ corresponding to R = oo, we expect that D P P(Cg) has a strong
global repulsiveness even for moderate values of R. This is confirmed in Figure 2
that shows the pcf of DPP(Cg) when d =1, p=1and R=1.02, R=M =~ 1.234
and R = 2M, where in this case we take Cr = u * v with u given by (4.6]) and the
constants are obtained by numerical approximations. The pcfs of DPP(T} o) and

10



DPP(Cp) are added for sake of comparison. Considering the behavior of the pcf
near the origin, note that even if DPP(T} ) is the most globally repulsive DPP
under KC.(p, R) when R < 1.02/p, its local repulsiveness is not very strong. On the
other hand, DPP(Cg) seems to present strong global repulsiveness for the values of
R considered in the figure.

Figure 2: In dimension d = 1, comparison between the pcf of DPP(T} 2), DPP(Cp)
and DPP(Cy) for R = 1.02, M, 2M.
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5 Parametric families of DPP kernels

A convenient parametric family of kernels {Cy}yco, where © C R? for some ¢ > 1,
should ideally:

(a) provide a closed form expression for Cy, for any 0,
(b) provide a closed form expression for F(Cpy), for any 0,

(c) be flexible enough to include a large range of DPPs, going from the Poisson
point process to DPP(Cp).

The second property above is needed to check the condition of existence F(Cy) < 1,
but it is also useful for some approximations in practice. Indeed, the algorithm for
simulating DPP(C') on a compact set S, as presented in [I8], relies on the Mercer
representation of C' on S, which is rarely known in practice. In [24], this decom-
position is simply approximated by the Fourier series of C', where the k-th Fourier
coefficients is replaced by F(C)(k), up to some rescaling. The same approximation
is used to compute the likelihood. This Fourier approximation proved to be accurate
in most cases, both from a practical and a theoretical point of view, provided p is
not too small, and to be computationally efficient, see [24].

In addition to (a)-(c), we may also require that Cjy is compactly supported with
maximal range R, following the motivation explained in Section Ml in which case

11



the maximal possible repulsiveness is given by DPP(Cg). Or we may require that
F(Cy) is compactly supported, in which case the Fourier series mentioned in the
previous paragraph becomes a finite sum and no truncation is needed in practice.
Note however that Cy and F(Cy) can not both be compactly supported.

Several standard parametric families of kernels are available, including the well-
known Whittle-Matérn and the generalized Cauchy covariance functions, where the
condition F(Cy) < 1 implies some restriction on the parameter space, see [24].
Although they encompass a closed form expression for both Cy and F(Cy), they
are not flexible enough to reach the repulsiveness of DPP(Cp). Another family
of parametric kernels is considered in [24], namely the power exponential spectral
model, that contains as limiting cases Cp and the Poisson kernel (2I)). For this
reason this family is more flexible than the previous ones, but then only F(Cp) is
given and no closed expression is available for Cy. For all these families, none of Cy
and F(Cp) is compactly supported.

Below, we present alternative families of parametric kernels. The first two ones,
so-called Bessel-type and Laguerre-Gaussian families, fulfil the three requirements
(a)-(c) above and the Bessel-type family has the additional property that the Fourier
transform of the kernels is compactly supported. Moreover we introduce new families
of compactly supported kernels, inspired by Proposition 4.1l and Proposition 4.3]

5.1 Bessel-type family

For all 0 >0, a > 0, p > 0, we consider the Bessel-type kernel

. 2\ Jege 2151/ 5
C(x):pZ%dI‘ <U+d+ ) : ( 2) r € RY (5.1)

O-Qil Y
(2121/252)

This positive definite function first appears in [30], where it is called the Poisson
function. It has been further studied in [I1] and [12], where it is called the Bessel-
type function. For obvious reasons, we prefer the second terminology when applied
to point processes. For any x € R, we denote by 2, = max(z,0) its positive part.

Proposition 5.1. Let C' be given by (B.1), then its Fourier transform is, for all
r € RY,

F(C) () =p

a o+d g
(2m)4air (=) (1- 2 khy 52)

4o
(a—i—d)zF(%Q) o+d
and DPP(C) exists if and only if o < qumax where
. (o+d)Er(e)
T p(2m)eT ()
In this case, DPP(C) defines a stationary and isotropic DPP with intensity p. More-

over, if 0 = 0 and & = auax, then C' = Cp where Cg is defined in (B.1)). In addition,
for any p >0 and o > 0, we have the convergence

+

lim C(z) = pe_<%)2, (5.3)

o——+00
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uniformly on all compact sets.

The Bessel-type family contains C'g as a particular case and the Poisson kernel
as a limiting case, when a — 0. Moreover, F(C') is compactly supported, see (5.2]).
Figure B shows the behavior of the pcf of DPP(C') with respect to o, while Figure [
illustrates the convergence result (5.3)). The plots in Figure [ (b)-(d) show some
realizations of this model when o = 0 and a = 0.2, 0.4, aypay, respectively.

Figure 3: Pcf’s of DPP(C') where C'is given by (B.]), when d =2, p =1, 0 = 0 and
different values of . The case &« = apax = 1/4/m = 0.56 corresponds to C' = Cp.

) 0=0.1

S - —v— 0=0.2

< | —+— 0=0.3

° —— 0=0.4

S —&— a=0.5

. ——  Cg (a=0max)
S e i s

Figure 4: Pct’s of DPP(C) where C' is given by (5.1), when d = 2, p = 1, @ = aypax,
and different values of 0. The case o = 0 corresponds to C' = Cp.
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@ |
© —<— 0=30
© —_—
@ —+—  0=3
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o
N —&— 0=0.5
N
— CB (O':O)
=
e T T T T
0.0 0.5 1.0 1.5

5.2 Laguerre-Gaussian family

Let us first recall the definition of the Laguerre polynomials. We denote by N the
set {0,1,2,...} and by N* the set N\ {0}. For integers 0 < k < m and numbers «,
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define (m+o‘) (era)"'(’ZJraH K if k> 0 and (m+°‘) =1if k=0.

Definition 5.2. The Laguerre polynomials are defined for all m € N and o € R by

nw=> (TS wer

k=0

For all m € N*, a > 0, p > 0 and z € R?, we consider the Laguerre-Gaussian
function

Ola)= — P 1f (

("5

)e mlal? (5.4)

This kernel already appears in the literature, see e.g. [I0] for an application in
approximation theory. The following proposition summarizes the properties that
are relevant for its use as a DPP kernel.

Proposition 5.3. Let C' be given by (B4), then its Fourier transform is, for all

zr € R?,
m—1
_ L d % —m(malz|)? 7T\/_|Ozl‘|
F(C)(x) = (m_H%)a (mm) Z (5.5)
m—1 =0
and DPP(C) exists if and only if & < quax where
m—1+2
ad — ( m— 2)
" pmm)

In this case, DPP(C) is stationary and isotropic with intensity p. Moreover, for
any p > 0 and o > 0, we have the convergence

. d -\ Je(202])
lim C(z)=pl'(-+1) 2—7— (5.6)
m——+oo 2 |§|5

uniformly on all compact sets. In particular, for & = Qpmax,

lim C(z) = Cp(z) (5.7)

m——+00
uniformly on all compact sets and where Cg is defined in (3.7).

This family of kernels contains the Gaussian kernel, being the particular case
m = 1, and includes as limiting cases the Poisson kernel (2.I]) (when o« — 0) and Cfp,
in view of (B.1). Some illustrations of this model are provided in the supplementary
material, including graphical representations of the pcf and some realizations.
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5.3 Families of compactly supported kernels

As suggested by Proposition 4.1l we can consider the following family of compactly
supported kernels, parameterized by the range R > 0,
1 2
Cy(x) = ——[h * B < ‘”) Cp(z), VaeRY (5.8)
il R

where h is given by (41]). The Poisson kernel (Z1)) and Cp are two limiting cases,
when respectively R — 0 and R — +00. However this family of kernels has several
drawbacks: No closed form expression is available for C, nor for F(C}). Moreover,
when the range R is fixed, DPP(C}) is not the most repulsive DPP, see Proposi-

tion .3l and the graphical representations in the supplementary material. This is
the reason why we turn to another family of compactly supported kernels.

Following Proposition 4.3 we introduce a new family of compactly supported
kernels with range R, given as a convolution product of functions as in (4.6]). Specif-
ically, let R > 0, p > 0 and a > 0 such that R/(2«) is not a zero of the Bessel
function J d=2 and consider the kernel C5 = u * u with

u(x) =/p B(R,a) | 1 — — — 1{|$|§§ , (5.9)

where
_1
sy = | B (B, ) R Tl
20T (5) \ ¢ Jea(Ga) 2 Ti ) ()

Proposition 5.4. Let Cy = uxu where u is given by (59), then its Fourier transform
is F(u)? where for all z € RY

Fw = v s () (st
- RaJj (Qﬂ )Jaz2 (wR|x|) — 2mRa® Jaz ( a)|x\Jﬁi%2(7rR\:c|)

+
J%(ﬁ) 1 — 4m?|azx|?

Moreover, DPP(Cs) exists if and only if o is such that |F(u)| < 1. In this case,
DPP(Cy) defines a stationary and isotropic R-dependent DPP with intensity p.

The choice of w in (5.9) comes from (&.6]) where v has been chosen such that u is
continuous at |x| = R/2 and where /3 is deduced from the relation Cy(0) = |Jul|* = p.
Given p and R, the remaining free parameter in this parametric family becomes a.
The restriction that R/(2«) must not be a zero of Ja-2 a2 Can be alleviated by setting
in these cases = 0 in (4.6) and choose v so that C’g( ) = p. Then the most locally
repulsive DPP (4.4)) when R < M would be part of the parametric family. However,
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these kernels can be arbitrarily approximated by some kernel given by (5.9) for some
value of «a, so we do not include these particular values of o in the family above.

The condition |F(u)] < 1 on «, given R and p, must be checked numerically.
In most cases, the maximal value of F(u) holds at the origin and we simply have
to check whether |F(u)(0)] < 1. No theoretical results are available to claim the
existence of an admissible «, but from our experience, there seems to exist an infinity
of admissible a for any R and p. Moreover, while the most locally repulsive DPP
when R < M is known and corresponds to (£4]), the most repulsive DPP when
R > M in the above parametric family seems to correspond to the maximal value
of v such that |F(u)| < 1, denoted aumax-

The parametric family given by Cj is mainly of interest since it covers a large
range of repulsive DPPs while the kernels are compactly supported. Moreover, the
closed form expression of F(Cs) is available and this family contains the most locally
repulsive DPP with range R, in view of Proposition[4.3] at least when R < M. Some
illustrations are provided in the on-line supplementary material.

6 Proofs

6.1 Proof of Proposition (3.2

As the kernel Cp verifies condition K(p), it defines a DPP with intensity p and its
associated pcf gp given by (23] vanishes at 0. By the analytic definition of Bessel
functions, see [1, Relation (9.1.10)],

oy - VDY (vard+ 1>zp;)2”|x|2n'

/4 < 22l (n+1+d/2)

n—

Thus Cp is twice differentiable at 0 and by (2.3)), so is gg. By Definition [[L2 any
DPP having a pcf g that does not vanish at 0 or is not twice differentiable at 0 is
less locally repulsive than DPP(Cg). Consequently we assume in the following of
the proof that g(0) = 0 and g is twice differentiable at 0. The problem therefore
reduces to minimize Ag(0) under the constraint that g is the pcf of a DPP with
kernel C' verifying condition IC(p).

According to condition K(p), the Fourier transform of the kernel C'is well defined
and belongs to L*(R?), as noticed below (Z.2). Therefore, we can define the function

f= ”]J_.T((CC))HI where ||F(C)|l1 = [za |F(C)(x)|dx and consider it as a density function

of a random variable X = (Xi,---,X,) € R Denote by f(t) = E (e™X) the
characteristic function of X. We have
Flt) = ) vt € R (6.1)
| F(C)]l1

Thus, fis twice differentiable at 0, so by the usual properties of the characteristic
function (see [31]), X has finite second order moments and

E(X?) = 82f(0)+<8f (0)> L i=1...d (6.2)
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On the other hand, as already noticed in Section [l Vg(0) = 0 and so gc (0)=0
fori =1,...,d. By differentiating both sides of (6.1]),

of 1 ac,..
a—xi(o)—ma—xi@)—& 1=1...d (6.3)
and
rr.. 1 @c,
922 (0) = [ FC)], 05 0), i1=1...d. (6.4)
Then, by @2-(E3),
2\ B 1
B(XT) (ZX ) JO) =~ oFe 200!
Moreover,
F(C
BOXP) = [ 1o fa)ds = [ of 0 (@)
Hence,

AC(0) = —4r? g 2|2 F(C)(z)dx. (6.5)

By (23] and since VC'(0) =

sa0=5(1-CY 0= (L2020 2 (L))

= 2500 - 2ac), (6.6)
p <= 0z; P

)

Finally, we deduce from (6.5]) and (6.6 that

Ag(0) = 8; ePF(C) ).

Thus the two following optimization problems are equivalent.

Problem 1: Minimizing Ag(0) under the constraint that g is the pcf of a DPP
with kernel C' satisfying condition K(p).

Problem 2: Minimizing [, |z[*F(C)(z)dx under the constraint that C'is a kernel
which is twice differentiable at 0 and verifies the condition K(p).

The latter optimization problem is a special case of [25] Theorem 1.14], named
bathtub principle, which gives the unique solution F(C) =1 {11i<pra} in agreement
with (3.)). This completes the proof.
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6.2 Proof of Proposition 4.1]

Notice that h is symmetric, real-valued, infinitely differentiable and verifies h(z) = 0
for x > 1, see [29, Section 3.2]. Thus, ||A|| is finite and ||A|| # 0, so C, is well-defined.

Since h * h(0) = ||h]|?, we have C,(0) = p. By product convolution properties,
h % h is symmetric, real-valued, infinitely differentiable and compactly supported
with range 2. Thus, by (£2), C, is symmetric, real-valued, infinitely differentiable
and compactly supported with range r. Then, C, belongs to L'(R?) N L?(R%). In
particular, F(C,) is well-defined pointwise. By well-known properties of the Fourier
transform, for all z € R?,

d
__T 2 (T :
FC)@) = gas [F0? (57) * FOO) (@) (6.7)
Since h is symmetric, F(h) is real valued, so F(h)? > 0. Thus, as F(C) > 0 by
condition K(p), we have F(C,) > 0. Further, since 0 < F(C) < 1,

#;P /R F(ny (%t) F(O)(x — tydt < #2”2 /R F(np? (";) dt. (65)

By the substitution v = rt/2 and Parseval’s equality, the right-hand side of (6.8
equals 1. Finally, (67) and (6.8)) give F(C;) < 1,ie. 0 < F(C,) < 1.
It remains to show the convergence result (A3]), which reduces to prove that
1

W[h * h] (%) tends to 1 uniformly on all compact set when r — co. This follows

from h * h(0) = ||A||* and the uniform continuity of & x h on every compact set.

6.3 Proof of Proposition

The proof is based on a theorem from Ehm et al. [§] recalled below with only slight
changes in the presentation.

Definition 6.1. Let H denote the normalized Haar measure on the group SO(d) of

rotations in RY and let C' be a kernel verifying condition K.(p, R). The radialization
of the kernel C' is the kernel rad(C) defined by

rad(©)(a) = [ o, CUE)H )

Note that for any isotropic kernel C', C' = rad(C'). We say that C; = Cs up to
a radialization if C; and Cy are kernels verifying condition KC.(p, R) and rad(C}) =
rad(Cg).

4o

- and set cg = —2 where jg—2)/2 is
WQF(%)Jé(j(d—Q)/Q) 4d7r2f(%)

introduced before Proposition 2]

d—2
4](01—2)/2

Define 74 > 0 by 72 =

Theorem 6.2 ([§]). Let ¥ be a twice differentiable characteristic function of a
probability density f on R and suppose that U(x) =0 for |z| > 1. Then

_AU(0) = / 22 () > 472 5
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with equality if and only if, up to a radialization, ¥ = wy * wy, where wy(x) =
F(%) Ja—2 (2 a—2 |=]) 1 1 .

Vada5i7 _2_‘ ‘,:5 for |z] < 5 and wa(x) = 0 for |x| > 5. The corresponding
J(a-2)/2 x|z

minimum variance density s

2 25" Juo (4
Flw) = cal (g) 2l
x| 92 72 ||
51 (J(d—z)p - (7) )
According to Definition and by the same arguments as in the proof of Propo-
sition and (6.6]), we seck a kernel C' which is twice differentiable at 0 such that
AC(0) is maximal among all kernels verifying condition IC.(p, R).

In a first step, we exhibit a candidate for the solution to this optimization prob-
lem and in a second step we check that it verifies all required conditions.

2

Step 1. We say that a function C verifies K,(p, R) if it verifies K.(p, R) without

necessarily verifying F(C') < 1. Notice that a function C verifies K.(p, R) if and
only if the function

U(x) = C(fx>, r € RY, (6.9)

verifies IE;(L 1). Therefore, we have a one-to-one correspondence between la(p, R)
and IAC;(I, 1).

On the other hand, if a function ¥ verifies condition Ivac(l, 1), it is by Bochner’s
Theorem the characteristic function of a random variable X. Moreover, the func-
tion W is continuous and compactly supported, so it is in L!'(R?) and the random
variable X has a density f, see [31]. Thus, by Theorem [6.2] any function ¥ twice
differentiable at 0 and verifying condition l%;(l, 1) satisfies

AV(0) < =452 o) /o- (6.10)
By differentiating both sides of (6.9), we have

R2
AV (0) = 7AC(O). (6.11)
Thus, by (6.10)-(6.11)), for any kernel C' which is twice differentiable at 0 and verifies

ICC<p7 R>7
_pAR(O) _ 40iia
TR~ R

By Theorem [6.2] the equality in (6.12) holds if and only if ¥ = w, * wy and we name
Cr the corresponding kernel C' given by (6.9]).

AC(0) (6.12)

Step 2. The kernel Cg is the candidate to our optimization problem, however it
remains to prove that it verifies condition IC.(p, R). We have seen in Step I that Cr
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verifies Ivac(,o, R) and is twice differentiable at 0. We must show that F(Cg) < 1. By
Theorem [6.2, the function ¥ = wy * w, is the characteristic function of a probability
density f. Thus, for all x € R¢,

2% Jus |2

da—2 (. 2
m2|*5* (a2 — (Imal)?)

F () (z) = (2m)%f (2nz) = (27)%cqD <g)
(6.13)

By (6.9) and the Fourier transform dilatation we thereby obtain (4.5]).
Moreover, the Bessel functions are non-negative up to their first non-negative
zero so wg > 0, which implies that ¥ > 0. Hence by (6.13),

247dc,

/R d\Il(t)e%W'tdt' < /R W(t)dt = F(¥)(0) = O (6.14)

-4
Ja—2
2

F(W)(z) =

Thus, by (6:9) and the Fourier transform dilatation,

Qde d Rd
F(C)@) < F(CR0) = ———* = 10 (6.15)

Since by hypothesis R < M, we have F(Cg) < 1.

6.4 Proof of Proposition 4.3

According to Definition and by the same arguments as in the proof of Proposi-
tion and (6.6), we seek a kernel C' which is twice differentiable at 0 such that
AC(0) is maximal among all kernels verifying condition K.(p, R). By (€.13]), this is
equivalent to solve the following problem A.

Problem A: Minimize [, |z[*F(C)(x)dz under the constraints that C'is twice dif-
ferentiable at 0 and verifies K.(p, R).

The proof of Proposition is based on the following three lemmas. In the
first lemma, the gradient Vu has to be considered in the sense of distribution when
u € L?(R?) is not differentiable.

Lemma 6.3. A kernel Cr is solution to Problem A if and only if there exists a func-
tion u such that, up to a radialization, Cr = uxu where u minimizes [, |Vu(x)|*dz
among all functions u verifying M(p, R) and F(u)* < 1.

The existence statement in Proposition is given by the following lemma.
Lemma 6.4. There exists a solution to Problem A.

By Lemma[6.3] Cr = u*u where u is the solution of the given optimization prob-
lem. Then, under the additional constraint sup,g« F(C)(z) = F(C)(0), we have

SUP,crd (]:(u)(:zc))2 = (.7-"(u)(()))2 Since F(u)?(0) = (fRd u(t)dt)Q, the constraint
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F(u)* <1 in Lemma 6.3 becomes ( [q u( dt) < 1. Notice that —u is also a solu-
tion of the optimization problem. Thus, we can assume without loss of generality

that f]Rd t)dt > 0, so that the constraint (fRd ) < 1 becomes f]Rd t)dt < 1.
In this 51tuat10n the optimization problem addressed in Lemma [6.3] can be solved
by variational calculus. However, an explicit form of the solution is available only if
we assume that v € C?(B (O, %)), meaning that v is twice continuously differentiable
on its support. It is given by the following lemma, which completes the proof of
Proposition (4.3

Lemma 6.5. If a function u minimizes fRd |Vu(z)|?dx among all functions u veri-
fying M(p, R), u € C*(B (0, %)) and [, u(z)dz <1, then u is of the form

Juzs (|a]/o)
u(l’) = |8+ 2‘ |ﬂ 1{‘x‘<§}7
x|l 2
where a > 0,8 > 0 and ~y are three constants linked by the conditions M(p, R) and
Jpaw(@)dz < 1.
Proof of Lemma

Let C' be a kernel which is twice differentiable at 0 and verifies the condition
Kc(p, R). This implies that C' is twice differentiable everywhere. Moreover, the
quantity [o, |z|*F(C)(x)dz is invariant under radialization of the kernel C, see [8,
Relation (44)]. Thus, we can consider C' as a radial function. Then, by [8, Theorem
3.8], there exists a countable set A and a sequence of real valued functions {ug},c 4
in L*(R?) such that

= Z g * up(x). (6.16)

Further, the convergence of the series is uniform and for each k € A, the support of
uy, lies in B (O, g) Thus,

\:L’|2.7: d:v—/ |z)? Z|.7: ug) ()| d:c—ZZ/ |2 F (ug) ()] da
keA keA j=1
(6.17)
where z; denotes the j-th coordinate of the vector z. In addition, we note that
up € L2(RY) so |- |F(up)(-) € L*RY) by @I7). Then, by [25, Theorem 7.9],
Vuy, € L?(R?) where Vuy has to be viewed in the distributional sense and
F (0jur) (z) = 2ima; F (ug)(z). (6.18)
Thus, from (6.17)-(6.I8) and the Parseval equality,

/ |z|*F(C dx—Z/ \Vuk

keA

21



As every term in the sum above is positive and since this equality holds for every
kernel C, the minimum of [, |z[>F(C)(z)dx is reached if and only if this sum
reduces to one term where u; = u. Then we have C' = u * u and

/Rd |z|?F(C)(z)dx = /]Rd de. (6.19)

472

Therefore, minimizing [, |2[2F(C)(x)dz is equivalent to minimize [p, |Vu(z)|? dz.
Hence it remains to see what the constraints on the kernel C' means for the function
u. Since C' = u*u, where u is one of the function in the decomposition (6.16]), u is a
so-called real valued Boas-Kac root of C', see [§]. Thus, since C is radial, we have by
[8, Theorem 3.1] that u is radial and verifies u(z) = 0 for |z| > £. Since C verifies
K:(p, R), we have C'(0) = p and 0 < F(C) < 1. These constraints are equivalent on
u to [pau(x)*de = p and F(u)® < 1, respectively. Therefore, u verifies condition
M(p, R) and F(u)? < 1.

Proof of Lemma

According to Lemma [6.3] C% is a is solution to Problem A if and only if Cr = u*u
where u minimizes [, |Vu(x)|*dz among all functions u verifying M(p, R) and
F(u)* < 1. We prove the existence of such a minimum w.

Let  denote the open euclidean ball B (O, g) Consider the Sobolev space

H' Q) ={f:Q=R, feL*Q), VfeL*Q)},

with the norm || f|| 1) = (|| f]|* + HVfHZ)%. For a review on Sobolev spaces, see for
example [9] or [25]. For any f € H'(Q), we consider its extension to R? by setting
f(x) =0if z ¢ Q, so that f € L?>(R?). Let us further denote £ the set of functions
[ € HY(Q) verifying M(p, R) and F(f)* < 1.

If the minimum v above exists but u ¢ H'(Q), then [, [Vu(z)[*dz = oo, which
means that £ is empty, otherwise u would not be the solution of our optimization
problem. But &£ is not empty, see for instance the functions in Section B.3 so if u
exists, u € H*(Q). Let (wg)ren be a minimizing sequence in &, i.e.

/|Vwk(x)|2dx e inf/|Vv(:E)|2dx, (6.20)
0 Q

k—+o00 vEE

where for all k, w;, € €. By ([620) and since for all k, [, |wy(x)|*dz = p, the sequence
{wy} is bounded in H'(2). Then, by the Rellich-Kondrachov compactness theorem
(see [9]), it follows that, up to a subsequence, {wy} converges in L?(R?) to a certain
function w € L*(R?) verifying

/Q|Vw(x)| dx:ql;Ielg/S;|VU(x)| dr. (6.21)

We now prove that w € &£, so that u = w is the solution of our optimization
problem. First w € H'(Q) as justified earlier and so w € L*(R?). Second, as
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rotations are isometric functions and since any wy, is radial by hypothesis, we have
for any j € SO(d)

w(z) - we@)Pdz = 0b & L [ (@) — wnG@) de - 0
{L be{ L. }
o { [ 10 - woP e 0}

Hence, by uniqueness of the limit, the function w is radial and in particular, its
Fourier transform is real. Further, since w is the limit in L?(R?) of wy, w verifies
the following properties:

e w is compactly supported in B (0, g), because wy € £ for all k.
e w € L*(RY) by Rellich-Kondrachov theorem.
o [oulw(z)?dz = [p.|wi(x)Pdz = p since a sphere in L*(R?) is closed.

Therefore, w verifies M(p, R). Third, for every k, wy being compactly supported
and in L*(R?), wy, € LY(R?) so we can consider F(wy)(z) for every x € R? and by
the Cauchy-Schwartz inequality

|F(w)(z) — F(wg)(z)] < a\//Rd lw(t) — wk(t)\Q dt, Ve R%

where a is a positive constant. Thereby the convergence of wy, to w in L?(R?) implies
the pointwise convergence of F(wy) to F(w). Finally, from the relation

Flwy)(x) <1, Vo eRY VEeN,

we deduce F(w) < 1.

Proof of Lemma

We denote as before (2 = B (0, g) The optimization problem in Lemma is a
variational problem with isoperimetric constraints. By [14, Chapter 2, Theorem 2],
every solution must solve

A2
A+ Mu— 22— 00onQ
ut Ao =0ontk (6.22)

u = 0 on 0f).

In equation ([6.22)), A\; and A\, are the Lagrange multipliers associated to the con-
straints [u? = p and [u < 1, respectively. By the Karush-Kuhn-Tucker theorem,
see [17) Section VII], Ay > 0. Moreover, a solution to the partial differential equation
with boundary condition (6.22)) is obtained by linear combination of a homogeneous
solution and a particular solution. By [9, Section 6.5, Theorem 2], the Laplacian
operator —A has only positive eigenvalues. Hence the associated homogeneous equa-
tion Au 4+ A\ju = 0 can have a solution only if A\; > 0.
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In addition, the function w is radial by hypothesis, so there exists a function «
on R such that u(z) = u(|x|) for all z € RY. The partial differential equation (6.22)
then becomes

As )\ is positive, we obtain from [36], Section 4.31, Relations (3) and (4)] that a
solution to this equation is of the form

(1) = ( A2 Ja—2)2(v/ A1) N iz 2 (Vi)

U — 4

201 Hd—2)/2 2T =22 )1{0<t<§}’ (6.23)

where Y(4_9)/2 denotes the Bessel function of the second kind. By hypothesis, the
function u is continuous on €2 and so at 0. Since Y(4_9)/2 has a discontinuity at
0, see for example [I], and the remaining terms in ([6.23]) are continuous, we must
have ¢, = 0. Then, by renaming the constant ¢; by v and letting o = 1/y/Ay, 8 =
A2/(2)A1), we obtain that if u is solution to the optimization problem of Lemma [6.5]
then u writes

Ja-2)2(|7|/ )

where o > 0 and 3 > 0.

6.5 Proof of Proposition [5.1]

Let C be given by (51J). According to Proposition 2.3 DPP(C) exists and has
intensity p if C' verifies the condition K(p). By [I, Equation (9.1.7)], we have C'(0) =
p. It is immediate that C' is a symmetric continuous real-valued function. Since
Bessel functions are analytic and by the asymptotic form in [I, (9.2.1)], it is clear
that C' belongs to L?(R%). It remains to obtain F(C) and verify the condition

0< F(O)<1.
Define
Jesa(le])
Po(r) = ﬁiﬂd, Vr € R% (6.25)
ARER

As p, is radial, by [16, Appendix B.5],

F(po)(x) = 2—7T/0 Oorgpo('r’)J%(QWHx\)dr.

- d—2
Ky

By [15, Formula 6.575], we have for o > —2

[V][~%

wlQ

or (1 - [27z[?)?|272| 2 o (1= |272[?)?
F(ps) (z) = 2 z J+ =2 7T20—+2+
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Since C(z) = p2%°T (72 p, (2 %), we obtain (5.2) by dilatation of the

Fourier transform.
We have obviously F(C) > 0. Since ¢ > 0, F(C') attains its maximum at 0.
Thus F(C') <1 if and only if

_ pemtatr(=g)
OO = ety <

(o+d) 21(2£2)

which is equivalent to a? < - )
p(2n)§F<%‘i+2)

Finally, when 0 = 0 and @ = auax, DPP(C) exists and a straightforward cal-
culation gives C' = Cg. The convergence result (5.3]) may be found in [11] and is a
direct application of [30, Relation (1.8)].

6.6 Proof of Proposition 5.3
Define, for all m € N,

ful) = LY? (Ja?) e 2P, v e R (6.26)
This function is radial, thus by [16, Appendix B.5] we have

T ooy,
Flhna) = =g [ 1t

lz| 2~ Jo

RIMES

La(r*)e™ Juz (2mr|e|)dr

According to [20], we have

x| 2
d a2 NC —1 1\ (=1)*|ma[*
— 12(—1)™ |mz|
T (=1) kz% (m—k:) k!
m 2k
_ 4 _1\m ,—|mz|? . mfk( ) |7T'I|
= bt ey
Therefore,
m 2k
_ g—\ﬂm|2 ‘ﬂ'ﬂf‘
F(f)(w) = mre ™0y
k=0
As C(z) = —L—fm- 1(%%), we obtain (B.5]) by dilatation and linearity of the

o

Fourier transform.
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Clearly, F(C) > 0. Thus we investigate the condition F(C') < 1 for the existence
of DPP(C'). We notice from (B.5]) that

F(O)(z) = ae~"l* i — (6.27)

where a and b are positive constants. Since F(C') depends on the variable z only
through its norm, we consider the function h define for all » > 0 by h(r) =
F(C)((r,0,---,0)), so that for all x € R? F(C)(z) = h(|z|). For every r > 0,
h is differentiable at r and a straightforward calculation leads to

m—1 m—1
) bk:TQk bkr2k71 ) memel
’ —br — —br _
W (r) = ae (—Qbr ,;0 o + ,;1 2k o ) 2ae (=1

Thus, the function h is decreasing on (0,+00). Since h is continuous on R* its
maximum is attained at zero, so for every z € R,

- m—1+4
( m—1 )
)
Hence, F(C) < 1 if and only if a¢ < (’"7*1# Moreover C is radial and since
p(mm)?2
L:ln/zl(O) = (m;i‘;%), see [I, Relation (22.4.7)], we have C(0) = p. Therefore, C

verifies the condition K(p) and by Proposition 23, DPP(C') exists and is stationary
with intensity p > 0.

It remains to prove the convergence results (5.0) and (5.7). An immediate appli-
cation of [35, Theorem 8.1.3] gives the convergence (5.6]), see also [2 Proposition 1].
Moreover,

. 1
lim apax =

m——+00 \/Ef(g+1)épé

Hence, by ([6.28) and (5.6]), we obtain the convergence (5.7).

(6.28)

6.7 Proof of Proposition [5.4]

By the discussion in Section @ DPP(C') exists and is an R-dependent DPP with
intensity p if C' verifies K.(p, R). Since u € L*(R?), the kernel C is continuous
by [25, Theorem 2.20]. Moreover, u(z) = 0 for |z| > £, so by product convolution
properties, C(x) = 0 for |z| > R. Hence C belongs to L?(R%). Since u is radial, so
is C'. It remains to verify that 0 < F(C) <1 and C(0) = p.

By product convolution properties, we have C(0) = [,,u(z)*dz. From the
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definition of v in (59), we have

PB(R, o0)?

R\ Jez(l5]) R\*2 Jia([Z])
- 2 2 5 2 ayd
/Rd 1 2<2) J%(%)m%ﬁ( ) T (B)laf? Yecgyde

27 /E 1, <R)d22 (@) o (R)d2 Jia(3) ]
= r - = 5?2 = T T.
£a/2) Jy 2) T T\Z) TLE
By properties of Bessel functions, see [I], we notice that for all b € R, a primitive of

xJ3_, (bx) is given by 12—2 (JZ,Q (xb) — Ja_,(xb)Ja (xb)) It follows from [16, Appendix
2 2 2 2
B.3] that

Jpa v (z)dx _ 742 R _4<§)d17rg_oz J%(%)
pB(R,a)*  dT(5)2! 2)  T(§) Ja(5)
., <§)d w5 [ Ja(E)Ta(5)
) g\ L)

Thus, by the definition of S(R, @), we obtain that [, u(z)*dz = p.
We now calculate F(C'). We have F(C) = F(u)?. Since u is radial, F(u) is real
valued and so F(C) > 0. In addition, we have by [16, Appendix B.5] and (5.9),

F(u)(x) = \/ﬁB(R,a)Q—W </5 T%J%(Qmﬂﬂ)dr

122" \Jo
R: !
- dQ—/ rJaz <£> Ja—z (27r|x|)dr
25_1J%_1(R) 0 2 o 2
Since o > 0, we have by [16, Appendix B.3] and [15 Formula 6.521],

o <Rz Js(nRlz)

F(u)(z) = VpB(R, )

2|5 \r2? 7]
Ri-1 RaJQ%Q(%)J% (rR|z|) — 27ra2RJ%(%)\x|in%2 (mR|x])
2%J¢_1(2ﬂ) 1 — 47| ax|? (6:29)

from which we deduce the Fourier transform of u in Proposition (5.4l Therefore, if

« is such that F(u)? < 1, then F(C') <1 and so C verifies K.(p, R).
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