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1 Laboratoire de Mathématiques Jean Leray, University of Nantes, France

Abstract

Determinantal point processes (DPPs) have recently proved to be a useful
class of models in several areas of statistics, including spatial statistics, statis-
tical learning or telecommunications networks. They are models for repulsive
(or regular, or inhibitive) point processes, in the sense that nearby points of
the process tend to repel each other. We consider two ways to quantify the re-
pulsiveness of a point process, both based on its second order properties, and
we address the question of how repulsive a stationary DPP can be. We exhibit
the most repulsive stationary DPP, when the intensity is fixed. We investigate
similarly the possible repulsiveness in the subclass of R-dependent stationary
DPPs (for some fixed positive R), or equivalently DPPs with R-compactly
supported kernels. Finally, in both the general case and the R-dependent
case, we present some new parametric families of stationary DPPs that can
cover all possible repulsiveness, from the homogeneous Poisson process (which
induces no interaction) to the most repulsive DPP.

Keywords: regularity, inhibition, pair correlation function, R-dependent point
process, covariance function, compactly supported covariance function.

1 Introduction

Determinant point processes (DPPs) were introduced in their general form by O. Mac-
chi in 1975 [27] to model fermions in quantum mechanics, though some specific DPPs
appeared much earlier in random matrix theory. DPPs actually arise in many fields
of probability, see [19] and [32] for some examples, and for this reason have deserved
a lot of attention from a theoretical point of view.

DPPs are repulsive (or regular, or inhibitive) point processes, meaning that
nearby points of the process tend to repeal each other (this concept will be clearly
described in the following). This property is adapted to many statistical problems
where DPPs have been recently used : in biology to study the repartition of cells [25],
in telecommunication to model the locations of network nodes [6, 28], in statistical
learning to construct a dictionary of diverse sets [23].

The growing interest for DPPs in the statistical community is due to some ap-
pealing properties of this class of processes. To mention but a few : their moments
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are explicitly known, parametric families can easily been considered, their density on
any compact set admits a close form expression making likelihood inference feasible,
and they can be simulated easily and quickly. Section 2 summarizes some of these
properties and we refer to [25] for a detailed presentation. These features make the
class of DPPs a competitive alternative to the usual class of models for repulsiveness,
namely the Gibbs point processes. In contrast, for Gibbs point processes, no close
form expression are available for the moments, the likelihood involves an intractable
normalizing constant and their simulation requires some Markov Chain Monte Carlo
methods.

However, DPPs can not model any kind of repulsive point patterns. For instance,
DPPs can not involve a hardcore distance between points, contrary to the Matérn’s
hardcore point process, or the RSA (random sequential absorption) model or some
hardcore Gibbs models, see [20] Section 6.5. In this paper, we address the question of
how repulsive a stationary DPP can be. We also investigate the repulsiveness in the
subclass of R-dependent stationary DPPs, or equivalently DPPs with R-compactly
supported kernels, that are of special interest for statistical inference in high dimen-
sion, see Section 4. In both cases, we present in Section 5 some parametric families
of DPPs that cover all possible range of repulsiveness.

To quantify the repulsiveness of a point process, we consider its second-order
properties. Let X be a stationary point process in R

d with intensity (i.e. ex-
pected number of points per unit volume) ρ > 0 and second order intensity function
ρ(2)(x, y). Denoting dx an infinitesimal region around x and |dx| its Lebesgue mea-
sure, the second order intensity function of X is informally defined in [7] as

ρ(2)(x, y) = lim
|dx|→0, |dy|→0

E [X(dx)X(dy)]

|dx||dy| , x, y ∈ R
d,

where X(dx) denotes the number of points of X in dx. A formal definition is given
in Section 2. Note that ρ(2)(x, y) only depends on y − x because of our stationarity
assumption. In spatial statistics, the second order properties of X are generally
studied through the pair correlation function (in short pcf), defined for any x ∈ R

d,
x 6= 0, by

g(x) =
ρ(2)(0, x)

ρ2
,

while g(0) = 0. Note that x in g(x) is to be interpreted as the difference between
two points of X .

For x 6= y, ρ(2)(x, y)|dx||dy| may be viewed as the probability that X has a
point in dx and another point in dy. Similarly ρ|dx| may be interpreted as the
probability that X has a point in dx. Accordingly, it is commonly accepted, see
for example [34], that if g(x) = 1 then there is no interaction between two points
separated by x, whereas there is attraction if g(x) > 1 and repulsiveness if g(x) < 1.

Following this remark, we introduce below a way to compare the global repulsive-
ness of two stationary point processes with the same intensity.

Definition 1.1. Let X and Y be two point processes with the same intensity ρ
and respective pair correlation function gX and gY . Assuming that both (1 − gX)
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and (1 − gY ) are integrable, we say that X is globally more repulsive than Y if∫
(1− gX) ≥

∫
(1− gY ).

The quantity
∫
(1−g) is already considered in [25] as a measure for repulsiveness.

It can be justified in several ways. First, it is a natural geometrical method to
quantify the distance from g to 1 (corresponding to no interaction), where the area
between g and 1 contributes positively to the measure of repulsiveness when g < 1
and negatively if g > 1. Second, as explained in [25], denoted P the law of X , and
P !
o its reduced Palm distribution, ρ

∫
(1− g) corresponds to the limit, when r →∞,

of the difference between the expected number of points within distance r from the
origin under P and under P !

o. Recall that P
!
o can be interpreted as the distribution

of X conditioned to have a point at the origin. Third, the variance of the number of
points of X in a compact set D is V ar(X(D)) = ρ|D|−ρ2

∫
D2(1−g(y−x))dxdy, see

[20]. Thus, the intensity ρ being fixed, maximizing
∫
(1−g) is equivalent to minimize

V ar(X(D))/|D| when D → R
d, provided D and g are sufficiently regular to apply

the mean value theorem. Finally, it is worth mentioning that for any stationary
point processes, we have

∫
(1− g) ≤ 1/ρ, see (2.5) in [24].

In practice, repulsiveness is often interpreted in a local sense, as two neighbor
points are expected to be not too close. This is the case for hardcore point processes,
where a minimal distance δ is imposed between points. If the latter property holds,
then g(x) = 0 whenever |x| < δ. A DPP can not involved any hardcore distance,
but in the same spirit, we may ask its pcf to stay as close as possible to 0 near
the origin. This leads to the following criteria to compare the local repulsiveness of
two point processes. We denote by ∇g and ∆g the gradient and the Laplacian of g
respectively.

Definition 1.2. Let X and Y be two point processes with the same intensity ρ and
respective pair correlation function gX and gY . Assuming that gX is twice differen-
tiable at 0, we say that X is more locally repulsive than Y if either gY is not twice
differentiable at 0, or gY is twice differentiable at 0 with ∆gY (0) ≥ ∆gX(0).

As suggested by this definition, a process is said locally repulsive only if its
pcf is twice differentiable at 0. In this case g(0) = 0 by definition, and ∇g(0) = 0
because g(x) = g(−x). Therefore to compare the behavior of two twice differentiable
pcfs near the origin, specifically the curvatures of their graphs near the origin, the
Laplacian operator is involved in Definition 1.2. As an example, a hardcore process
is locally more repulsive than any other process because ∆g(0) = 0 in this case. On
the other hand, a concave pcf is not differentiable at the origin and for this reason
the associated point process is less locally repulsive than any process with a twice
differentiable pcf.

We recall the definition of a stationary DPP and some related basic results
in Section 2. Section 3 is devoted to the study of DPP’s repulsiveness, both in the
sense of Definition 1.1 and Definition 1.2. While these definitions have two different
viewpoints, they agree in the choice of what can be considered as the most repulsive
DPP. In Section 4, we focus on the subclass of DPPs with compactly supported
kernels and we investigate similarly their possible repulsiveness. Then, in Section 5,
we present three parametric families of DPPs which cover all the possible range
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of repulsiveness, as revealed by the previous sections, and have further interesting
properties. Section 6 gathers the proofs of our theoretical results.

2 Stationary DPPs

In this section, we review the basic definition and some properties of stationary
DPPs. For a detailed presentation, including the non stationary case, we refer to
the survey by Hough et al. [19].

Basics of point processes may be found in [4, 5]. Let us recall that a point
process X is simple if two points of X never coincide, almost surely. The joint
intensities of X are defined as follows.

Definition 2.1. If it exists, the joint intensity of order k (k ≥ 1) of a simple point
process X is the function ρ(k) : R

d → R
+ such that for any family of mutually

disjoint subsets D1, . . . , Dk in R
d,

E
k∏

i=1

X(Di) =

∫

D1

. . .

∫

Dk

ρ(k)(x1, . . . , xk)dx1 . . . dxk,

where X(D) denotes the number of points of X in D and E is the expectation over
the distribution of X. In addition, we shall require that ρ(k)(x1, . . . , xk) = 0 if xi = xj

for some i 6= j.

In the stationary case, ρ(k)(x1, . . . , xk) = ρ(k)(0, . . . , xk−x1), so that the intensity
ρ and the second order intensity function ρ(2) introduced previously become the
particular cases associated to k = 1 and k = 2 respectively.

Definition 2.2. Let C : Rd → R be a function. A point process X on R
d is a

stationary DPP with kernel C, in short X ∼ DPP (C), if for all k ≥ 1, its joint
intensity of order k satisfies the relation:

ρ(k)(x1, . . . xk) = det[C](x1, . . . , xk), ∀(x1, . . . , xk) ∈ (Rd)k,

where [C](x1, . . . , xk) denotes the matrix with entries C(xi − xj), 1 ≤ i, j ≤ k.

A first example is the homogeneous Poisson process with intensity ρ. It corre-
sponds to the DPP with kernel

C(x) = ρ1{x=0}, ∀x ∈ R
d. (2.1)

However, this example is very particular and represents in some sense the extreme
case of a DPP without any interaction, while DPPs are in general repulsive as
discussed at the end of this section.

Definition 2.2 does not ensure existence or unicity of DPP (C), given C. The
following proposition claims that a DPP, if it exists, is unique.

Proposition 2.3 ([19]). A kernel C defines at most one DPP.
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Concerning existence, a general result, including the non stationary case, was
proved by O. Macchi in [27]. It relies on the Mercer representation of C on any
compact set. Unfortunately this representation is known only in a few cases, making
the conditions impossible to verify in practice for most functions C. Nevertheless,
the situation becomes simpler in our stationary framework, where the conditions
only involve the Fourier transform of C.

Definition 2.4. We define the Fourier transform of a function h ∈ L1(Rd) as:

F(h)(t) =
∫

Rd

h(x)e2iπx·tdx, ∀t ∈ R
d.

By Plancherel’s theorem, this definition is extended to L2(Rd), see [33].

Remark 2.5. For symmetric kernels C, as assumed in the following, we have
FF(C) = C, so F−1 = F in this case.

Proposition 2.6 ([25]). Assume C is a symmetric continuous real-valued function
in L2(Rd). Then DPP (C) exists if and only if 0 ≤ F(C) ≤ 1.

In other words, Proposition 2.6 ensures existence ofDPP (C) if C is a continuous
real-valued covariance function in L2(Rd) with F(C) ≤ 1. Henceforth, we assume
the following condition:

Condition K. A kernel C is said to verify condition K if:

(i) C is a symmetric continuous real-valued function,

(ii) C ∈ L2(Rd),

(iii) 0 ≤ F(C) ≤ 1.

Let us note that the third assumption in Condition K is necessary for existence,
while the two others are satisfied by most statistical models of covariance func-
tions, the main counterexample being (2.1). Standard parametric families of kernels
include the Gaussian, the Whittle-Matérn and the generalized Cauchy covariance
functions, where the condition F(C) ≤ 1 implies some restriction on the parameters
space, see [25].

From Definition 2.2, all DPP’s moments are explicitly known. In particular,
denoting ρ and g the intensity and the pcf of DPP (C), we have

• for all x ∈ R
d, ρ(x) = ρ = C(0),

• for all x, y ∈ R
d, ρ(2)(x, y) = ρ2 − C(x− y)2, so that for all x ∈ R

d

1− g(x) =
C(x)2

ρ2
. (2.2)
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From this relation, we see that any stationary DPP satisfies g ≤ 1, proving that
it induces repulsiveness. Moreover, the study of repulsiveness of stationary DPPs,
as defined in Definitions 1.1 and 1.2, reduces to considerations on the kernel C.

Another pleasant feature of DPPs is that their probability density function on
any compact set admits a close form expression, as presented in the following. From
a statistical point of view, this property is crucial, as it makes maximum likelihood
inference feasible.

Let S be a compact subset of Rd and C a kernel satisfying condition K. Define
for all x, y ∈ S

C̃S(x, y) =

∞∑

k=1

Ck
S(x, y), D =

∞∑

k=1

1

k

∫

S

Ck
S(x, x)dx, (2.3)

where for all x, y ∈ S, C1
S(x, y) = C(y − x) and for k ≥ 2

Ck
S(x, y) =

∫

S

Ck−1
S (x, z)CS(z, y) dz, ∀x, y ∈ S.

Set det[C̃ ](x1, . . . , xn) = 1 if n = 0. Then we have the following result.

Theorem 2.7 ([27]). Assume C verifies condition K with F(C) < 1, then DPP (C)∩
S is absolutely continuous with respect to the homogeneous Poisson process on S with
unit intensity, and has density

f({x1, . . . , xn}) = exp(|S| −D) det[C̃](x1, . . . , xn) (2.4)

for all (x1, . . . , xn) ∈ Sn and n = 0, 1, . . ..

3 Most repulsive DPPs

We first present the most globally repulsive DPPs, in the sense of Definition 1.1.
They were briefly introduced in [25] and are given by the following proposition.

Proposition 3.1. In the sense of Definition 1.1, DPP (C) is the most globally
repulsive DPP among all DPPs with intensity ρ and kernel satisfying condition K
if and only if F(C) is even and equals almost everywhere an indicator function of a
Borel set with volume ρ.

According to Proposition 3.1, there exists an infinity of choices to the most
globally repulsive DPP in the sense of Definition 1.1. Figure 1 shows the pcf of three
examples of DPPs in dimension d = 1 given by Proposition 3.1 when ρ = 1. Precisely,
they correspond to DPPs with kernels C1 = F(1[− 1

2
, 1
2
]), C2 = F(1[− 3

4
,− 1

4
] + 1[ 1

4
, 3
4
])

and C3 = F(1[− 2
3
,− 1

3
] + 1[− 1

6
, 1
6
] + 1[ 1

3
, 2
3
]).
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Figure 1: Comparison between the pcfs of DPP (C1), DPP (C2) and DPP (C3)
denoted g1, g2 and g3 respectively
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Clearly, DPP (C1) is the most natural choice among all solutions provided by
Proposition 3.1 in dimension d = 1. This choice seems confirmed in Figure 1, if we
favor repulsiveness at small distances.

Similarly, in dimension d, the natural choice isDPP (CB) where CB = F(1|·|d≤ρτd)

and τd = Γ(d/2 + 1)/π
d
2 is the radius of the ball with unit volume. The explicit

expression of CB is given by (see appendix B.5 in [17])

CB(x) = F(1|·|d≤ρτd)(x) =

√
ρΓ(d

2
+ 1)

πd/4

J d
2

(
2
√
πΓ(d

2
+ 1)

1
dρ

1
d |x|
)

|x| d2
, ∀x ∈ R

d, (3.1)

where J d
2
is the Bessel function of the first kind. For example, we have:

• for d = 1, CB = C1 = sinc(x) = sin(πρ|x|)
π|x| ,

• for d = 2, CB = jinc(x) =
√
ρ
J1(2

√
πρ|x|)√

π|x| .

This choice was already favored in [25]. However, there is no indication from
Proposition 3.1 to suggest CB instead of another kernel given by the proposition.
This choice becomes clear if we look at the local repulsiveness as defined in Defini-
tion 1.2.

Proposition 3.2. In the sense of Definition 1.2, the most locally repulsive DPP
among all DPPs with intensity ρ and kernel satisfying condition K is DPP (CB).

Thus, from Propositions 3.1 and 3.2, we deduce the following corollary:

Corollary 3.3. The kernel CB is the unique kernel C verifying condition K such
that DPP (C) is both the most globally and the most locally repulsive DPP among
all DPPs with intensity ρ.
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Remark 3.4. In [3], A. Borodin and S. Serfaty characterize the disorder of a point
process by its ”renormalized energy”. Accordingly, the smaller the renormalized
energy, the more repulsive the point process. In their Theorem 3, A. Borodin and
S. Serfaty show that DPP (CB) minimizes the renormalized energy among the most
globally repulsive DPPs given by Proposition 3.1. This result confirms Corollary 3.3,
that the most repulsive stationary DPP, if any has to be chosen, is DPP (CB).
However, except when the DPPs are given by Proposition 3.1, all stationary DPPs
have an infinite renormalized energy (see Theorem 1 in [3]), which indicates that
the renormalized energy is not of practical use to compare the repulsiveness between
two arbitrary DPPs.

4 Most repulsive DPPs with compactly supported

kernels

In this section, we assume that the kernel C is compactly supported, i.e. there exists
R > 0 such that C(x) = 0 if |x| > R. In this case, DPP (C) is an R-dependent
point process in the sense that if A and B are two sets separated by a distance larger
than R, then DPP (C) ∩ A and DPP (C) ∩ B are independent. This property is a
straightforward consequence of Theorem 2.7. In particular, the matrix [C̃] involved
in the density of DPP (C), see Theorem 2.7, becomes sparse. This is particularly
convenient for likelihood inference in high dimension when fitting parametric models.

We are thus interested by the repulsiveness properties of DPPs with kernels sat-
isfying the following condition.

Condition Kc(ρ, R). A kernel C or DPP (C) is said to verify condition Kc(ρ, R) if:

(i) C verifies condition K,

(ii) C is compactly supported with range R, i.e C(x) = 0 for |x| ≥ R,

(iii) C(0) = ρ, in others words, ρ is the intensity of DPP (C).

The following proposition shows that any kernel satisfying condition K can be
arbitrarily approximated by kernels verifying Kc(ρ, r) for r large enough.

Let us define the function h by

h(x) = exp

(
1

|x|2 − 1

)
1|x|<1, ∀x ∈ R

d. (4.1)

Denote ‖h‖2 =
∫
|h(t)|2dt and [h ∗ h] the self-convolution product of h.

Proposition 4.1. Let C be a kernel verifying condition K with C(0) = ρ and h be
defined by (4.1). Then, for all r > 0, the function Cr defined by:

Cr(x) =
1

‖h‖2 [h ∗ h]
(
2x

r

)
C (x) , ∀x ∈ R

d, (4.2)
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verifies Kc(ρ, r). Moreover we have:

lim
r→+∞

Cr = C, (4.3)

uniformly on all compact sets.

In particular, by taking C = CB in Proposition 4.1, it is always possible to find
a kernel Cr verifying Kc(ρ, r) that yields a repulsiveness (local or global) as close
as we wish to the repulsiveness of CB, provided that r is large enough. However,
given a maximal range of interaction R, it is clear that the maximal repulsiveness
implied by kernels verifying Kc(ρ, R) can not reach the one of CB. In the following,
we study the DPP’s repulsiveness when the range R is fixed.

In comparison with condition K, the compactly supported assumption in con-
dition Kc(ρ, R) makes the optimization problems raised in Definition 1.1 and Def-
inition 1.2 much more difficult to investigate. As a negative result, we know very
little about the most globally repulsive DPP, in the sense of Definition 1.1, under
condition Kc(ρ, R). From relation (2.2), this is equivalent to find a kernel C with
maximal L2 -norm under the constraint that C verifies Kc(ρ, R). Without the con-
straint F(C) ≤ 1, this problem is known as the square-integral Turán problem with
range R, see for example [22]. For this less constrained problem, only the following
existence result is proved and no explicit formula of the solution is known.

Theorem 4.2 ([8]). A solution to the square-integral Turán problem with range R
exists.

In dimension d = 1, it has been proved that the solution is unique and there exists
an algorithm to approximate it, see [14]. In this case, numerical approximations show
that the solution with range R verifies condition Kc(ρ, R) only if R ≤ 1.02/ρ. This
gives the most globally repulsive DPP verifying Kc(ρ, R) in dimension d = 1, when
R ≤ 1.02/ρ, albeit without explicit formula. For other values of R, or in dimension
d ≥ 2, no results are available, to the best of our knowledge.

Let us now turn to the investigation of the most locally repulsive DPP, in the
sense of Definition 1.2, under condition Kc(ρ, R). Recall that without the compactly
supported constraint of the kernel, we showed in Section 3 that the most locally
repulsive DPP, namely DPP (CB), is also (one of) the most globally repulsive DPP.

For ν > 0, we denote by jν the first positive zero of the Bessel function Jν and
by J ′

ν the derivative of Jν . We refer to [1] for a survey about Bessel functions and
their zeros. Let us further define the constant M as

Md =
2d−2j2d−2

2

Γ
(
d
2

)

ρπ
d
2

.

We have in particular Mρ = π2/8 ≈ 1.234 when d = 1, Mρ1/2 = j0/π
1/2 ≈ 1.357

when d = 2, and Mρ1/3 = π1/3 ≈ 1.465 when d = 3.
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Proposition 4.3. If R ≤ M , then, in the sense of Definition 1.2, there exists an
unique isotropic kernel CR such that DPP (CR) is the most locally repulsive DPP
among all DPPs with kernel verifying Kc(ρ, R). It is given by CR = u ∗ u where

u(x) = κ
J d−2

2

(
2j d−2

2

|x|
R

)

|x| d−2
2

1|x|<R
2
, (4.4)

with κ2 = 4Γ(d/2)

ρπd/2R2

(
J ′

d−2
2

(j d−2
2
)
)−2

.

In this proposition CR is only given as a convolution product. Nonetheless, an
explicit expression CR is known in dimension d = 1 and d = 3, see [9]. On the other
hand, the Fourier transform is known in any dimension since F(CR) = F(u)2. We
get from the proof of Proposition 4.3, for all x ∈ R

d,

F(CR)(x) = ρπd/2Rdj2d−2
2

Γ

(
d

2

)
 J d−2

2
(πR|x|)

(πR|x|)
d−2
2

(
j2d−2

2

− (πR|x|)2
)




2

. (4.5)

If R ≥M , we do not have any close form expression of the most locally repulsive
DPP. However, under some extra regularity assumptions, we can state the following
general result about its existence and the form of the solution.

Condition M(ρ, R). A function u is said to verify condition M(ρ, R) if u(x) = 0
for |x| > R

2
, u is a radial function and u ∈ L2 with ‖u‖2 = ρ.

Proposition 4.4. For any R > 0, there exists an isotropic kernel CR such that
DPP (CR) is the most locally repulsive DPP among all DPPs with kernel C verifying
Kc(ρ, R). It can be expressed as CR = u∗u where u satisfiesM(ρ, R). Furthermore,
if we assume that supx∈Rd F(C)(x) = F(C)(0) and u is twice differentiable on its
support, then u is of the form

u(x) =

(
β + γ

J d−2
2

(
√
α|x|)

|x| d−2
2

)
1|x|<R

2
, (4.6)

where α > 0, β ≥ 0 and γ are three constants linked by the conditionsM(ρ, R) and∫
Rd u(x)dx ≤ 1.

In the case R ≤ M , this proposition is a consequence of Proposition 4.3 where
β = 0, α = 4

R2 j
2
d−2
2

, and γ = κ. When R > M , it is an open problem to find an

explicit expression to the kernel CR without any extra regularity assumptions. Even
in this case, (4.6) only gives the form of the solution and the constants α, β and
γ are not explicitly known. In particular the choice β = 0 does not lead to the
most locally repulsive DPP when R > M , contrary to the case R ≤ M . In fact,
the condition M(ρ, R) allows us to express β and γ as functions of α, R and ρ,
but then some numerical approximation are needed to find the value of α in (4.6),
given R and ρ, such that DPP (CR) is the most locally repulsive DPP. We detail
these relations in Section 5.3, where we start from (4.6) to suggest a new parametric
family of compactly supported kernels.
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Contrary to what happens in the non compactly supported case of Section 3, the
most locally repulsive DPP is not the most globally repulsive DPP under Kc(ρ, R).
This is easily checked in dimension d = 1 when R ≤ 1.02/ρ implying R ≤ M : In this
case the most globally repulsive DPP under Kc(ρ, R) is DPP (TR), where TR is the
solution of the square-integral Turán problem with range R, and the most locally
repulsive DPP is DPP (CR) where CR is given by (4.4). However, according to the
results of Section 3 corresponding to R =∞, we expect that DPP (CR) has a strong
global repulsiveness even for moderate values of R. This is confirmed in Figure 2,
that shows the pcf of DPP (CR) when d = 1, ρ = 1, and R = 1.02, R = M ≈ 1.234
and R = 2M , where in this case we take CR = u ∗ u with u given by (4.6) and the
constants are obtained by numerical approximations. The pcfs of DPP (T1.02) and
DPP (CB) are added for sake of comparison. We also note from the behavior of
the pcf near the origin, that even if DPP (T1.02) is the most globally repulsive DPP
under Kc(ρ, R) when R ≤ 1.02/ρ, its local repulsiveness is not very strong. On the
other hand, DPP (CR) seems to present strong global repulsiveness for the values of
R considered in the figure.

Figure 2: In dimension d = 1, comparison between the pcf ofDPP (T1.02), DPP (CB)
and DPP (CR) for R = 1.02,M, 2M .
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5 Parametric families of DPP kernels

A convenient parametric family of kernels {Cθ}θ∈Θ, where Θ ⊂ R
q for some q ≥ 1,

should ideally :

(a) provide a close form expression for Cθ, for any θ,

(b) provide a close form expression for F(Cθ), for any θ,

(c) be flexible enough to cover all the possible range of repulsiveness of DPPs,
that goes from the Poisson point process to DPP (CB).
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The second property above is needed to check the condition of existence F(Cθ) ≤ 1,
but it is also useful for some approximations in practice. Indeed, the algorithm for
simulating DPP (C) on a compact set S, as presented in [19], relies on the Mercer
representation of C on S, which is rarely known in practice. In [25], this decom-
position is simply approximated by the Fourier series of C, where the k-th Fourier
coefficients is replaced by F(C)(k), up to some rescaling. The same approxima-
tion is used to compute C̃ involved in the likelihood in Theorem 2.7. This Fourier
approximation proved to be accurate in most cases, both from a practical and a
theoretical point of view, provided ρ is not too small, and to be computationally
efficient, see [25].

In addition to (a)-(c), we may also require that Cθ be compactly supported with
maximal range R, following the motivation explained in Section 4, in which case
the maximal possible repulsiveness is given by DPP (CR). Or we may require that
F(Cθ) be compactly supported, in which case the Fourier series mentioned in the
previous paragraph becomes a finite sum and no truncation is needed in practice.
Note however that Cθ and F(Cθ) can not be both compactly supported.

Several standard parametric families of kernels are available, including the well-
known Whittle-Matérn and the generalized Cauchy covariance functions, where the
condition F(Cθ) ≤ 1 implies some restriction on the parameter space, see [25].
Although they encompass a close form expression for both Cθ and F(Cθ), they do
not cover all possible range of repulsiveness. Another family of parametric kernels
is considered in [25], namely the power exponential spectral model, that contains
as a limiting case CB and the Poisson kernel (2.1). For this reason this family
covers all possible range of repulsiveness, but then only F(Cθ) is given and no
close expression is available for Cθ. For all these families, none of Cθ and F(Cθ) is
compactly supported.

Below, we present alternative families of parametric kernels. The first one is
the Laguerre-Gaussian family and fulfills the three requirements (a)-(c) above. The
second family follows (a)-(c) too, and additionally the Fourier transform of the
kernels is compactly supported. We finally introduce new families of compactly
supported kernels, inspired by Proposition 4.1 and Proposition 4.4.

5.1 Laguerre-Gaussian family

Let us first recall the definition of the Laguerre polynomials. We denote by N the
set {0, 1, 2, . . .} and by N

∗ the set N \ {0}.

Definition 5.1. The Laguerre polynomials are defined for all m ∈ N and α ∈ R by:

Lα
m(x) =

m∑

k=0

(
m+ α

m− k

)
(−x)k
k!

.

For all m ∈ N
∗, α > 0, ρ > 0 and x ∈ R

d, we consider the Laguerre-Gaussian
function

C(x) =
ρ

(
m−1+ d

2
m−1

)L
d
2
m−1

(
1

m

∣∣∣x
α

∣∣∣
2
)
e−

1
m
| x
α
|2 . (5.1)
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This kernel already appears in the literature, see e.g. [11] for an application in
approximation theory. The following proposition summarizes the properties that
are relevant for its use as a DPP kernel.

Proposition 5.2. Let C be given by (5.1), then its Fourier transform is, for all
x ∈ R

d,

F (C) (x) =
ρ

(
m−1+ d

2
m−1

)αd (mπ)
d
2 e−m(πα|x|)2

m−1∑

k=0

(π
√
m|αx|)2k
k!

(5.2)

and DPP (C) exists if and only if α ≤ αmax where

αd
max =

(
m−1+ d

2
m−1

)

ρ(mπ)
d
2

.

In this case, DPP (C) is stationary and isotropic with intensity ρ.
Moreover, we have the convergence, for any ρ > 0 and α > 0,

lim
m→+∞

C(x) = ρΓ

(
d

2
+ 1

) J d
2

(
2| x

α
|
)

| x
α
| d2

(5.3)

uniformly on all compact sets. In particular, for α = αmax we have :

lim
m→+∞

C(x) = CB(x) (5.4)

uniformly on all compact sets and where CB is defined in (3.1).

This family of kernels contains the Gaussian kernel, being the particular case
m = 1, and covers all range of repulsiveness from the Poisson kernel (2.1) (when
α→ 0) to CB, in view of (5.4).

For instance, in dimension d = 2, we have αmax = 1√
ρπ
, which does not depend

of m in this case. Figure 3 shows, when d = 2, the behavior of the pcf of DPP (C)
with respect to α. Figure 4 illustrates, when α is fixed to α = αmax, the convergence
result (5.4).
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Figure 3: Pcf’s of DPP (C) and DPP (CB) where C is given by (5.1), and when
d = 2, ρ = 1, m = 1 and different values of α from 0.1 to αmax ≈ 0.56.
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Figure 4: Pcf’s of DPP (C) and DPP (CB) where C is given by (5.1), and when
d = 2, ρ = 1, α = αmax ≈ 0.56 and different values of m.
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5.2 Bessel-type family

For all σ ≥ 0, α > 0, ρ > 0, we consider the Bessel-type kernel

C(x) = ρ 2
σ+d
2 Γ

(
σ + d+ 2

2

) Jσ+d
2

(
2| x

α
|
√

σ+d
2

)

(
2| x

α
|
√

σ+d
2

)σ+d
2

, x ∈ R
d. (5.5)
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This positive definite function first appears in [30], where it is called the Poisson
function. It has been further studied in [12] and [13], where it is called the Bessel-
type function. For obvious reasons, we prefer the second terminology when applied
to point processes. For any x ∈ R, we denote by x+ its positive part, i.e. x+ =
max(x, 0).

Proposition 5.3. Let C be given by (5.5), then its Fourier transform is, for all
x ∈ R

d,

F(C)(x) = ρ
(2π)

d
2αdΓ(σ+d+2

2
)

(σ + d)
d
2Γ(σ+2

2
)

(
1− 2π2α2|x|2

σ + d

)σ
2

+

(5.6)

and DPP (C) exists if and only if α ≤ αmax where

αd
max =

(σ + d)
d
2Γ(σ+2

2
)

ρ(2π)
d
2Γ(σ+d+2

2
)
.

In this case, DPP (C) defines a stationary and isotropic DPP with intensity ρ. More-
over, if σ = 0 and α = αmax, then C = CB where CB is defined in (3.1). In addition,
we have the convergence, for any ρ > 0 and α > 0,

lim
σ→+∞

C(x) = ρ e−(
|x|
α )

2

, (5.7)

uniformly on all compact sets.

The Bessel-type family contains CB as a particular case and the Poisson kernel
as a limiting case, when α→ 0. Hence this family covers all range of repulsiveness.
Moreover, F(C) is compactly supported, see (5.6).

Figure 5 shows the behavior of the pcf of DPP (C) with respect to σ, while
Figure 6 illustrates the convergence result (5.7).

Figure 5: Pcf’s of DPP (C) where C is given by (5.5), when d = 2, ρ = 1, σ = 0 and
different values of α. The case α = αmax = 1/

√
π ≈ 0.56 corresponds to C = CB.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α=0.1

α=0.2

α=0.3

α=0.4

α=0.5

CB (α=αmax)

15



Figure 6: Pcf’s of DPP (C) where C is given by (5.5), when d = 2, ρ = 1, α = αmax,
and different values of σ. The case σ = 0 corresponds to C = CB.
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5.3 Families of compactly supported kernels

As suggested by Proposition 4.1, we can consider the following family of compactly
supported kernels, parameterized by the range R > 0,

C1(x) =
1

‖h‖2 [h ∗ h]
(
2x

R

)
CB (x) , ∀x ∈ R

d, (5.8)

where h is given by (4.1). The Poisson kernel (2.1) and CB are two limiting cases,
when respectively R→ 0 and R→ +∞. However this family of kernels has several
drawbacks : no close form expression are available for C1, nor for F(C1); Moreover,
at range R fixed, DPP (C1) is not the most repulsive DPP, see Proposition 4.4 and
Figure 7. This is the reason why we turn ourselves to another family of compactly
supported kernels.

Following Proposition 4.4, we introduce a new family of compactly supported
kernel with range R, given as a convolution product of functions as in (4.6). Specif-

ically, let R > 0, ρ > 0 and α > 0 such that R
√
α

2
is not a zero of the Bessel function

J d−2
2
, then we consider the kernel C2 = u ∗ u with

u(x) =
√
ρ β(R, α)


1− R

d
2
−1

2
d
2
−1J d

2
−1(

R
√
α

2
)

J d
2
−1(
√
α|x|)

|x| d2−1


 1|x|≤R

2
, (5.9)

where

β(R, α) =


 Rd−1πd/2

2d−1Γ
(
d
2

)


R

d
− 4√

α

J d
2
(R

√
α

2
)

J d
2
−1

(
R
√
α

2

) +
R

2


1−

J d
2
−2(

R
√
α

2
)J d

2
(R

√
α

2
)

J2
d
2
−1

(
R
√
α

2

)







− 1

2

.
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Proposition 5.4. Let C2 = u∗u where u is given by (5.9), then its Fourier transform
is F(u)2 where for all x ∈ R

d

F(u)(x) = √ρ β(R, α)

(
R

2|x|

) d
2
−1(

R

2|x|J d
2
(πR|x|)

+
π

J d−2
2
(R

√
α

2
)

R
√
αJ ′

d−2
2

(R
√
α

2
)J d−2

2
(πR|x|)− 2πRJ d−2

2
(R

√
α

2
)|x|J ′

d−2
2

(πR|x|)
α− 4π2|x|2


 .

Moreover DPP (C2) exists if and only if α is such that |F(u)| ≤ 1. In this case,
DPP (C2) defines a stationary and isotropic R-dependent DPP with intensity ρ.

The choice of u in (5.9) comes from (4.6) where γ has been fixed to let u con-
tinuous at |x| = R/2, and where β is deduced from the relation C2(0) = ‖u‖2 = ρ.
Given ρ and R, the remaining free parameter in this parametric family becomes α.
The restriction that R

√
α

2
must not be a zero of J d−2

2
can be alleviated by setting

in these cases β = 0 in (4.6) and fix γ so that C2(0) = ρ. Then the most locally
repulsive DPP (4.4) when R ≤M would be part of the parametric family. However,
these kernels can be arbitrarily approximated by some kernel given by (5.9) for some
value of α, so we do not include these particular values of α in the family above.

The condition |F(u)| ≤ 1 on α, given R and ρ, must be checked numerically.
In most cases, the maximal value of F(u) holds at the origin and we simply have
to check whether |F(u)(0)| ≤ 1. No theoretical results are available to claim the
existence of an admissible α, but from our experience, it seems to exist an infinity of
admissible α for any R and ρ. Moreover, while the most locally repulsive DPP when
R ≤ M is known and corresponds to (4.4), the most repulsive DPP when R > M
in the above parametric family seems to correspond to the minimal value of α such
that |F(u)| ≤ 1, denoted αmin.

The main interest of the parametric family given by C2 is that it covers a large
range of repulsiveness, as shown in Figure 8, whereas the kernels are compactly
supported. Moreover the close form expression of F(C2) is available and this family
contains the most locally repulsive DPP with range R, in view of Proposition 4.4,
at least when R ≤ M . As an illustration, Figure 7 shows that DPP (C2) is more
repulsive than DPP (C1) for moderate values of R. However, C2 does not converge
to CB when R tends to infinity, contrary to C1. Figure 9 illustrates the effect of α
on C2, given ρ and R.
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Figure 7: Pcf’s of DPP (C1), DPP (C2) and DPP (CB) when d = 2, ρ = 1, α = αmin

for C2 and different values of R.
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Figure 8: Pcf’s of DPP (C2) and DPP (CB) when d = 2, ρ = 1, α = αmin and
different values of R.
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Figure 9: Pcf’s of DPP (C2) and DPP (CB) when d = 2, ρ = 1, R = 3 and different
values of α.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α=35

α=15

α=12
α=αmin

CB

6 Proofs

6.1 Proof of Proposition 3.1

This result was already observed in [25]. According to Definition 1.1, we seek to
maximizing

∫
Rd 1− g(x)dx where g is the pcf of a DPP with intensity ρ and kernel

C verifying condition K. By (2.2) the kernel C of a DPP with intensity ρ and pcf
g is:

C(x) = ρ
√

1− g(x), ∀x ∈ R
d,

and it verifies C(0) = ρ. Therefore, this optimization problem is equivalent to
maximizing

∫
R2 C

2 under the constraints that C verifies condition K and C(0) = ρ.
By Parseval’s equality, this is equivalent to maximizing

∫
F(C)2 under the same

constraints. First, let us notice the following Lemma.

Lemma 6.1. If C verifies condition K then F(C) is in L1(Rd).

Proof. This lemma is proved by the same arguments as in Theorem 1.8.13 in
[29]. Since the Fourier transform preserves inner product in L2, we have:

∫

Rd

F(C)(x)e−
π|x|2

n2 dx =

∫

Rd

C(x)nde−|nx|2dx.

Then, by the substitution u = nx, we have:

∫

Rd

F(C)(x)e−
|πx|2

n2 dx =

∫

Rd

C
(u
n

)
e−|u|2du. (6.1)

19



Note that C can be viewed as a covariance function, thereby |C(x)| ≤ C(0). There-
fore we have from (6.1):

∫

Rd

F(C)(x)e−
|πx|2

n2 dx ≤ C(0)

∫

Rd

e−|u|2du =

√
πC(0)

2
. (6.2)

Since F(C) ≥ 0, Beppo Levi’s theorem applies in the left-hand side of (6.2). So by
letting n tends to infinity, we obtain:

0 ≤
∫

Rd

F(C)(x)dx ≤
√
πC(0)

2
,

which shows that F(C) is in L1(Rd). �

Under condition K we have 0 ≤ F(C) ≤ 1, so F(C)2 ≤ F(C) where F(C) is in
L1(Rd) by Lemma 6.1. Hence:

∫

Rd

F(C)2(x)dx ≤
∫

Rd

F(C)(x)dx. (6.3)

Since 0 ≤ F(C) ≤ 1, this inequality becomes an equality if and only if F(C)(x) ∈
{0, 1} for almost every x ∈ R

d. Moreover, since C is real and
∫

Rd

F(C)(x)dx = C(0) = ρ,

the equality holds if and only if F(C) is an even function that equals almost every-
where an indicator function of a Borel set with volume ρ. Note that in this case
C follows condition K because F(C) ∈ L1 implies that C = FF(C) is continuous
and F(C) ∈ L2 implies that C ∈ L2. Thus, these kernels solve our optimization
problem.

6.2 Proof of Proposition 3.2

We notice that the kernel CB verifies condition K and CB(0) = ρ, so it defines a
DPP with intensity ρ. By analytic definition of Bessel functions, see (9.1.10) in [1],
we have:

CB(x) =

√
ρΓ(d

2
+ 1)

πd/4

+∞∑

n=0

(−1)n
(√

πΓ(d
2
+ 1)

1
dρ

1
d

)2n

22nn!Γ (n + 1 + d/2)
|x|2n.

Thus CB is twice differentiable at 0 and by (2.2), the associated pcf gB is twice
differentiable at 0 too. By Definition 1.2, any DPP having a pcf g that is not
twice differentiable at 0 is less locally repulsive than DPP (CB). Consequently we
assume in the following of the proof that g is twice differentiable at 0. The problem
therefore reduces to minimize ∆g(0) under the constraint that g is the pcf of a DPP
with intensity ρ and kernel C verifying condition K.

According to condition K, the Fourier transform of the kernel C is well de-
fined and belongs to L1(Rd) by Lemma 6.1. Therefore, we can define the func-

tion f = F(C)
‖F(C)‖1 and consider it as a density function of a random variable X =
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(X1, · · · , Xd) ∈ R
d.

The kernel C being symmetric, we have FF(C) = C, see Remark 2.5. Let us de-

note by f̂ the characteristic function of the random variable X with density f , i.e.
f̂(t) = E

(
eit·X

)
. We have the relation:

f̂(t) =
C
(

t
2π

)

‖F(C)‖1
, ∀t ∈ R

d. (6.4)

Thus, the characteristic function f̂ shares the same regularity as C. In particular, f̂
is twice differentiable at 0, so by usual properties of the characteristic function (see
[31]), X has finite second order moments and:

E(X2
i ) = −

∂2f̂

∂x2
i

(0) +

(
∂f̂

∂xi

(0)

)2

, ∀i = 1 . . . d. (6.5)

On the other hand, as already noticed in introduction, ∇g(0) = 0 and so ∂C
∂xi

(0) =
0 for all i = 1, . . . , d. By differentiating both sides of Equation (6.4), we obtain:

∂f̂

∂xi
(0) =

1

2π‖F(C)‖1
∂C

∂xi
(0) = 0, ∀i = 1 . . . d (6.6)

and

∂2f̂

∂x2
i

(0) =
1

4π2‖F(C)‖1
∂2C

∂x2
i

(0), ∀i = 1 . . . d. (6.7)

Then, we can deduce from (6.5), (6.6) and (6.7):

E(|X|2) = E

(
d∑

i=1

X2
i

)
= −∆f̂ (0) = − 1

4π2‖F(C)‖1
∆C(0).

Moreover, since f = F(C)
‖F(C)‖1 :

E(|X|2) =
∫

Rd

|x|2f(x)dx =

∫

Rd

|x|2 F(C)

‖F(C)‖1
(x)dx.

Hence, the Laplacian of C at 0 is:

∆C(0) = −4π2

∫

Rd

|x|2F(C)(x)dx. (6.8)

By Relation (2.2) and since ∇C(0) = 0, we have:

∆g(0) = ∆

(
1− C2

ρ2

)
(0) = − 1

ρ2

(
d∑

i=1

2C(0)
∂2C

∂x2
i

(0) + 2

(
∂C

∂xi

(0)

)2
)

= −2

ρ

d∑

i=1

∂2C

∂x2
i

(0)

= −2

ρ
∆C(0). (6.9)
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Finally, we deduce from (6.8) and (6.9) the relation:

∆g(0) =
8π2

ρ

∫

Rd

|x|2F(C)(x)dx.

Thus the two following optimization problems are equivalent.

Problem 1 : Minimizing ∆g(0) under the constraint that g is the pcf of a DPP
with intensity ρ and kernel C satisfying condition K.

Problem 2 : Minimizing
∫
R
|x|2F(C)(x)dx under the constraint that C is a kernel

twice differentiable at 0, verifying the condition K and
∫
Rd F(C)(x)dx = C(0) = ρ.

The latter optimization problem is a special case of Theorem 1.14 in [26], named
bathtub principle, which gives the unique solution:

F(C) = 1|·|d≤ρτd ,

where we recall that τd = Γ(d/2 + 1)/π
d
2 .

6.3 Proof of Proposition 4.1

First let notice that h is symmetric, real-valued, infinitely differentiable and verifies
h(x) = 0 for x ≥ 1, see Section 3.2 in [29]. Thus, ‖h‖ is finite and ‖h‖ 6= 0, so Cr is
well-defined.

Since h ∗ h(0) = ‖h‖2, we have Cr(0) = ρ. By product convolution properties,
h ∗ h is symmetric, real-valued, infinitely differentiable and compactly supported
with range 2. Thus, by (4.2), Cr is symmetric, real-valued, infinitely differentiable
and compactly supported with range r. Then, Cr belongs to L1 ∩L2. In particular,
F(Cr) is well-defined pointwise. By Fourier transform properties, we have for all
x ∈ R

d:

F(Cr)(x) =
rd

2d‖h‖2
[
F(h)2

(r
2
·
)
∗ F(C)(·)

]
(x). (6.10)

Since h is symmetric, F(h) is real valued so F(h)2 ≥ 0. Thus, as F(C) ≥ 0 by
condition K, we have F(Cr) ≥ 0. It remains to verify that F(Cr) ≤ 1. By condition
K we have 0 ≤ F(C) ≤ 1 so:

rd

2d‖h‖2
∫

Rd

F(h)2
(
rt

2

)
F(C)(x− t)dt ≤ rd

2d‖h‖2
∫

Rd

F(h)2
(
rt

2

)
dt. (6.11)

By the substitution u = rt/2 and Parseval’s equality, the right-and side of Rela-
tion (6.11) equals 1. Thus we obtain with Relations (6.10) and (6.11):

F(Cr) ≤ 1.

It remains to show the convergence result (4.3), which reduces to prove that
1

‖h‖2 [h ∗ h]
(
2
r
·
)
tends to 1 uniformly on all compact sets when r → ∞. But this

follows from the uniform continuity of h ∗ h on every compact sets, implied by its
continuity, and the fact that h ∗ h(0) = ‖h‖2.
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6.4 Proof of Proposition 4.3

The proof is based on a theorem from Ehm et al. [9] recalled below with only slight
changes in the presentation.
We say that C1 = C2 up to a radialization if rad(C1) = rad(C2) where rad is the
transformation defined as follows.

Definition 6.2. Let H denote the normalized Haar measure on the group SO(d) of
rotations in R

d and let C be a kernel verifying condition Kc(ρ, R). The radialization
of the kernel C is the kernel rad(C) defined by:

rad(C)(x) =

∫

SO(d)

C(j(x))H(dj).

Note that for any isotropic kernel C, C = rad(C).

Let us denote γ2
d =

4jd−2
(d−2)/2

π
d
2 Γ( d

2)J2
d
2

(j(d−2)/2)
and cd =

4j2d−2
2

4dπ
d
2 Γ( d

2)
.

Theorem 6.3 ([9]). Let Ψ be a twice differentiable characteristic function of a
probability density f on R

d and suppose that Ψ(x) = 0 for |x| ≥ 1. Then

−∆Ψ(0) =

∫
|x|2f(x)dx ≥ 4j2(d−2)/2

with equality if and only if, up to a radialization, Ψ = ωd ∗ ωd, where ωd(x) =

γd
Γ( d

2)
j
(d−2)/2
(d−2)/2

J d−2
2

(2j d−2
2

|x|)

|x|
d−2
2

for |x| ≤ 1
2
and ωd(x) = 0 for |x| ≥ 1

2
. The corresponding

minimum variance density is

f(x) = cdΓ

(
d

2

)2




2
d−2
2 J d−2

2
( |x|

2
)

|x
2
| d−2

2

(
j2(d−2)/2 −

(
|x|
2

)2)




2

.

According to Definition 1.2 and by the same arguments as in the proof of Propo-
sition 3.2 and Relation (6.9), we seek a kernel C twice differentiable at 0 such that
∆C(0) is maximal among all kernels verifying condition Kc(ρ, R).

In a first step, we exhibit a candidate for the solution to this optimization prob-
lem and in a second step we check that it verifies all required conditions.

Step 1. We say that a function C verifies K̃c(ρ, R) if it verifies Kc(ρ, R) without
necessarily verifying F(C) ≤ 1.

We notice that a function C verifies K̃c(ρ, R) if and only if the function Ψ defined
by:

Ψ(x) =
C(Rx)

ρ
, x ∈ R

d, (6.12)
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verifies K̃c(1, 1). Therefore, we have a one-to-one correspondence between K̃c(ρ, R)

and K̃c(1, 1).

On the other hand, if a function Ψ verifies condition K̃c(1, 1), it is by Bochner’s The-
orem the characteristic function of a random variable X . Moreover, the function Ψ
is continuous and compactly supported so it is in L1(Rd) and the random variable X
has a density f , see [31]. Thus, by Theorem 6.3, any function Ψ twice differentiable

at 0 and verifying condition K̃c(1, 1) satisfies:

∆Ψ(0) ≤ −4j2(d−2)/2. (6.13)

By differentiating both sides of Equation (6.12), we have:

∆Ψ(0) =
R2

ρ
∆C(0), (6.14)

where we recall that the function C is twice differentiable at 0 and verifies K̃c(ρ, R).
Thus, by Equations (6.13) and (6.14), for all kernels C twice differentiable at 0 and

verifying K̃c(ρ, R) we have:

∆C(0) =
ρ∆Ψ(0)

R2
≤ −

4ρj2(d−2)/2

R2
. (6.15)

By Theorem 6.3, equality holds in (6.15) if and only if Ψ = ωd ∗ωd and we name CR

the corresponding kernel C given by relation (6.12). This kernel is the candidate
to our optimization problem, however it remains to prove that it verifies condition
Kc(ρ, R).

Step 2. Let us prove that CR verifies Kc(ρ, R). We have seen in Step 1 that CR

verifies K̃c(ρ, R) and is twice differentiable at 0. Thus, it remains to verify that
F(CR) ≤ 1. By Theorem 6.3, the function Ψ = ωd ∗ωd is the characteristic function
of a probability density f . Thus, we have:

F (Ψ) (x) = (2π)df (2πx) , ∀x ∈ R
d, (6.16)

so by Theorem 6.3 we deduce:

F(Ψ)(x) = (2π)dcdΓ

(
d

2

)2

 2

d−2
2 J d−2

2
(|πx|)

|πx| d−2
2

(
j2(d−2)/2 − (|πx|)2

)




2

. (6.17)

By (6.12) and Fourier transform dilatation we obtain the expression (4.5) of F(CR).
Moreover, the Bessel functions are non-negative up to their first non-negative

zero so ωd ≥ 0, which implies that Ψ ≥ 0. Hence by (6.17),

F(Ψ)(x) =

∣∣∣∣
∫

Rd

Ψ(t)e2iπx·tdt

∣∣∣∣ ≤
∫

Rd

Ψ(t)dt = F(Ψ)(0) =
2dπdcd
j4d−2

2

. (6.18)

Thus, by (6.12) and Fourier transform dilatation, we have:

F(CR)(x) ≤ F(CR)(0) =
2dRdρπdcd

j4d−2
2

=
Rd

Md
. (6.19)

Since by hypothesis R ≤M , we have F(CR) ≤ 1.
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6.5 Proof of Proposition 4.4

According to Definition 1.2 and by the same arguments as in the proof of Proposi-
tion 3.2 and Relation (6.9), we seek a kernel C twice differentiable at 0 such that
∆C(0) is maximal among all kernels verifying condition Kc(ρ, R). By relation (6.8),
this is equivalent to solve the following problem A.

Problem A: Minimize
∫
Rd |x|2F(C)(x)dx under the constraints that C is twice dif-

ferentiable at 0 and verifies Kc(ρ, R).

The proof of Proposition 4.4 is based on three lemmas proved in the following.
As a first preliminary result, the following lemma shows that C solves Problem A

if C is the auto-convolution of a certain function. In its statement the gradient ∇u
has to be considered in the sense of distribution when u ∈ L2 is not differentiable.

Lemma 6.4. A kernel CR is solution to Problem A if and only if there exists a func-
tion u such that, up to a radialization, CR = u∗u where u minimizes

∫
Rd |∇u(x)|2dx

among all functions u verifyingM(ρ, R) and F(u)2 ≤ 1.

The existence statement in Proposition 4.4 is given by the following lemma.

Lemma 6.5. There exists a solution to Problem A.

By Lemma 6.4, CR = u ∗ u where u is the solution of an optimization problem.
Then, under the additional constraint supx∈Rd F(C)(x) = F(C)(0), we have by
Fourier transform properties supx∈Rd (F(u)(x))2 = (F(u)(0))2. Since F(u)2(0) =(∫

Rd u(t)dt
)2
, the constraint F(u)2 ≤ 1 in Lemma 6.4 becomes

(∫
Rd u(t)dt

)2 ≤
1. Moreover, we notice that if u is a solution of the optimization problem, so
is −u. Thus, we can assume without loss of generality that

∫
Rd u(t)dt ≥ 0, so

that the constraint
(∫

Rd u(t)dt
)2 ≤ 1 becomes

∫
Rd u(t)dt ≤ 1. In this situation,

the optimization problem addressed in Lemma 6.4 can be solved by variational
calculus. However an explicit form of the solution is available only if we assume that
u ∈ C2(B

(
0, R

2

)
), meaning that u is twice continuously differentiable on its support.

It is given by the following lemma, which completes the proof of Proposition 4.4.

Lemma 6.6. If a function u minimizes
∫
Rd |∇u(x)|2dx among all functions u veri-

fyingM(ρ, R), u ∈ C2(B
(
0, R

2

)
) and

∫
Rd u(x)dx ≤ 1, then u is of the form :

u(x) =

(
β + γ

J d−2
2

(
√
α|x|)

|x| d−2
2

)
1|x|<R

2
,

with α > 0, β ≥ 0 and γ are three constants linked by the conditions M(ρ, R) and∫
Rd u(x)dx ≤ 1.

Proof of Lemma 6.4

Let C be a kernel twice differentiable at 0, verifying the condition Kc(ρ, R). In
particular, the kernel C is a covariance function twice differentiable at 0, so it is of
regularity at least C2 on R

d. Moreover, the quantity
∫
Rd |x|2F(C)(x)dx is invariant
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under radialization of the kernel C, see relation (44) in [9]. Thus, we can consider
C as a radial function. Then, by Theorem 3.8 in [9], there exists a countable set A
and a sequence of real valued functions in L2, {uk}k∈A, such that:

C(x) =
∑

k∈A
uk ∗ uk(x). (6.20)

Moreover, the convergence of the series is uniform and for each k ∈ A, the support
of uk lies in B

(
0, R

2

)
. Thus, by uniform convergence of the series we have :

∫

Rd

|x|2F(C)(x)dx =

∫

Rd

|x|2
∑

k∈A
|F(uk)(x)|2 dx

=
∑

k∈A

∫

Rd

|xF(uk)(x)|2 dx

=
∑

k∈A

d∑

j=1

∫

Rd

|xjF(uk)(x)|2 dx (6.21)

where xj denotes the j − th coordinates of the vector x. In addition, we note that
uk ∈ L2 so | · |F(uk)(·) ∈ L2 by (6.21). Then by Theorem 7.9 in [26] ∇uk ∈ L2,
where ∇uk has to be viewed in the distributional sense, and we have:

F (∂juk) (x) = 2iπxjF(uk)(x). (6.22)

Thus, we have:
∫

Rd

|x|2F(C)(x)dx =
∑

k∈A

d∑

j=1

∫

Rd

∣∣∣∣
F(∂juk)(x)

2iπ

∣∣∣∣
2

dx.

According to Parseval equality, it follows that:
∫

Rd

|x|2F(C)(x)dx =
∑

k∈A

d∑

j=1

∫

Rd

∣∣∣∣
∂juk(x)

2iπ

∣∣∣∣
2

dx (6.23)

=
∑

k∈A

∫

Rd

|∇uk(x)|2
4π2

dx.

As every term in the sum (6.23) is positive and since this inequality holds for every
kernel C, the minimum of

∫
Rd |x|2F(C)(x)dx is reached if and only if this sum

reduces to one term where uk = u. Then we have C = u ∗ u and
∫

Rd

|x|2F(C)(x)dx =

∫

Rd

|∇u(x)|2
4π2

dx. (6.24)

Therefore, minimizing
∫
Rd |x|2F(C)(x)dx is equivalent to minimize

∫
Rd |∇u(x)|2 dx.

It remains to translate the constraints on the kernel C as constraints on u.
Since C = u ∗ u, where u is one of the function in the decomposition (6.20), u is a
so-called real valued Boas-Kac root of C, see [9]. Thus, since C is radial, we have
by Theorem 3.1 in [9] and the discussion below that u is radial and verifies u(x) = 0
for |x| ≥ R

2
. Since C verifies Kc(ρ, R), we have C(0) = ρ and 0 ≤ F(C) ≤ 1. By

product convolution properties, those constraints are respectively equivalent on u
to:

∫
Rd u(x)

2dx = ρ and F(u)2 ≤ 1. Therefore, u verifies condition M(ρ, R) and
F(u)2 ≤ 1.
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Proof of Lemma 6.5

According to Lemma 6.4, CR is solution to Problem A if and only if CR = u∗u where
u minimizes

∫
Rd |∇u(x)|2dx among all functions u verifyingM(ρ, R) and F(u)2 ≤ 1.

We prove the existence of this minimum u.
Let Ω denote the set B

(
0, R

2

)
. We recall that H1(Ω) is the Sobolev space defined

by:

H1(Ω) =
{
f : Ω→ R

d, f ∈ L2, ∇f ∈ L2
}
,

with the norm ‖f‖H1(Ω) = (‖f‖2 + ‖∇f‖2)
1
2 . For a review on Sobolev spaces, see

for example [10] or [26]. Let us further denote E the set of functions f ∈ H1(Ω)
verifyingM(ρ, R) and F(f)2 ≤ 1.

If the minimum u above exists but u /∈ H1(Ω), then
∫
Ω
|∇u(x)|2dx = ∞, which

means that E is empty, otherwise u would not be the solution of our optimization
problem. But E is not empty, see for instance the functions in Section 5.3, so if u
exists, u ∈ H1(Ω). Let (wk)k∈N be a minimizing sequence in E , i.e.

∫

Ω

|∇wk(x)|2 dx −→
k→+∞

inf
v∈E

∫

Ω

|∇v(x)|2 dx, (6.25)

where for all k, wk ∈ E . By (6.25) and since for all k,
∫
Ω
|wk(x)|2dx = ρ, the

sequence {wk} is bounded in H1(Ω). Then, by Rellich-Kondrachov compactness
Theorem (see [10]), it follows that, up to a subsequence, {wk} converges in L2 to a
certain function w ∈ L2 verifying:

∫

Ω

|∇w(x)|2 dx = inf
v∈E

∫

Ω

|∇v(x)|2 dx. (6.26)

Let us prove that w ∈ E , so that u = w is the solution of our optimization
problem. First w ∈ H1(Ω) as justified earlier. Second, as rotations are isometric
functions and since any wk is radial by hypothesis, we have for any j ∈ SO(d):

{∫

Rd

|w(x)− wk(x)|2 dx→ 0

}
⇔
{∫

Rd

|w(j(x))− wk(j(x))|2 dx→ 0

}
,

⇔
{∫

Rd

|w(j(x))− wk(x)|2 dx→ 0

}
.

Hence, by uniqueness of the limit, the function w is radial and in particular, its
Fourier transform is real. Third, since w is the L2 limit of wk, w verifies the following
properties:

• w is compactly supported in B
(
0, R

2

)
, because wk ∈ E for all k.

• w ∈ L2 by Rellich-Kondrachov Theorem.

•
∫
Rd |w(x)|2dx =

∫
Rd |wk(x)|2dx = ρ since a sphere in L2 is closed.
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Therefore, w verifies M(ρ, R). Finally, let us prove that F(w)2 ≤ 1. For every
k, wk belongs to L2 and is compactly supported in Ω. Thus by Cauchy-Schwartz
inequality it is easily checked that wk ∈ L1, so we can consider F(wk)(x) for every
x ∈ R

d, and

|F(w)(x)− F(wk)(x)| ≤ a

√∫

Rd

|w(t)− wk(t)|2 dt, ∀x ∈ R
d,

where a is a positive constant. Thereby the convergence of wk to w in L2 implies
the pointwise convergence of F(wk) to F(w). Thus, from the relation

F(wk)(x) ≤ 1, ∀x ∈ R
d, ∀k ∈ N,

we deduce F(w) ≤ 1.

Proof of Lemma 6.6

We denote as before Ω = B
(
0, R

2

)
. The optimization problem in Lemma 6.6 is a

variational problem with isoperimetric constraints. By Theorem 2, Chapter 2 from
[15], every solution must solve the following boundary problem:

∆u+ αu− λ

2
= 0, on Ω,

u = 0, on ∂Ω.
(6.27)

In equation (6.27), α and λ are the Lagrange multipliers respectively associated
to the constraints

∫
u2 = ρ and

∫
u ≤ 1. By Karush-Kuhn-Tucker Theorem, see

Section VII in [18], λ ≥ 0. Moreover, a solution to the partial differential equation
with boundary condition (6.27) is obtained by linear combination of a homogeneous
solution and a particular solution. By Theorem 2 Section 6.5 in [10], the Lapla-
cian operator −∆ has only positive eigenvalues. Hence the associated homogeneous
equation ∆u+ αu = 0 can have a solution only if α > 0.

In addition, the function u is radial by hypothesis, so there exists a function ũ
on R such that:

∀x ∈ R
d, u(x) = ũ(|x|).

The partial differential equation (6.27) then becomes:

ũ′′(t) +
d− 1

t
ũ′(t) + αũ(t)− λ

2
= 0, ∀t ∈

]
0,

R

2

[
,

ũ

(
R

2

)
= 0.

As α is positive, we obtain from relations (3) and (4), Section 4.31 in [36] that a
solution to this equation is of the form:

ũ(t) =

(
λ

2α
+ c1

J(d−2)/2(
√
αt)

t(d−2)/2
+ c2

Y(d−2)/2(
√
αt)

t(d−2)/2

)
10<t<R

2
, (6.28)
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where Y(d−2)/2 denotes the Bessel function of the second kind. By hypothesis, the
function u is continuous on Ω so in particular at 0. Since Y(d−2)/2 has a discontinuity
at 0, see for example [1], and the remaining terms in (6.28) are continuous, we must
have c2 = 0. Then, by renaming the constant c1 by γ and letting β = λ/(2α), we
obtain that if u is solution to the optimization problem of Lemma 6.6, then u writes

u(x) =

(
β + γ

J(d−2)/2(
√
α|x|)

|x|(d−2)/2

)
1x∈Ω, (6.29)

where α and β verify α > 0 and β ≥ 0.

6.6 Proof of Proposition 5.2

Let the function fm be defined for all m ∈ N by

fm(x) = Ld/2
m

(
|x|2
)
e−|x|2, ∀x ∈ R

d. (6.30)

This function is radial, thus by Appendix B.5 in [17] we have:

F(fm)(x) =
2π

|x| d−2
2

∫ +∞

0

r
d
2L

d
2
m(r

2)e−r2J d−2
2
(2πr|x|)dr.

According to [21], we have ∀t > 0, ∀n,m ∈ N, ∀σ ∈ R, Re(α) > 0, Re(ν) > −1:
∫ +∞

0

rν+1e−αr2Lν−σ
m (αr2)Lσ

n(αr
2)Jν(rt)dr =

(−1)m+n

2α

(
t

2α

)ν

e−
t2

4αLσ−m+n
m

(
t2

4α

)
Lν−σ+m−n
n

(
t2

4α

)
. (6.31)

By taking ν = d−2
2
, α = 1, n = 0, σ = −1, we obtain:

F(fm)(x) =
2π

|x| d−2
2

(−1)m
2

( |2πx|
2

) d−2
2

e−
|2πx|2

4 L−1−m
m

( |2πx|2
4

)

= π
d
2 (−1)me−|πx|2

m∑

k=0

( −1
m− k

)
(−1)k|πx|2k

k!

= π
d
2 (−1)me−|πx|2

m∑

k=0

(−1)m−k (−1)k|πx|2k
k!

.

Therefore, we have:

F(fm)(x) = π
d
2 e−|πx|2

m∑

k=0

|πx|2k
k!

.

As C(x) = ρ

(m−1+ d
2

m−1 )
fm−1(

1√
m

x
α
), we obtain by dilatation and linearity of the Fourier

transform the formula (5.2).
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Clearly F(C) ≥ 0, let us investigate the condition F(C) ≤ 1 for the existence of
DPP (C). We notice from (5.2) that:

F(C)(x) = ae−b|x|2
m−1∑

k=0

bk|x|2k
k!

, (6.32)

where a and b are positive constants. Since F(C) depends on the variable x only
through its norm, we consider the function h define for all r ≥ 0 by:

h(r) = F(C) ((r, 0, · · · , 0)) ,

so that for all x ∈ R
d, F(C)(x) = h(|x|). For every r > 0, h is derivable at r and a

straightforward calculation leads to:

h′(r) = ae−br2

(
−2br

m−1∑

k=0

bkr2k

k!
+

m−1∑

k=1

2k
bkr2k−1

k!

)

= −2ae−br2 b
mr2m−1

(m− 1)!
.

Then, the function h is decreasing on (0,+∞). Since h is continuous on R
+, its

maximum is attained at zero and so is the maximum of F(C). Therefore, for every
x ∈ R

d, we have:

F(C)(x) ≤ F(C)(0) =
ρ (mπ)

d
2

(
m−1+ d

2
m−1

)αd.

Then, F(C) ≤ 1 if and only if αd ≤ (m−1+ d
2

m−1 )

ρ(mπ)
d
2
. In this case, C verifies the condition K.

By proposition 2.6, DPP (C) exists and is stationary. Moreover C is radial and

since L
d/2
m−1(0) =

(
m−1+ d

2
m−1

)
, see (22.4.7) in [1], we have C(0) = ρ, meaning that the

intensity of DPP (C) is ρ.
It remains to prove the convergence results (5.3) and (5.4). An immediate appli-

cation of Theorem 8.1.3 in [35] gives the convergence (5.3), see also Proposition 1
in [2]. Moreover, we have:

lim
m→+∞

αmax =
1

√
πΓ
(
d
2
+ 1
) 1

d ρ
1
d

. (6.33)

Hence, by (6.33) and (5.3), we obtain the convergence (5.4).

6.7 Proof of Proposition 5.3

By Equation (9.1.7) in [1], we have C(0) = ρ. So, if DPP (C) exists, its intensity
is ρ. According to Proposition 2.6, DPP (C) exists if C verifies the condition K. It
is immediate that C is a symmetric continuous real-valued function. Since Bessel
functions are analytic and by the asymptotic form (9.2.1) in [1], it is clear that C
belongs to L2. It remains to obtain F(C) and verify the condition 0 ≤ F(C) ≤ 1.

30



We define the family of functions pσ by:

pσ(x) =
Jσ+d

2
(|x|)

|x|σ+d
2

. (6.34)

As pσ is radial, by formula in Appendix B.5 in [17] we have:

F(pσ)(x) =
2π

|x| d−2
2

∫ +∞

0

r
d
2pσ(r)J d−2

2
(2πr|x|)dr.

By using 6.575 in [16] with the correspondence µ ← d−2
2
, ν ← σ+d−2

2
, β ← |2πx|,

α← 1, we have for σ > −2:

F(pσ) (x) =
2π

|2πx| d−2
2

(1− |2πx|2)
σ
2
+|2πx|

d−2
2

2
σ
2Γ(σ

2
+ 1)

= 2
d
2
−σ

2 π
d
2
(1− |2πx|2)

σ
2
+

Γ(σ+2
2
)

.

Since C(x) = ρ2
σ+d
2 Γ

(
σ+d+2

2

)
pσ

(
2 x
α

√
σ+d
2

)
, we obtain by dilatation of the Fourier

transform the formula (5.6).
We have obviously F(C) ≥ 0. Since σ ≥ 0, F(C) attains its maximum at 0.

Thus F(C) ≤ 1 if and only if:

F(C)(0) =
ρ(2π)

d
2αdΓ(σ+d+2

2
)

(σ + d)
d
2Γ(σ+2

2
)
≤ 1,

which is equivalent to αd ≤ (σ+d)
d
2 Γ(σ+2

2 )
ρ(2π)

d
2 Γ(σ+d+2

2 )
.

Finally, when σ = 0 and α = αmax, DPP (C) exists and a straightforward cal-
culation gives C = CB. The convergence result (5.7) may be found in [12] and is a
direct application of (1.8) in [30].

6.8 Proof of Proposition 5.4

By the discussion in Section 4, DPP (C) exists and is an R-dependent DPP with
intensity ρ if C verifies Kc(ρ, R). Since u ∈ L2, the kernel C is continuous by
Theorem 2.20 in [26]. Moreover, u verifies u(x) = 0 for |x| > R

2
, so by product

convolution properties, C verifies C(x) = 0 for |x| > R. Then C belongs to L2.
Since u is radial, so is C. It remains to verify that 0 ≤ F(C) ≤ 1 and C(0) = ρ.

By product convolution properties, we have C(0) =
∫
Rd u(x)

2dx. From the
definition of u in (5.9), we have

∫
Rd u

2(x)dx

ρβ(R, α)2
=

∫

Rd


1− 2

(
R

2

) d
2
−1 J d−2

2
(
√
α|x|)

J d−2
2
(R

√
α

2
)|x| d−2

2

+

(
R

2

)d−2 J2
d−2
2

(
√
α|x|)

J2
d−2
2

(R
√
α

2
)|x|d−2


 1|x|≤R

2
dx

=
2π

d
2

Γ(d/2)

∫ R
2

0


rd−1 − 2
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R

2
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2 J d−2

2
(
√
αr)

J d−2
2
(R

√
α

2
)
r

d
2 +

(
R

2

)d−2 J2
d−2
2

(
√
αr)

J2
d−2
2

(R
√
α

2
)
r


 dr.
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By derivation of Bessel functions, see [1], we notice that for all b ∈ R, a primitive

of xJ2
d−2
2

(bx) is given by x2

2

(
J2

d−2
2

(xb)− J d
2
−2(xb)J d

2
(xb)

)
. It follows from Appendix

B.3 in [17] that:

∫
Rd u

2(x)dx

ρβ(R, α)2
=

πd/2Rd

d Γ(d
2
)2d−1

− 4

(
R

2

)d−1
π

d
2

Γ(d
2
)

J d
2
(R

√
α

2
)

√
αJ d

2
−1(

R
√
α

2
)

+

(
R

2

)d
π

d
2

Γ(d
2
)


1−

J d
2
−2(

R
√
α

2
)J d

2
(R

√
α

2
)

J2
d
2
−1
(R

√
α

2
)


 .

Thus, by the definition of β(R, α), we obtain that
∫
Rd u(x)

2dx = ρ.
Let us now calculate F(C). We have F(C) = F(u)2. Since u is radial, F(u) is

real valued and so F(C) ≥ 0. In addition, we have by Appendix B.5 in [17] and
Relation (5.9):

F(u)(x) = √ρβ(R, α)
2π

|x| d−2
2

(∫ R
2

0

r
d
2J d−2

2
(2πr|x|)dr

− R
d
2
−1

2
d
2
−1J d

2
−1(

R
√
α

2
)

∫ R
2

0

rJ d−2
2
(
√
αr)J d−2

2
(2πr|x|)dr


 .

Since α > 0, we have by Appendix B.3 in [17] and Formula 6.521 in [16] :

F(u)(x) = √ρβ(R, α)
2π

|x| d−2
2

(
R

d
2

π2
d
2+1

J d
2
(πR|x|)
|x|

+
R

d
2
−1

2
d
2J d

2
−1(

R
√
α

2
)

R
√
αJ ′

d−2
2

(R
√
α

2
)J d−2

2
(πR|x|)− 2πRJ d−2

2
(R

√
α

2
)|x|J ′

d−2
2

(πR|x|)
α− 4π2x2




(6.35)

from which we deduce the Fourier transform of u in Proposition 5.4. Therefore, if
α is such that F(u)2 ≤ 1, then F(C) ≤ 1 and so C verifies Kc(ρ, R).
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[29] Sasvári, Z. Multivariate Characteristic and Correlation Functions, vol. 50.
Walter de Gruyter, 2013.

[30] Schoenberg, I. J. Metric spaces and completely monotone functions. Ann.
of Math. (2) 39, 4 (1938), 811–841.

[31] Shiryaev, A. Probability. Graduate Texts in Mathematics. Springer, 1995.

[32] Soshnikov, A. Determinantal random point fields. Russian Mathematical
Surveys 55 (2000), 923–975.

[33] Stein, E., and Weiss, G. Introduction to Fourier Analysis on Euclidean
Spaces (PMS-32), vol. 1. Princeton university press, 1971.

34



[34] Stoyan, D., Kendall, W. S., and Mecke, J. Stochastic geometry and its
applications. Wiley Series in Probability and Mathematical Statistics: Applied
Probability and Statistics. John Wiley & Sons Ltd., Chichester, 1987.
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