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Abstract

In this paper we are interested in the Cauchy problem for a nonlin-
ear degenerate parabolic-hyperbolic problem with multiplicative stochas-
tic forcing. Using an adapted entropy formulation a result of existence
and uniqueness of a solution is proved.

Keywords: Stochastic PDE ; degenerate parabolic-hyperbolic equation ;
Cauchy problem ; multiplicative stochastic perturbation ; Carrillo-Kruzhkov’s
entropy.

MSC code: 35K65 ; 60H15 ; 35L65.

1 Introduction

In this paper, we are interested in the formal multi-dimensional (d > 1) stochas-
tic nonlinear degenerate parabolic problem of type:

(P): { Z?{Ojfzd)%)cllfligw( (u))dt = g(z,u)dt + h(z,u)dw in QxQ,

where, in the sequel we assume that T is a positive number, Q =]0, T[xR¢ and
that W = {w, F1;0 < t < T} denotes a standard adapted one-dimensional
continuous Brownian motion, defined on the classical Wiener space (2, F, P).
These assumptions on W are made for convenience.

Let us assume that

H;: ¢: R — R is a Lipschitz-continuous function and ¢(0) = 0.
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Hs: f :R — R? is a Lipschitz-continuous function and f (0) = 0.

Hs: g,h : RY x R — R are Carathéodory functions, Lipschitz-continuous
with respect to the R-variable, uniformly in the space variable, with
9(70)7]7'(70) in L2(Rd)

Hy: up € L2(RY).
Hj: for technical reasons we assume one of the following situations:

- Situation 1: For any (z,u), h(x,u) = h(u);

- Situation 2': ¢ = 0 or linear,
|h(z,u) = h(y,v)| < c(h)(ju — v+ wn(llz = yl])

for any (z,u), (y,v), where wy, is a modulus of continuity satisfying:
( )1+9

there exists 6 € (0,1) such that WniT) 00
r

(this is the case for example if wy, () = C|r|? for a given 8 > 1/2 by
setting 1 > 60 > (1 — 3)/B);

- Situation 3: assumptions concerning h are the same as in the above
case;
if ¢ is not linear, we assume that ¢t — /¢/(¢) has a modulus of

1+6
continuity wy, such that wolon™) T, 00

(this is the case for example if wg(r) = C|r|)%

It is well-known, since J. Carrillo [3] in the deterministic case, that one needs
an entropy formulation to prove that such degenerate parabolic problems are
well-posed. Our aim is to adapt this formulation to the context of a stochastic
problem. Since the "natural” framework of the above-cited author is L' (R?) and
the "natural” framework of our SPDE is L?(R¢), we had to revisit it through
the ideas of G.-Q. Chen K.-H. Karlsen [2] and B. Andreianov and M. Maliki [4].

Concerning stochastic conservation laws in the literature, one can find some
recent works. Let us cite without exhaustivity, for additive noises: W. E, K.
Khanin and Y. Sinai [5] concerning the 1-D stochastic Burgers equation related
to Hamilton-Jacobi equations; J.H. Kim [6], also in 1-D, for more general fluxes
in the context of Kruzhkov’s entropies; G. Vallet and P. Wittbold [7] where the
authors considered a Dirichlet multidimensional problem in a bounded domain.
There, semi-Kruzhkov entropies were considered in an entropy formulation ”a
la Carrillo” for the traces.

Concerning multiplicative noises, a first partial study was proposed by J. Feng
and D. Nualart [8]. We mean partial since, based on Kruzhkov’s techniques,
the authors prove a result of uniqueness of the entropy solution for the Cauchy

IThis situation generalizes [1].
2Such kind of assumption was made in [2].



problem in R? modulo the existence of what they have called a ”strong-entropy”
solution® and the existence of such a solution in R. This study has been revisited
by G.-Q. Chen, Q. Ding and K. H. Karlsen [9] where they proved the existence of
a strong-entropy solution in the multidimensional case by using BV information
on the initial condition.

The first general result of existence and uniqueness has been proposed by A.
Debussche and J. Vovelle [10]. The problem is posed in a torus and the technique
is based on the kinetic formulations associated to the equation. C. Bauzet,
G. Vallet and P. Wittbold proposed in [1] a similar result by using Feng and
Nualart’s entropy formulation for the Cauchy problem in R? in the framework
of the Young measure theory. The same authors gave a similar result for the
Dirichlet problem in [11].

To our knowledge, the only actual result concerning the case of a strongly
degenerate parabolic-hyperbolic stochastic is a preprint of A. Debussche, M.
Hofmanova and J. Vovelle extending the kinetic formulation in a torus of [10].
In this present paper, we propose to extend the previous paper [1] to the context
of a degenerate parabolic-hyperbolic problem in the spirit of J. Carrillo’s work
[3] and revisited by G.-Q. Chen and K.-H. Karlsen [2]. Again, the existence
of a solution is proved by using a vanishing viscosity method based on the
compactness proposed by the theory of Young measures. The uniqueness of the
solution is obtained via Kruzhkov’s doubling variable method.

The paper is organized as follows. After this introductory part where we present
some notations, we will present the entropy formulation, the definition of a
solution and state the main result: the existence and uniqueness of the solution
and some stability inequalities. Section 3 is devoted to the technical part of the
paper where we show the existence of a solution and the uniqueness is presented
in Section 4; followed by the last one containing technical lemmata.

Let us now introduce some notations and make precise the functional setting.

In the sequel we denote by H'(R9) the usual Sobolev space.
We recall that H'(R?) is also the closure of D(R?), the space of C°°(R%)-
functions with compact support in R?. We denote by H~*(R%) the dual
space of H'(R?) which is also the space of derivatives of order less than
one of elements of L?(R?) in the common Gelfand-Lions identification
HY(R?) — L?(R?) = L%(RY) — H'(R?)',

For any positive M, denote by Qar =]0,T[xB(0, M) where B(0, M) is the
bounded open ball in R? of radius M.

In general, if G C R¥, D(G) denotes the restriction to G of D(R¥) functions u
such that support(u)NG is compact. Then, DT (G) will denote the subset
of non-negative elements of D(G).

3Here we don’t mean pathwise, nor martingale solutions.



For a given separable Banach space X we denote by N2 (0,7, X) the space of
the predictable X-valued processes (cf. [12] p.94 or [13] p.28 for example).
This space is the space L2(]0, T[x, X) for the product measure dt®@dP on
Pr, the predictable o-field (i.e. the o-field generated by the sets {0} x Fy
and the rectangles ]s,t] x A for any A € F,), with the L?(]0, T[xQ, X)-
norm.

If X = L?(R%), one gets that N2 (0,7, L?(R%)) C L*(Q x Q).

We denote by € the set of non-negative even convex function in C**(R) ap-
proximating the absolute-value function, such that 7(0) = 0 and that there
exists 7 > 0 such that n'(x) = 1 (resp. —1) if & > 7 (resp. x < —7 ). Then,
1" has a compact support in [—7, 7]and 1 and n’ are Lipschitz-continuous
functions. A typical element of £ is the function denoted by 7, such that

1+ si T (Qr —
n(r) = bm(2T2( r=7) fo<r<7andn.(r)=1ifr>r.

For convenience, denote by sgn,(z) = ﬁ if x # 0 and O otherwise;
a

F(a,b) = sgng(a — b)[f(a) — f(b)] and F"(a,b) = / i (o —b)f (o) do.

b
Note, in particular, that F' and F are Lipschitz-continuous functions.

Denote also: ¢"(a,b) = /ba n'(oc — b)¢'(0)do and G(z) = /Oz V@' (s)ds.

2 Towards an entropy formulation and defini-
tion of a solution

Following the method proposed in G. Vallet [14]}, for any ¢ > 0, there exists
¢
a unique solution u in N2 (0,7, H'(R%)) with 0;(u — / h(z,u)dw) in L?(Q x
0
(0,7), H 1(R%)), to Problem:

t

—

(P): Oy [u —/0 h(x,u)dw] —eAu— A¢(u) —divf(u) = g(z,u) in QxQ
u(0,-) = up in R?
Note that one has u € L2(2, C([0, T], L?(R%)).

Then, a slight modification of the It6’s formula proposed in D. Fellah and E.
Pardoux [15], for any ¢ € D*([0, T[xR%), any reals v, k, n € € and H(v, k) =
n(v — k), yields (denote by Q; = (0,t) x R?)

H(u(t),k)p(t)de — | H(ug, k)p(0)dz + 6/ VuV[n' (u — k)pldzds
Rd Rd t

+/ Vo(u)Vn' (u— k)pldzds + ; Fw)V (u— k)pldzds

1To adapt the proof of the main result of this paper, one just needs to consider the resolvant
(I — A)~ 1 instead of (—A)~1.



= H(u, k)Oypdrds + / n' (u — k)oh(x, u)dw(s)dx

Qt t
1
+5 / 0" (u — k)[h(z,u)]*pdrds + / n'(u — k)g(z,u)pdrds.
Then, since
/ 0" (u — k) f(u)Vupdzds + / 0 (u—k)f(u)Vedzds = F'(u, k)Vedzds,
t t Q+

the following equality holds:

H(u(t), k)p(t)dz + 6/ 0" (u — k)|Vul|*pdrds + / 0 (u — k)¢’ (u)|Vu|*odrds

Rd t t

= 76/ n'(u—k)VuVedrds + | H(ug, k)p(0)dx
¢ R4

+/ (H(u7 k)oyp — ' (u — k)Vé(u)Ve — F"(u, k)VSD) dzxds

+ [ o= Kyph(o wdu(s)de + [ o (u = Diglow) + 5o~ K)ihGe, w)dods,

t t

Since ¢"(z, k) = /w n' (o —k)¢'(0)do and G(z) = /1 V@' (s)ds, one gets that
k 0

H(u(t), k)p(t)dx + e/ 0 (u — k)| Vul*pdzds + / 0 (u — k)| VG (u)|*pdrds
R4 t t

= —e/ n'(u— k)VuVpdrds + | H(ug, k)p(0)dz (1)
t R4

Jr/ (H(u, k)Orp + ¢" (u, k) Ap — F" (u, k)V(p) dxds

+ / ' (u — k)ph(z, u)dw(s)de + / o (= K w) + 0" (u— ) [, w) s,

t

Note that the second integral on the left hand side is non-negative.

Moreover, one might expect that the first integral term on the right hand
side of the equation tends to 0 as € tends to O.

Therefore, if we can show that the solutions of (P.) converge in an appro-
priate sense to a function u as € tends to 0, the limit function will satisfy the
entropy inequality (1) where e = 0 and the equality sign is replaced by an
inequality.

So we propose



Definition 1 A solution to Problem (P) is anyu € N2(0,T, L*(R%))NL>(0, T, L?(Q2x
R%)) such that G(u) € L2((0,T) x Q, HY(R?)) and satisfying, a.s. the entropy
formulation: Vk € R, Yo € DT ([0, T[xR%), ¥ € &,

/Q (H k)0 + 67 k) A — F' (. k)Vip + 1/ (u — K)g(ar u)p) dads
! 1 "(u— z,u)>pdrds
+/Q77 (u — k)ph(z,u)dw(s)dz + 2/@77 (u— k)[h(x,w)]pdxd

> /Qn”(u — k)|VG(u)|*pdrds — /Rd H (ug, k)p(0)dz.

Let us first make some remarks on the definition.

Remark 1 1. Note that if G(u) € L?((0,T) x Q, H'(RY)), then ¢(u) €
L2((0,T) x Q, H'(R?)) and, thanks to Lemma 38 (see Section 5), the en-
tropy inequality is equivalent to

/ < (u, k)0yp + ¢"(u, k) Ap — F"(u, k)Vo +1n'(u — k)g(x, u)cp) dxds
/ k)ph(z, u)dw(s)dz + ;/Qﬁ//(u — k)[h(x, w)]*pdxds.
> /\V/ V1'(oc — k)G (o)do| godxds—/ H (uo, k)p(0)dx

2. Following Remark 2.6 in [1], one has that a solution in the sense of the
above definition is also, a.s., a weak solution of (P).

3. Following now Remark 2.7 of the same paper, one gets that a solution u

in the sense of the above definition satisfies essli£n E [ |Ju—upldcr =0
t—0 K

for any compact K of R%, but also, esslim E/ |lu — uolp(x)de = 0 for
t—0+ R4
any ¢ € L*(R?).
Let us also remark that any solution u belongs to L?[(0,T), L?(2 x R9)],
t
and it is the same for u — / h(z,u)dw(s) thanks to the properties of the
0

t
It6 integral. As u is also a weak solution of (P), O¢lu — / h(z,u)dw(s)]
0

belongs to L?[(0,T), L*(Q, H1(R%))].

Thus, v € C([0,T], L*(Q, H~Y(R%))). Since by definition u belongs to
L>(0,T, L3(Q x RY)), Lemma 1.4 p.263 of [16] yields: u is weakly con-
tinuous in time with values in L?(£2 x R?).

Let us now present the main result of the paper.



Theorem 1
Under the assumptions Hy to Hy, there exists a unique solution in the sense of
Definition 1.

Considering two initial conditions ug 2, uo,1, the corresponding solutions us, u
and the weight a(x) = min(1, gﬁ) where R > 1 and a > d/2, there ezists ¢ > 0
such that for any positive t:

E | Jua(t, ) —ui(t,x)|a(z)de < eCt/

|ug,2(x) — up,1(x)|a(x)dz.
Rd Rd

Moreover, if the initial conditions and g(-,0) are also elements of L'(R?)
and h(-,0) = 0, then the solutions are in L>(0, T, L*(Q2 x R?)) and one has for

any t, |(uz — u1) ()| 1 @xrey < e lluoe — w0 llp rey-

3 Existence of a solution

Let us denote in the sequel u* the solution of Problem (P,) with initial condition
u§ € D(R?) that converges to a given ug 2 in L?(R?) and consider u° a solution
of Problem (P;) with initial condition uj € D(R?) that converges to a given
uo,1 in Lz(Rd)

Based on the Kruzhkov’s doubling variables method, our aim in this section
is formally to pass to the limit when e and ¢ go to 0 in a Kato’s inequality.
The compactness we use is the one given by the theory of Young measures and
the classical uniqueness method for entropy solutions ensures the uniqueness
of the limit point of the sequence of viscous approximation. This then yields
the convergence of the whole sequence to an entropy solution in the sense of
Definition 1.

To prove such Kato’s inequality, [1] used that Au® € L2(Q x Q). In the present
case, such a regularity is not possible to obtain and one needs to regularize u°
by convolution.

Then, for a given mollifier-sequence pg in R?, using in the equation satisfied
by u9 the test function ¢ * py for any ¢ € D(R¥*!), one gets that u’ * pg is a
solution to the stochastic problem®: u? * py(t = 0) = u * ps and

Oelu’ * po — /0 hiw,u)  ppdw] — [BA(U’ * pg) + A(d(u’) * po) + div f(u®) * po]

= g(z,u’) * py.

Note in particular that this problem is posed in L?(RY) and not anymore in
H~1(RY).

Then, for any ¢ € D([0, T[xR?) (when needed in the sequel, one denotes by
K the support of ¢) any real k, the It6 formula applied to H (u’*pg(t, ), k)p(t, x)

1One uses that pg is even and the properties of the Ité integral with continuous linear
operators.



where n € € and H (v, k) = n(v — k), yields a.e.
H (u’ % pg(t), k) (t) — H(ug * po, k)p(0) — 5/t Afu®  pg][n (u® % po — k)lds
/ Alp(u®) + pollnf (u® % po — K)plds — / div{f(u?) « pol i (u® * pu — k)elds
[ w0 kg & [ 0 o~ Ryglnte. o) pldnts)
+ /Ot[n’(ué *po — k)g(x,u’) % pg + %n”(u‘S % po — k)[h(z,u’)  po]*Jpds
i.e., by integrating over @)
5/@17”(1#5 % po — k)| V[ul % pel|?pdads + 5/@77’(u5 % pg — k)V[u® * pg]Vodzds
+ /Q 0" (u®  po — ) V[6(u®) % po] V[ % polipdads
" /Q o (% pg — KYV[p(u®) % po] Vipdads

—

+ /Q 0" (4  po — )T (u®) * po] VI % polipdads
+ /Q 0 (W pg — B)[F(u®)  po] Vipdads
- /Q H(u + py, k)ypduds + /Q i (W0 % po — k)plh(, uP) * pgldu(s)da
+ » H (u * pg, k)(0)dz
" /Q o (u 5 po — R)gla, u”) # po + " (u® % po — K)[Ae, ) = polP)pdrds.
Or, if one agrees to denote, for any v in L2(R%), v x pp by vy,
B / k)| Vu§|?pdzds + /Q "(u — k)Vé(u?)gVuypdrds
= —6/ Vu0V<pdxds+/ H (u * pg, k)p(0)dx

+ /Q H(uf, k)dpp — 11 (u) — k)Vo(u®)g Vo — 11 (uh — k)[f(u®)g] Vipdads
- /Q o' (uf — ) [ Fu)o] Vulodads + /Q o () — )z, u®)oduw(s)da

+ / [0 (u§ — k)g(z,u’)g + %n”(ug — k) [h(z, u®)g)?)pdads. (2)
Q



In the sequel of this section, unless for the two integrals with € as a factor
term?, we will present the proofs in such a way that it can also be done for a
entropy solution u (i.e. ¢ = 0). The main regularity difference between u¢ and
u is that u® € HY(RY) while v € L?(R?%) with G(u) € H'(R?). So we need to
use carefully a chain-rule; instead of the classical one, we will use a generalized
chain-rule (see Lemma 3).

Let 1 be an element of DF ([0, T[2xR??). The idea in the sequel is to replace
P(t, s,z,y) by o, 2)pp(t — 8)pm(z — y) for a given ¢ € DT([0,T[xR) and
mollifier sequences p,, in time with supp p, C [_72,0] and p,, in space with
sufficiently large n and m. Thus, multiplying (1) at time t = T by p[u’ *
po(s,y) — k] and integrating the result over R x @ for the variables k, s and y,
yields

€ / 0 (u€ — k)| Vus| 2o [ud(s, y) — k|dkdzdtdsdy

Rx Q2

+ o't = RIVG) Puplui(s,) ~ Mdkdsdidsdy
Rx Q2

= —6/77’(uE — E)Vu Voo [uy (s, y) — k]dkdzdtdsdy
RxQ?

[ HEG ROl (s.) - Hdkdsdsdy
RxRIxQ

+ [ (BOE R0+ 610 A — P V40— Ryg(a, 1))
xpuug(s,y) — kldkdzdtdsdy

4 / 7 (u — BYph(z, u)dw(t)plud(s,y) — Mdkdedsdy
RxQ2

b [ = )bt u Pl (s 9) ~ Kidkdidadsdy.
RxQ2

Similarly, considering (2) and multiplying by p;[u€(t, ) — k] and integrating

with respect to k, x and ¢,

) 0 (uf — k)| Vud| o [u(t, x) — k]dydsdkdadt
RxQ2

—|—/ 0 (u — YV o(u®)eVudpi[u(t, ©) — kypdydsdkdzdt

RxQ?

= -0 0 (uh — k)Vu) Vo o [u (t, z) — k|dydsdkdadt
RxQ?

[ Hh g DOt 0) - Hdydkdadt
QxRxR4

[ (Hh 0w o (ah ~ V)T, — o' ~ D)7,
Rx Q2

2%integrals that will disappear when e will go to 0



+1'(u§ — k)[g(y, u5)e}w) puuf(t, ) — k]dydsdkdaxdt
- / 0" (uh — &) [f(u®)o] Vudyppi[uc(t, x) — k)dydsdkdwdt
Rx Q2

+/' 7 (uf — KYoh(y, u¥)pdw(s)mlus(t, z) — Kldy
RxQ2

1

by [ ol Bl 0) — Hdsdydhdod.
2 RXQ2

Adding the two equations, by grouping similar terms together, we get:

e/ 0" (u€ — k)| Vus2Yp[ud (s, y) — k|dzdtdkdyds
RxQ2

—1-(5/ E)|\Vud |2 [uc(t, z) — k|dydsdkdzdt

1R><Q2

+ 1" (u — k)| VG(u) PPpifug (s, y) — kldzdtdkdyds
QXRxQ

+ / — k) [Vo(u)gVud|ihp[u (t, z) — k]dydsdkdzdt
Q><]R><Q

= / 0 (u€ — k)VuVaipp[ud(s,y) — kldedtdkdyds
R
-6 / 0 (uh — k)Vu) Vo p[u (t, z) — k|dydsdkdxdt
RxQ?
[ (= O)plu(s.)  Kidsdrdyds
QxRxR4

+ / H(uf g, k)1b(s = 0)pi[u(t, z) — k]dydkdzdt
Q

x pi[u$(s,y) — k|dzdtdkdyds
*ﬁ@ Q2(Hmé,maﬂb—n%uz—k0V¢w¢wvwﬁ—n%u2—kmﬂu%evmﬂ)
pi[uf(t,x) — k]dydsdkdzdt

= [ = RV uilenlu (o) ~ Hdydsdrdad
R

>
1

5 [ = R)inGe uOP ol (s.y) - Hdedsdrdyds
2 RXQ2
1
_,_7/ 0 (ul — k)[h(y, u®)o)*Ypi[us(t, x) — k]dydsdkddt
2 RXQ2

[ = Byh(e u)du(Oplu(s.y) ~ drdrdyds
RxQ?

10



[ = Ry, uodu(s)pu (¢ ) ~ Hdydbdzds
Rx Q2

[ = Dyvge,u)depu(s.y) ~ Fidedrdyds
RxQ?

+ / 0 (ud — k)b (y, uYodspulus(t, o) — Kdydhdadt,
Rx Q2

ie., Iy + Iy = I3+ 14 + Is + Ig + I7 + Ig, where each I; denotes a sum of two
corresponding integrals of the same type in the above equality.
Let us now study each of the terms I, - - -, Is in detail. Our aim is to pass to the
limit, successively with first n to infinity, then 6 to 0, [ to infinity, then €, to
0. Then, depending on the situation (1 to 3), we pass to the limit with respect
to 7 to 0 (i.e. with n = 7, to the absolute-value function) and m to infinity, in
an appropriate order.

In the sequel, we adopt the following notation: lim,; means lim;, lim,, also
with limsup or liminf.

1) Since 7 is a convex function,
L = 6/ 0 (u€ — k)| Vus|*Ypi[ud(s, y) — k]dzdtdkdyds
Q2 xR
+6 / 0 (uh — k)| Vud| i [u(t, ) — k|dydsdkdzdt
Q2%xR

> 0,

so, this term can be omitted in the sequel.

2) Remind that G(z) = / V@' (0)do. Consider now
0
L = / 0 (4 — RV G ()Pl (s, y) — Kldudtdkdyds
QXRxQ

[ - BV Vol (t) - Kdydsdkdade
QXRxQ

Then, replacing ¥ (¢, s, x,y) by @(t, x)pn(t — s)pm(z — y), classical properties of
Lebesgue’s points and convolution yield

imEl, = E 1" (u€ = k) VG(u) P opm(z — y)pi[ug(t, y) — Kldzdtdkdy
n QxRxR4
B [ KGO0V uflopn @y (1) ~ ldydhdad
QxRxR2

Again, by properties of approximation by mollification, G(u), G(u®) € L?(Q x
(0,7); H'(R?)) and since the nonlinear functions are bounded, one has

imEl, = E " (u€ = k)| VG(u) Popm(z — y)pi[u’ (t, y) — Kldedtdkdy
n,0 QxRxR4

11



+E 0 (u® — k)[Vo(u®)Vullopm(x — y)pi[uc(t, x) — k]dydkdzdt,

QxRxR2
and,
lim El, = F 0" (u€ — u®) VG (u) >opm(x — y)dzdtdy
n,0,l QxRd
+E [ = u)[Vo(u)Vulppm (@ — y)dydadt
QxRd

QxR?
Now, following the idea of [2], one gets

L o= B[ o' —u))IVCW)P + VW) Fppm(e — y)dudtdy
QxR4

> 2 0 (u(t, 2) — u’ (8, y)) VG (u). VG (1) ppp (v — y)dydzdt
QxR4

— 9B / 0" (@) = (6,9)\ ¢ (0 VaG(u).Vyu’ ppm (@ — y)dydadt
QxR

= 2F V.G (u).V, U (u, u ) ppm(z — y)dydedt = I
QxRa

b
where U(a,b) = / n"(a — o)\/¢'(o)do. Thus,
L>T, = 72E/ U (us, u’ )V, G(u).Vy [opm(z — y)|dydadt.
QxR4

Note that, for a fixed b, one has that |U(a,b)| < \/||¢'||on (|a — b]) is bounded
by assumptions and

W(a,b) — lao,b)| < | /ab[n"(aao)n”(ﬂb)] #'(0)do]

[ i'to = a0)FTaao]

0

< O(L+]a—b])a—aol-

+

Thus, for a fixed b, a — ¥(a,b) is a continuous and bounded function, so,
Lemma 3 and Green’s formula yield:

I, = —2E s VI[/(S ‘I/(u,u‘s)\/ﬂé’(u)du}-Vy[wpm(a?—y)]dydmdt

u

=28 [ [ [ ) V] div, 9, oo o~ ) dydd
QxRd u’

= 2E /Q . [ /u :L /; usn”(/t — o)V ¢’(U)d0v¢’(u)du} div, Vy[opm(z — y)|dydzdt.
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In the sequel, we pass to the limit with  and € to zero in the sense of Young
measures as in [1]. This Young measure can be written as a function of the same
variables, plus an additional one living in (0,1). To keep in mind the origin of
the sequence, we denote by u(+,d) the first limit and by ua(+, €) the second one.

uz(t,z,€)

R w1 (t,y,9)
liml, = 2F [ / / 0" (1 —o)\/¢'(o)da/ ¢’(u)du]
€ QxR4x(0,1)2 w1 (t,y,8) Jpu

)

xdivy Vy [ppm (z — y)|dedddydtdz.

3) Next, let us consider
I3y = —e¢ / 0 (u€ — k)VuVaop[ud(s,y) — kldedtdkdyds
QXRxQ

-4 ' (u§ — k)Vud Vo pp[u (t, z) — k|dydsdkdadt.
QXRxQ

I / i (€ — k)VueV ool (s, y) — k]da:dtdkdyds’
QXRxQ

IN

€

+5‘ / 0 (ul — k)Y o [u (£, ) — k]dydsdk:da:dt‘
QXRxQ

)
QXRxQ

) ‘vugvyw} s (¢, ) — K]dydsdkdzdt
QXRxQ

— . / ‘Vuevxw‘dxdtdyds—l—é / ‘Vugvyw‘dydsdxdt
QxQ QxXQ

.

+(5/ ‘Vug(s,y)‘/ ‘Vyw(t,x,s,y)‘da?dtdyds
Q Q

IN

Vuevxi/)‘pl [ud(s,y) — k|dzdtdkdyds

IN

Vue(t,x)’/Q‘wa(t,x,s,y)‘dydsdxdt

Thus, replacing ¥(t, x, s,y) by ¢(t, 2)pn(t = s)pm(x — y),

|Els| < E|l3]

¢E / |V (t, )| / pult = )|V apm (@ = y) + pu(x — y)Vip|dydsdadt
K Q

IA

—|—5E/ ’Vug(s,y)’/ pn(t — s)‘cpvypm(x — y)‘d:cdtdyds
K Q

IN

Cm, K) [dIVa | 20xq) + 0lIVe l 2@xgy | < Clm, K)[Ve+ V)

thanks to the a priori estimates (see Lemma 4).
Therefore, lim,, 9.5, I3 = 0.
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4) Now let us consider the integrals coming from the initial conditions, i.e.
hio= [ HG R = 0)lui(s.y) — Hdadbdyds
QxRxR4
- / H(ul g, k)Y (s = 0)pr[uc(t, ©) — k]dydkdzdt.
QxRxR4 ’

It (t 2, 5,y) = @t x)pn(t — 8)pm(x — y), then

ho= [ HEG K020 (5)pm (@~ vl (s, y) — Hdadbdyds
QxRxR4
[ RO~ gl (4. ) ~ Hdydhdade
QxRxR4
= [ HhDp0.0)pa (oo~ v)pilu(s,y) ~ Hdodhdyds
QxRxR4

as supp pn, C [—2/n,0], and then a slight modification of similar arguments in
[1] yields

lim EI, = / ©(0, z)n(uo,1 — uo,2)pm(x — y)dzdy.
n,0,1,0,¢ R2d

5) Consider now

Lo / (B, )00t + 67 (", 1) Ay — F (0, ) V.0
QXRxQ
X pi[ud (s, y) — k|dzdtdkdyds
[ (B0~ (0~ BT )T~ o K)o,
QXRxQ
x pr[uf(t, x) — k|dydsdkdxdt
- / 0 (uy — B)[f(u)oVuglop[uc(t, x) — k]dydsdkdadt
QXRxQ
Since H(x,k) = n(xz — k) with an even function 7,
o= [ (B~ Q0+ 6 (s.y) — OB
QXRxQ
— P, uf (s, y) — OVt ) plldadtdCdyds
+ / (F(ufw (t,2) + OO0 = ' (uf — (1, @) = )V (U)o V10
QXRxQ

—

= (uy = u*(t,) = O)[F(u)o V] ) prlu (8, ) — w(t,) — CJdydsdCdadt

— /Q 0" (u — u(t, ) — O [f () Vudlhp[uc(t, x) — us(t, x) — (]dydsd{dadt

2xR
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Replacing (t, 5,,y) by @(t,)pa(t — 5)pm(x — y), one gets

b= [ (H ) - Ot - Domle
QXRxQ

+6"(u uf(5.9) = O Aulippn(t = $)pm (@ — y)]
— P, u(s,y) = Ve lopalt = $)pm (@ — y)] ) pilCldadtdCdyds

[ (ot ) = VOV ot - o~ )]
QXRxQ

—

1y (uf = u (@) = OLF (W)Yo Vy [pn(t = 5)pm(w = y)]]) pICldydsdCdadt

- /Q 0 (uf — u(t,2) = QL (W)o Vufllppa(t — 5)pm(x — y)|pi[(]dydsdCdedt

2xR
Thus, passing to the limit with respect to n,

limEI; = E/

(H(, uf(ty) = OlOrelpm(z — y)
QxRxR4

+¢7](u5’ ’U,g(t, y) - C)Aw [(Ppm(m - y)]
P U (1) = OValopm(z = y)] ) ulcldadidCdy

-E (o (= w(t,2) = VO (u")g T, [ppm(e — )
QxRxRd

—

0 (uf = u (¢, ) = OLF W)V, [opm (@ = y) ) plCldydCdrdt

—

Bt -t~ QI Vudllgon (o~ lpldydgdod
QxRxR2
and, passing to the limit with respect to 6,

Bty = B[ (HO ) - Oglon( -
+¢7](u6’ u(s(ta y) - C)Aw[@pm(‘x - y)]
—F(,u (b y) — OV lopm (@ — y)]) plCldadtdcdy

~E (W = w(t2) = OV H(u) ¥, [ppm (@ — y)]
QxRxRd

—

ol (0 = (t,2) = O)[F(6)Vy [ppm (o = )] lCldydCadt

B ) - Q)T oo~ y)lplCldydcdade
QxRxR2
Then, formulas of Green’s type give

lim EI5 =
mod
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E (n(u = ) [drglom (@ — ) ) dadtdy
QxR4

+ B[ (600 () Aalppm(e — )] + 6w u (b)) Ay lpp (i — )] ) dyddods
QxR4

= B[ (Pl () Velppn(e — y)] + F7 (0 0t (4,2)V, [ (@ — y)] ) dydedt.
QxR4

Passing to the limits with respect to § and e gives

lim ElI; = E/ nuz(t, x, €) — ui(t,y, 0)]0rppm (z — y)dedddxdtdy
n,0,1,0,e QxRax(0,1)2

+E [ (67t €), w18, 6) Aulppm(z — )]
QXR4x(0,1)2
+6"(u(t,,0), ua(t, 7, €)) A, [ppm (@ — y)] ) dedddydadt

=) (Fn(u2(tu‘T76)7u1(t7ya5))vz[§0pm(x - y)]
QxR4x(0,1)2

+F"(u1(t,y,9), us(t, x, €))Vylppm(z — y)])dedédydxdt.
6) Let us now consider the additional deterministic integrals coming from
the It6 integral formula:

1

Is = 7/ 0 (u€ — k) [h(z, u®)| 20 [ud (s, y) — k|dtdzdkdyds
2 QXRxQ

1
o [ - Rl ool 0)  Kdydsdidadt.
2 QXRxQ
Passing to the limit with respect to n, 6, then [, one obtains

1
lim Elg = -F (|h(ﬂc,u5)\2 + \h(y,u‘;)\Z) Opm(x —y)n" (u — u®)dxdtdy
n,0,1 2 Joxrd

Then, like in [1], we need to add this term to the one in item 7).

7) Now let us consider the stochastic It6 integral terms:
o= [ = Kl (s, ) — Hdadbdyds
QXRxQ
[l by edu(s)pfu(t,3) ~ Kdydkdade
QXRxQ
Taking the expectation, replacing ¥(t, s, z,y) by ¢(t,z)pn(t — 8)pm(x — y)
and since the support of p, is negative, as already remarked in [1], the second

integral vanishes and one gets that

ElI; = FE 0 (u€ — k)ph(x, u)dw(t)p[ud(s,y) — k|dedkdyds
QXRxQ
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- B /Q L/ /:z/nn%uf(t,x)—k)so(t,x>h<x,uf<t,x>>pn<t—s)dw(t)

xpm (:L' y)ﬂl [Ug(s, y) - k]dxdkdyds
/Q / (x’ ’ k)‘ L(x y)pl[ug(sa y) - k]dwdkdyds
Rd

= —E// Flz,s,k)pm(x — )aakSgnl[ue(s y) — k]dzdkdyds
Rd

= E/ // —.7: (2, 8, k) pm (z — y)Sen, [ud (s, y) — k]dedkdyds
Rrd O

- E/ | L g F s [ (Senugio.) — 4 = Seufuis - 2/n.0) - 1)
X pm (x — y)dydxdkds,

where, for convenience, one denotes by Sgn; an antiderivative of p; and

F(xz,s,k) = /S ' (u(t,x) — k)t v)h(z,u(t,z))pn(t — s)dw(t).

—-2/n
Thanks to It6’s formula, if one denotes by As(s,y) = 6Vuf + Ve (u®)y +
f(u®)g (remind : duf — divAsdt = g(y, u®)gdt + h(y, ud)edw), we find
(Senulug(s. ) — Kl = Sgmi[uf(s = 2/m,y) = K]) oz — )

_ /: . div s [Sgnf [ug (0,y) — K]pm(z — y)]} do

1

+5 [, Sl (o)~ Homte — )y, w0 do

[ Sseatlud(o) — Hon (e — )y (o)
s—2/n

since 7 (k) == [ /0 (t.2) ~ Byplt a0 )t )
(thanks to [17](Theorem 7.6, p. 180)), following [1], one gets that

lim El; = —FE 0 (u€ — ul)h(x, u)h(y, ud) pm (z — y)dzdtdy.
TL,G,l QXRd

Therefore,

lim Elg + lim EI,
n,0,l n,0,l

1
- .E (1, u) 2 + [y, )2 ) ppm (@ — )" (u” — u®)dadtdy
2 QXRd
*E/ 1" (u€ = u’ (@, u)h(y, u’) pm (x — y)dedtdy
QxRa

1
5B [, u) = h(y, u®) P epm(x — y)n'" (u — u’)dadtdy,
2 QxR4
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and

lim[lim ETlg 4+ lilgll EI;]

d,e n,0,l n,o,

1
= §E |h($,UQ(t,.’E7 6)) - h(yaul(tayva))|2(ppm($ - y)
QxR4x(0,1)2

xn" (ug(t, z,€) — ui(t,y,d))dedddzdtdy.
8) Finally, let us consider the reaction terms:
Bo= [ (o = B aplug(s) - B
RxQ?
0 (1§ = k)bg(y, u)opi[u(t,2) — k] ) dydsdhdadt

Classical convergence arguments for integrals yield

lim Elg = E/ 0 (u€ — u®)plg(z,u) — g(y, u)] pm(x — y)dydzdt
n,0,l RdXQ

IN

E lg(z,u) — gy, u’)|pm(z — y)dydzdt,
RIxQ

and

limsup lim Elg
S,e n,0,l

< E / (@, us(t, 2,€)) — gy, w1 (t, 9, 6)) |pm (e — y)dbdedydad.
R4xQx(0,1)2

Coming back to the contributions, we started with
h+1, = B+Li+Is+Is+1Ir+ 13
to get, in a first step
El, < C(m,K)[\e+ V6| + Ely+ EI; + Elg + El; + Elsg.

Then we can estimate

L, < L= lim F1

C(m, K)[Ve+ V6] + lim BTy + lim EI; + lim Elg + lim El7 + lim Els,

IN

which gives, as € and § tend to zero,

us (t,x,€) uy (t,y,0)
28 [ [ [ - o @i /e
QXR4x(0,1)2 u I

1(t,y,0)
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xdivy Vy[ppm(z — y)]dedddydtdx
= lim:fg < lim FEI4+ lim EIs+ lim[lim Els + lirgn EI;] + limsup lim Elg
d,€

J,€ n,0,l,0,e n,0,l,0,e d,e n,0, n,0,l n,0,l

IN

[ #0201 = w02)om (o = y)dady

+E nluz(t, z, €) — ui(t, y,0)]0wppm(x — y)dedddrdtdy
QxR4x(0,1)2

+E (67 (.2, 0), w1 (1,9 0) Asopm (& — )]
QxR4x(0,1)2

+¢" (uy (t, y,0), uz(t, z, €)) Ay [ppm(z — y)])dedadydxdt

-E (F7 (st ,€), w2, 9, 6)) Ve [ppm (2 — )
QxR4x(0,1)2

+F"M(uy(t,y,0),uz(t, z,€))Vy[opm(z — y)}) dedddydxdt

1
+§E |h($7 u2(t7 €, 6)) - h(ya uy (ta Y, 5))|290pm(x - y)
Q%xR4x(0,1)2
XW’/(W (tv z, 6) —u (tv Y, 5))d.’bdtdy

+E olg(z,ua(t,z,€)) — gy, ur(t,y,9))|pm(x — y)dddedydxdt.
RixQx(0,1)2

Developing terms we find
0 < [ el0.0mluns ~ u)pm(e - y)dody
]RQ
+E [ Wus(ty,€) — s (6, 6))rppm (& — y)deddddtey
QxR4x(0,1)2

+E / (¢n(u2(ta €z, 6)7 ul(tv Y, 5))A<P - FW(UQ(L T, 6)’ Ui (t’ Y, 5))v§0)
QxR4x(0,1)2
X pm (x — y)dedddydxdt

+2F (bVI (u2 (ta z, 6)7 U1 (tv Y, 5))V(pvpm (.’L‘ - y)dEdédydl‘dt
QxR4x(0,1)2

+E QDApm(x - y) (¢n(u2(t7x76)7ul(tvya6))
QxR4x(0,1)2
+o"(u1(t,y,0), us(t, x, e))) dedddydzdt

£ | o (st €), 0 (1,,8)) — Fus(t,9,6), us(t,, )
QxR4x(0,1)2

XV pm (2 — y)dedddydzdt

1
1 / Ih(z, ua(t, 2, €)) — h(ys us(t,9,8)) Popm( — )
QxR4x(0,1)2
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><77”(u2 (t7 €, 6) — U (t7 Y, 5))dl’dtdy
+E/ elg(z,ua(t, z,€)) — g(y, ui(t, y, )| pm(z — y)dodedydzdt
RIxQx(0,1)2
2(t,x,€) w1 (t,y,6) /
e [ / / (n— )T (@)do /& )]
QXRIx (0 1)2 u1 (t,y,6)

X[VoVpm(x — y) + oApm (x — y)]dedddydtdz.

Then, thanks to Lemma 1 and assumptions on h,

0 < [ e~ walpm(e — y)dody Q
R2

+E |U2 (t7 xz, 6) - Ul(t, Y, 5)|6t§0pm(l‘ - y)dﬁdédl‘dtdy
QxR4x(0,1)2

+E (Iouzt, 2,€)) = o (t, 3, )| A¢
QxR4x(0,1)2

—F(ua(t, 2, ), u1(1,9,0)) V) pn (& — y)dedddydadt
LB / (e, un(t, 2, ) — gly, s (., 6)) o (@ — y)dodedyduds
RIxQx%(0,1)2
+7'/ »(0, z)dzr + T/ [Orp] + (@) | Ap| + c(f)|Vgp\dxdt
Rd Q

+C(h)E |’LL2 (t7 z, 6) - ul(t7 Y, 5)|2<ppm ({IJ - 9)77”(“2 (t7 z, 6) —u (ta Y, 5))d$dtdy
QxR4x(0,1)2

te(h)E (wnlz = yI)Pepm(@ — )" (ualt,z, ) — us(t,y, 8))dudtdy
QxR4x(0,1)2

7E/ QD(F”(UJZ(ta Z, 6)7 Ul(t’ Y, 5)) - Fn(ul(t7 Y, 5)7 U2(t’ xz, 6)))
QxR4x(0,1)2
XV pm (2 — y)dedddydzdt

+2F @M (ua(t, z,€),ur(t,y,0)) VoV pm(x — y)dedddydxdt
QxRIx(0,1)2

+E @Apm(‘m - y) (¢"7<u2(t7 x, 6)) 3} (ta Y, 6)) + ¢"7<u1(t7 Y, 6)7 u2(t> Zz, 6)))
QxR4x(0,1)2
x dedddydxdt
H2E | I (ui(t,y,0), uz(t, ,€)) [VpVpm(z — y) + pApm(z — y)|dedddydtdr
QXR4x(0,1)2
= A+ A+ A3+ AL+ A5+ A+ A7+ Ag+ Ag + Ay

where one sets, for any a, b,

b a
Lab)i= [ [ ' u= o) &) do /5.

20



Note that n”(x) < C/7 in [—7, 7] for a given constant, so that

|As + Ag|
= C(h)E |’U,2(t, xz, 6) - ul(tv Y, 6)|2<ppm($ - 9)77//(“2(t» z, 6) —w (ta Y, 6))d$dtdy
QxR4x(0,1)2
+C(h)E ‘Wh(”x - y”)PSOpm(x - y)n//(u2(t7 xz, 6) - ul(tv Y, 5))dxdtdy
QxR4x(0,1)2
c(h
< e [ epnla—yydsaiay+ 2 [ (o =yl P (o — )iy
QxR4 T JQxRrd
h L)|2
< c(h)T/ wdzdt + C()Wh(m”/ wdxdt.
Q T Q
Moreover,
4 = |Bf e (F(us(t,2,€),u1(t,9,0)) = F"(ua(t,,0), uz(t, 2,)))
QXR4x(0,1)2

XV o (2 — y)dedédydmdt‘

< CT/ |V (x —y)|dydzdt < TmC’/ pdxdt
QxR Q

e First situation: h(z,u) = h(u). Then, w, = 0 and, m being fixed,
lim, g A4 + A5 + Ag + A7 = 0. Moreover,

Ag + Ag + Axp

= 2E [IT(ul(t7y,5),u2(t,x7e)) + ¢n<u2(t>x76)aul(t7y76))]
QxR4x(0,1)2

XVoVpn(x — y)dedddydzdt
+E/ [QIT(ul(tv Y, 5)7 Ug(t, Z, 6)) + ¢n<u2(tv Z, 6)7 ul(t, Y, 5))
QxR4x(0,1)2

+¢"(ur(t,y,6), us(t, ,€)) | pApm (v — y)dedddyddt.

Note that, thanks to Lemma 2-(6), each integrand goes to 0 with 7 and is
bounded, respectively by

(@) uz(t, z, €) — ur(t, y, 0)[[VoVpm(z — y)|
and C(¢/)|UQ(t, Z, 6) - ’LL1(t7 Y, §)||90Apﬂ1(m - y)‘

Thus, one concludes that lim,_,g As + Ag + A19 = 0 and one can pass to the
limit over m.

e Second situation: assume that ¢ = 0 or linear and that there exists 6 €
(0,1) such that M —r—0 0 (this is the case for example if wy, (r) = |r|? for
a given 8 > 1/2 by setting 1 > 60 > (1 — 5)/8).

Then, Ag + Ag + A1g = 0 and by setting 7 = wy (1/m)'*?, one has

1 2
\A4+A5+A6+A7+A8+A9+A10|SC[T-FM]‘FTW],
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and one concludes that lim,, A4 + As + Ag + A7 + Ag + Ag + A1 = 0. o

e Last situation: assume the same for h, that ¢ is not linear and that
N1+6
t — \/¢'(t) has a modulus of continuity wg such that M —r—0 0 (this
is the case for example if wy(r) = C|r|).
By using the classical form of the mollifier sequence p,,(z) = cm?p(m||z||) with

1
p(t) = e??=11{y <1}, one gets that
—2m||z|

Vo () = mpr)Wﬁ and Apy, (x) = m®py(2)

P(m||z]])
(m?|Jz]* = 1)

where P(t) = (8 —2d)t* +4(d — 1)t*> — 2d. Note that there exists a € (0,1) such
that P(t) < 0 in [0,a] and P(t) > 0 in [a, 1], so that with (5) (see Lemma 2),
Ag + Ag + A1g < B where

B = 2F [I—,—(Ul(t7y,(;),’l£2(t,x76)) +¢n(u2(t7$7€)aul(tay75))]
QR*xR4x(0,1)2

XVoV pp(x — y)dedddydzdt
+E/ [QIT(ul(t7 Y, 5)7 UQ(t7 xz, 6)) + ¢n(u2(t7 xz, E)a U1 (ta Y, 5))
[@xR4x(0,1)2]n{m|lz—yll€[a,1]}
67 (1 (19, 8), wa(t, 7, ) Apm (@ — y)dedddydad.

Then, thanks to Lemma 2-(7), one has
|B| < CT/ VoV pm (xz — y)|dydzdt
QxRa

+Cwy(7)’E lua(t, 2, €) — us(t,y,0)|[[VoVpm(z — y)|
QxR4x(0,1)2

—|—<p|Apm(.T - y)|l{mHw—y“E[a,l]}]dEdadydxdt'

IN

Cmt + Cmwgy(1)? E/ lug (t, x, €) — w1 (t,y, 8) > pm (x — y)dedddydadt
QxXR4x(0,1)2

4m?||z — y|*|Ve|?
X pm(T —y dydxdt
\/ /Q @ = e =y — 17

+Cm2w¢(7)2\/E/Q R ( )2(,0|’U,2(t7 z, 6) - ul(t> Y, 6)|2pm(x - y)dEd(ded{I]dt
xR x (0,1

[pP(mllz — y|)]?
X\//Qde pm(z —y)| (m2]|z — y|2 — 1)8 Limle—yll€la,1)ydydadl

< Clmt +mPwy()?].

With the configuration of the previous situation, setting 7 = wy,(1/m)*+¢

2
and |B| < Cmt + C’(mw<¢>(wh(1/m)1+9) .
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Then, with the assumption on the modulus wg, B converges to 0 when m goes
to +00. o

Finally, whatever the situation, passing to the limit with respect to m, the
following Kato inequality holds, for any ¢ € DT ([0, T[xR%),

/Rd |uo,2 — wo,1|¢(0, x)dx
FE ug(€, ) —uy O — g, U (5,' dodedxd
" /QX(O,DQ (uae) = (8.919hp + g ua(e ) = g ur (8l .

4B [ (|6(uale))  olur(8 )] Ap — Flua(e, ), ua(6,)) V) dded
Qx(0,1)
or, similarly, for any ¢ € D*([0,T[, H'(R%)),
0 < / |uo,2 — wo,1|e(0, x)dx
R

4B [ (jua = wldig + oCyuz) ~ o)l ) dbded
Qx(0,1)2

E/Q (v /(0’1)2 {¢(u2)¢(u1)|d5de+/(0’1)2 F(uQ,ul)déde)chdazdt

Following the idea of [4], denote by ¢(t, ) = v(t)a(x) where v € D ([0, T)),
« is the function defined by «(x) = min(1, %) where R > 1 and a = d/2 + €,
€ > 0 in order to have a in L?(R9).
Thus, Va(x) = —aRa|$|7aflﬁl{m>R} = |SC‘) \m|1{\T|>R} € L2(Rd) and,
in the set {|z| > R}, one has that Aa(z) = a(2+2c—a )TJ(;Q isin L?({|z| > R}).
Thus,

/ |uo,
]Rd

4B [ Jlua =l (0 + 1ol un) = g w0 a(o)dddedode
Qx%(0,1)2

v(0)a(z)dz

+E/ A|1>R|}X(O 12 ¢(U2) - ¢(U1)|AC¥(CE) — F(u27ul)va(‘r))P)’(t)d(Sddedt

_E / (1) / |6(uz) — S(ur)|Vaiidédedodt.
0 a{|z|>R} x(0,1)?
Since Va(r).7i = —fx.i = % > 0 on 9{|x| > R}, this yields

~¥(0)a(z)dx

+E / Iz = iy (0 + 19 u2) = g )l (0) | alw)dodedadt
Qx(0,1)2

M _ a @
+E/ /DR}XM)Q aE |9w2) ¢(U1)|+|x|F(u2,u1).|x|)d6ded:vdt,
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and as |z| > R in the last integral,
0 < [ luoa = wah(Oa(eds
R

1B / [|u2 o/ (1) + g u2) — () (1) () ddedat
Qx%(0,1)2

R+1

|¢ (us) — blua)| + |F(uz,u1)|)d(5dedxdt.
{|x>1|}x<o 1>2

Using now that R > 1 and the Lipschitz properties of ¢, f and g,

/ |u02—u01|7( ) ( )
luz — us|o(z) [ ') + C(d, b T, g)fy(t)} dddedadt.
Qx(0,1)2

Assume now, by an approximation argument, that () = e~ min(1,n(T —t)™*)
where ¢ = C(d, ¢, f,g) + 1, then

T
n/ E lug — uy|a(z)e*dddedrdt
T—1/n  JRIx(0,1)?

+E/ lug — u1|a(x)e*dddedr min(1, n(T — t)")dt
Qx%(0,1)2

< / |uo,2 — wo,1|a(z)d. (4)
Rd
Thus, if one assumes that ug2 = ug,1, passing to the limit over n yields,

E lug — u1|a(x)e” " dédedzdt < 0.
Qx(0,1)?

This means on the one hand that u; and us are the same functions, but also
on the other hand that they are not functions of the additional variables €
and ¢ respectively. Thus, one is able to conclude that the whole sequence of
viscous approximation converges, weakly in L2(2 x Q) and strongly in LP(Q x
(0,T), LY (RY)) for any p < 2 to a weak entropy solution u in the sense of our
definition.

Then, back to (4), one gets by passing to the limit over n,
T
lim infn/ E | |uz —ui|a(x)e” “drdt
n T—1/n R4

+E/ lug — uy|a(x)e” “dadt
Q

< / [uo,2 — uo,1|a(x)dz.
Rd
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Thanks to Remark 1, ¢ +— ug—u; is weakly continuous with values in L2(Q x R%)
and since u € L2(Q x RY) E/ |u|adz is a non-negative convex continuous
Rd

function, it is L.s.c. for the weak topology and
E/ lug — ut [(T)a(z)dx + E/ lug — u |(t)a(z)e? T =D dadt
Rd Q
< eCT/ luo,2 — wo,1|a(z)de.
Rd

Since the time T is arbitrary, this last assertion closes the proof of the
existence of a solution, limit of the viscous approximation and the stability of
such solutions in L(R, adx). After the proof of the uniqueness of the solution
in the sense of Definition 1 (see next section) this will prove the first part of the
theorem.

Assume now that the initial conditions and g(-,0) are elements of L*(R?)
and also h(-,0) = 0. Thus, thanks to Remark 2, the corresponding solutions are
in L>°(0,T, L*(Q x R%)).

Then, the above estimate yields

E/ |ug — up [(T") min(1, R—)dz
Rd |z

a

R
< eCT/ |uo,2 — wo,1| min(1, —
Rd

Ydx < GCT/ |ug 2 — ugp 1|de.

B RE ’

Thus, by Beppo Levi’s theorem, one concludes that (ug—u1)(t), a priori element
of L2(2 x RY), is an element of L' (Q x R?) with the information that

E/ lug —ur|(T)dz < GCT/ |uo,2 — wo,1|dx.
Rd R4

4 Uniqueness of the solution

Our aim is to prove, as in [1], that any solution in the sense of our definition
is unique by proving that it is equal to the solution obtained by viscous ap-
proximation. The method used to prove this result is exactly the same as the
one proposed in the section dedicated to the result of existence, considering a
solution u (i.e. € = 0) and u®. Coming back to the proofs, the only difference
lies in the terms I; and I3 where one has to set ¢ = 0. In the other terms,
the proofs are the same since we used intentionally the generalized chain-rule
(Lemma 3) instead of the classical one for Sobolev-functions since u is in general
not a Sobolev-function, but G(u) is.

This remark allows us to prove the theorem.
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5 Technical lemmata

Lemma 1 For any Lipschitz-continuous function g : R — R and any n € &,
ok €R, '@ k)= sgnylw = B)g(@) - g(k)]| < lip(g)r.

Proof. This comes from the remark that Vz, k € R,

oo,) = ol = Dlo(o) ~ 90| = | [ (o~ k) = swuolor - W)y (o),

O

Lemma 2 Set, for any a,b:
b a
La)i= [ [ - 0)V&@do /&
a Ju
Then, IT(a7 b) = IT(b7 CL),

0 < 2I7(a,b) + ¢"(a,b) + ¢"(b, a)

b b
5 [ [ = o) - Vnduds

2(|¢'[|o0[b — al (5)
and  3[|¢'[loc|b — a| = [I+(a,) + ¢"(b, a)| + [I+(a,b) + ¢"(a, b)| =70 0. (6)

IN

Moreover, if \/¢' admits a modulus of continuity wg, then

21 (a,b) + ¢"(a,b) + ¢"(b,a) < wy(T)?*|b—al, (7)
maxl[| I+ (a,b) + ¢"(b,a)l, |I+(a, ) + ¢"(a, b)|]

1
< §w<z>(7)2|b — a| + [|¢/[| s min(7, [b — al).
Proof. Note that, by Fubini’s theorem,
b rp
L) = = [ [ - oV/do)/amdod
b b
—/ / (0 — WV (0)V/ ¢ (n)dodp

and since i is even, one gets that I (a,b) = I.(b,a) since the above remark
yields

+(a,b) —7// VO (0)\/ P (p)dody.
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As 7' is odd and n(r) < |r| when |r| < 7, we get
217'(0" b) + ¢”l(a’ b) + ¢n(b7 a)

- /ab [[n’(u —a) = 1n'(p—0)]¢' (1) — /ab n'(pn— U)\/m\/mdo)dy
= / b / b ' (o = WV (1) = Vo' (0)]y/¢/ (u)dodp

B / / ' (1 = )V ) ~ VG0 F (@) dudo

= _/ab /ab 0" (0 = W)V (1) — V& (o)) (0)dudo

b rb
_ %//”"(M—U)[\/W—\/W]Qdudaéllaﬁ’l\oolb—al-

Therefore,

sup [L—(a, b) + ¢77(b’ a)7 L,-((l, b) + ¢n(a7 b):|
b pb b
< 3 [0 W) - VI dudo 5 [ e a) -+ 0= Bl (0)do
b b
[ = oVET) - VEdudo + ¢ min(r o~ ol

< 2[¢lloolb = al + (|| oo min(, [b— al).

IN

Finally, if one assumes that b > a (a > b is similar), then

b b

/ / 0 (1 — )G (@) — & ()2 dudo
b T

| [ @V - Vot a)Pdad

b
= [ 0@ [ W~ T ) dude.

IN

b

In particular, since lima_m/ IV (1 — a) — /¢ (1)|*dp = 0 by continuity of
a

the translations in L2, one gets the convergence to 0 claimed in the lemma. [

Lemma 3 (A generalized chain rule) Consider O C R? a domain with a

Lipschitz boundary (if there is a boundary), u € L*(O), f € L¥(R), G a

Lipschitz-continuous function with G(0) = 0 and assume that G(u) € H(O).
u

Then v = / f(s)G'(s)ds € H(O) where b € R if O has a finite measure and

b
b =0 else, and, a.c.

V/bu f(s)G'(s)ds = f(u)VG(u).

27



Proof. First, assume that f is a continuous function and that G is a non-
decreasing function.

Set G, : .+ Gc(x) = G(z) +ex. G71 is well-defined on R and it is a Lipschitz-
continuous function. Then, the classical chain rule yields

G(u) u
f 0 G Gu)VG(u) = ¥ /G , o0 as=v /b f 0 GH(G(5))G (s)ds.

Note that G¢(0) =0, Ge(z) <0 if x < 0 and G¢(z) > 0 if z > 0.
If z > 0, one has * = G71(G(z)) > G7H(G(z)) and = > limsup, G; 1 (G(x)).

Our aim is to show that G71(G(z)) — =. To this end we consider the two
following possible cases:

- Assume that z is such that: Vy e R, y < 2 = G(y) < G(x).

Then, for small € < ¢,, G(z) > G(y) + ey and = > G7H(G(z)) > GG (y)) =
y. Thus, liminf. GZ1(G(z)) > y, and at the limit when y — 27, one gets
G 1 (G(x)) — =.

- Assume now that there exists 0 < y < x such that G(y) = G(z). If one denotes

by a(z) = inf{y € [0, 2], G(y) = G(x)} = min{y € [0, 2], G(y) = G(x)}.

G(a(z)) = G(z) and, regarding the definition of a(x) and the previous case,
G (G(x) = GZH(G(a(@)) — alz).

Conclusion: for any z > 0, G- 1(G(r)) — a(x).

Similarly, for any z < 0, z < G71(G(x)) — a(z) = max{y € [2,0],G(y) =
G(x)} in that case.

Thus, for any real z, G;1(G(x)) — a(z) = argmin{|y|,G(y) = G(x)} with
IGHG(@))] < |-

Thus, since f is a bounded continuous function,

/bufoael( NG (s ds—>/f NG (s ds_/f (s)G'(s)ds a.e.

since, if a(s) # s, then G’'(s) = 0, unless for a countable number of points.

and G/ are bounded function, so that the Lebesgue theorem ylelds the conver-
g
u

gence of/ foGZ1(G(s))G'(s)ds to / f(s)G'(s)ds in L?(O), thus in the sense
b b

of distributions, and then V/ foG7H(G(s))G' (s)ds converges to V / f(s)G'(s)ds
b
in the sense of distributions.

On the other hand, foG 1(G(u))VG(u) converges to f(a(u))VG(u) a.e. and
|foGZ1(G(u))VG(u)| < ¢| VG (u)], thus foG1(G(u)) VG (u) converges to f(a(u))VG(u)
in L2(0)%.

Denote by D = {s # a(s)}. It is a countable set and, a.e.,

[fa(w) — F@IVG@)| < |faw) - f@)||[VEw)|Luen)

[#atw) = 1| [VG @)1 (awecwy =0

N

IN
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thanks to Saks lemma and since G(D) is at most countable.

The conclusion is then that, in L2(0)4,

f(W)VG(u) + foG (G (u)) / foGZH(G(5)G (5)ds — v/ f(5)G'(s)ds
and the result holds in that first case: a non-decreasing Lipschitz function G
and a bounded continuous function f.

Note that the same proof yields the result for a decreasing Lipschitz function
G and any pointwise limit of sequences of bounded continuous function (f,),
uniformly bounded by a same constant. Thus, the result holds for the Baire class
of uniformly bounded continuous function, i.e., the bounded Borel functions f.
Now, since, in the Lebesgue class of f € L>®(R), there exists a Borel function
f, bounded by the same value || f||7r), one has

f(W)VG(u) = V/b f(8)G'(s)ds = V/b f(s)G'(s)ds
If now D denotes the negligible set where f and f differs,
[F(w) = F)VG(@)] < |F(w) = f(@)||VE@)|Laweamy =0 ac.

since G(D) is negligible (D is negligible and G Lipschitz, non-decreasing) and
by using Saks Lemma.

To finish the proof, just remind that any Lipschitz function is the difference of
two Lipschitz non-decreasing functions. O

Lemma 4 The weak solution u¢ to Problem (P.) satisfies the following esti-
mates:

sup 141225 ay (1) + €l VullIZ2(axq) + IVG(W)IE2axq < C-
If, moreover, ug, g(-,0) € L*(R?) and h(-,0) = 0,

a2 [ it (O)de < T [ ag)de + Telo)lr + ot 011 )

where 77 denotes the even convex function, defined for any positive x by: 7j(x) =

2 T
5 Wlal<ry + (@ = 3)1ga>r)-

Proof. Denote by  a non-negative convex-function, with 5’ Lipschitz-continuous,
and assume that |n(u)| < C|u|? for a given constant C. Thanks to Itd’s formula,
for any ¢,

/ d:ch//Rd Ve + ¢ (u)]|Vus)? + 1" (u) f(u) Vu drds

= / n(uf dm+/ / (z,u)n' (u)dzdw(s)
R4 R4
/ h(z,u)?n"( dxds—F/ / (z,u®)n' (u)dxds.
R4 0 JRrd
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Therefore,

B [ e )de+ B / v o oG P
div] /O 0" (o) F(0)doldzds
< / n(ug)dz + c(h E/o /]Rd n' (u€)dzds + 2F ; Rdth) 7" (u)dxds
E// (Ju| + lg(, 0) )’ (u) dds.

Note that if u € H*(R?), there exists a sequence (u,) € D(RY) that converges
to u in H'(R?), so that

F) Vi e = tim [ Flun) V0 (w)de = lim [ Flun)" (un) Vnds
R4 n JRd nJRd
— lm [ div[[ flo)y"(o)doldz = 0.
" JRd 0
Thus,
E/ derE/ / Vel Va2 + 0" (u) VG (uf) |Pdzds
R4

< /R 77(ug)d:c+c(h)E/0 /Rd(uE)Qn”(ue)d:cds—i-2E/0t /Rdh(x,O)Qn”(uE)dxds
Sy R e

Assume first that 7(z) = 2. Then, this yields (the constants c¢(h) and ¢(g)
may change from one line to another)

||U€H2L2(Qde)(t) + 6||VU6||%2(QxQ + HVG(UG)H%Z(QXQ)
t
< bl + o)+ )] | o e ()
+c(g)Tlg(, 0)[|72 (gay + 4T ([P (, 0)[|7 2 ma);
and Gronwall’s lemma implies that

SlipHuE”%%Qx]Rd)(t)+€HVUEH%2(QXQ)+||VG(U'€)”%2(Q><Q < C

Assume now that ug, g(-,0) € L'(R%) and that h(-,0) = 0 and denote by
n = 71 the classical even and convex approximation of the absolute value function

introduced in the lemma. Note that 0 < 7j(z) < %, |z# (x)| < 27(x) + 7 and
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that 227" (z) < 7j(z) for any x. Then,

E Rdﬁ(ue(t))dx < /]Rd ﬁ(uﬁ)dm—i—c(mg)E/o /]Rd 7(u)dzds
+Te(g)lr + llg(x, 0) |1 ),

and thanks to Gronwall’s lemma,

Sng/dﬁ(ue(t))dx < ec(h,g)T[/dﬁ(ug)derTc(g)[TJrHg(x,O)HLl(Rd)].
R R

O

Remark 2 Assume that ug, g(-,0) € L*(R%), h(-,0) = 0 and that (u¢) converges
weakly to a given u in L?(Q x Q). Since i} is a convex continuous function, one
gets at the limit that:

/ A(u)dedt < liminf ﬁ(uf)dxdth[/ fi(uo)dz + 1] < Clluoll gy + 11
axQ € axQ R

Since 1 is monotone with respect to its parameter T, Beppo Levi’s theorem yields
u € L>=(0,T, L' (2 x RY)).
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