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In this paper we are interested in the Cauchy problem for a nonlinear degenerate parabolic-hyperbolic problem with multiplicative stochastic forcing. Using an adapted entropy formulation a result of existence and uniqueness of a solution is proved.

Introduction

In this paper, we are interested in the formal multi-dimensional (d ≥ 1) stochastic nonlinear degenerate parabolic problem of type:

(P ) : du -∆φ(u)dt -div( f (u))dt = g(x, u)dt + h(x, u)dw in Ω × Q, u(0, •) = u 0 in R d
where, in the sequel we assume that T is a positive number, Q =]0, T [×R d and that W = {w t , F t ; 0 ≤ t ≤ T } denotes a standard adapted one-dimensional continuous Brownian motion, defined on the classical Wiener space (Ω, F, P ). These assumptions on W are made for convenience.

Let us assume that H 1 : φ : R → R is a Lipschitz-continuous function and φ(0) = 0.

problem in R d modulo the existence of what they have called a "strong-entropy" solution 3 and the existence of such a solution in R. This study has been revisited by G.-Q. Chen, Q. Ding and K. H. Karlsen [START_REF] Chen | On nonlinear stochastic balance laws[END_REF] where they proved the existence of a strong-entropy solution in the multidimensional case by using BV information on the initial condition.

The first general result of existence and uniqueness has been proposed by A. Debussche and J. Vovelle [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF]. The problem is posed in a torus and the technique is based on the kinetic formulations associated to the equation. C. Bauzet, G. Vallet and P. Wittbold proposed in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] a similar result by using Feng and Nualart's entropy formulation for the Cauchy problem in R d in the framework of the Young measure theory. The same authors gave a similar result for the Dirichlet problem in [START_REF] Bauzet | The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation[END_REF].

To our knowledge, the only actual result concerning the case of a strongly degenerate parabolic-hyperbolic stochastic is a preprint of A. Debussche, M. Hofmanova and J. Vovelle extending the kinetic formulation in a torus of [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF]. In this present paper, we propose to extend the previous paper [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] to the context of a degenerate parabolic-hyperbolic problem in the spirit of J. Carrillo's work [START_REF] Carrillo | Entropy solutions for nonlinear degenerate problems[END_REF] and revisited by G.-Q. Chen and K.-H. Karlsen [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF]. Again, the existence of a solution is proved by using a vanishing viscosity method based on the compactness proposed by the theory of Young measures. The uniqueness of the solution is obtained via Kruzhkov's doubling variable method.

The paper is organized as follows. After this introductory part where we present some notations, we will present the entropy formulation, the definition of a solution and state the main result: the existence and uniqueness of the solution and some stability inequalities. Section 3 is devoted to the technical part of the paper where we show the existence of a solution and the uniqueness is presented in Section 4; followed by the last one containing technical lemmata.

Let us now introduce some notations and make precise the functional setting.

In the sequel we denote by H 1 (R d ) the usual Sobolev space.

We recall that H 1 (R d ) is also the closure of D(R d ), the space of C ∞ (R d )functions with compact support in R d . We denote by H -1 (R d ) the dual space of H 1 (R d ) which is also the space of derivatives of order less than one of elements of L 2 (R d ) in the common Gelfand-Lions identification

H 1 (R d ) ֒→ L 2 (R d ) ≡ L 2 (R d ) ′ ֒→ H 1 (R d ) ′ .
For any positive M , denote by Q M =]0, T [×B(0, M ) where B(0, M ) is the bounded open ball in R d of radius M .

In general, if G ⊂ R k , D(G) denotes the restriction to G of D(R k ) functions u such that support(u)∩G is compact. Then, D + (G) will denote the subset of non-negative elements of D(G).

For a given separable Banach space X we denote by N 2 w (0, T, X) the space of the predictable X-valued processes (cf. [START_REF] Da Prato | Encyclopedia of Mathematics and its Applications[END_REF] p.94 or [START_REF] Prévôt | A concise course on stochastic partial differential equations[END_REF] p.28 for example). This space is the space L 2 (]0, T [×Ω, X) for the product measure dt⊗dP on P T , the predictable σ-field (i.e. the σ-field generated by the sets {0} × F 0 and the rectangles ]s, t] × A for any A ∈ F s ), with the L 2 (]0, T [×Ω, X)norm. If X = L 2 (R d ), one gets that N 2 w (0, T, L 2 (R d )) ⊂ L 2 (Q × Ω). We denote by E the set of non-negative even convex function in C 2,1 (R) approximating the absolute-value function, such that η(0) = 0 and that there exists τ > 0 such that η ′ (x) = 1 (resp. -1) if x > τ (resp. x < -τ ). Then, η ′′ has a compact support in [-τ, τ ]and η and η ′ are Lipschitz-continuous functions. A typical element of E is the function denoted by η τ such that

η ′ τ (r) = 1 + sin( π 2τ (2r -τ )) 2 if 0 ≤ r ≤ τ and η ′ τ (r) = 1 if r > τ .
For convenience, denote by sgn 0 (x) = x |x| if x = 0 and 0 otherwise;

F (a, b) = sgn 0 (a -b)[ f (a) -f (b)] and F η (a, b) = a b η ′ (σ -b) f ′ (σ)dσ.
Note, in particular, that F and F η are Lipschitz-continuous functions.

Denote also:

φ η (a, b) = a b η ′ (σ -b)φ ′ (σ)dσ and G(x) = x 0 φ ′ (s)ds.

Towards an entropy formulation and definition of a solution

Following the method proposed in G. Vallet [START_REF] Vallet | Stochastic perturbation of nonlinear degenerate parabolic problems[END_REF] 1 , for any ǫ > 0, there exists

a unique solution u in N 2 w (0, T, H 1 (R d )) with ∂ t (u - t 0 h(x, u)dw) in L 2 (Ω × (0, T ), H -1 (R d ))
, to Problem:

(P ǫ ) :    ∂ t u - t 0 h(x, u)dw -ǫ∆u -∆φ(u) -div f (u) = g(x, u) in Ω × Q u(0, •) = u 0 in R d Note that one has u ∈ L 2 (Ω, C([0, T ], L 2 (R d )).
Then, a slight modification of the Itô's formula proposed in D. Fellah and E. Pardoux [START_REF] Fellah | Une formule d'Itô dans des espaces de Banach et application[END_REF], for any ϕ

∈ D + ([0, T [×R d ), any reals v, k, η ∈ E and H(v, k) = η(v -k), yields (denote by Q t = (0, t) × R d ) R d H(u(t), k)ϕ(t)dx - R d H(u 0 , k)ϕ(0)dx + ǫ Qt ∇u∇[η ′ (u -k)ϕ]dxds + Qt ∇φ(u)∇[η ′ (u -k)ϕ]dxds + Qt f (u)∇[η ′ (u -k)ϕ]dxds = Qt H(u, k)∂ t ϕdxds + Qt η ′ (u -k)ϕh(x, u)dw(s)dx + 1 2 Qt η ′′ (u -k)[h(x, u)] 2 ϕdxds + Qt η ′ (u -k)g(x, u)ϕdxds.

Then, since

Qt

η ′′ (u -k) f (u)∇uϕdxds + Qt η ′ (u -k) f (u)∇ϕdxds = Qt F η (u, k)∇ϕdxds,
the following equality holds:

R d H(u(t), k)ϕ(t)dx + ǫ Qt η ′′ (u -k)|∇u| 2 ϕdxds + Qt η ′′ (u -k)φ ′ (u)|∇u| 2 ϕdxds = -ǫ Qt η ′ (u -k)∇u∇ϕdxds + R d H(u 0 , k)ϕ(0)dx + Qt H(u, k)∂ t ϕ -η ′ (u -k)∇φ(u)∇ϕ -F η (u, k)∇ϕ dxds + Qt η ′ (u -k)ϕh(x, u)dw(s)dx + Qt [η ′ (u -k)g(x, u) + 1 2 η ′′ (u -k)[h(x, u)] 2 ]ϕdxds. Since φ η (x, k) = x k η ′ (σ -k)φ ′ (σ)dσ and G(x) = x 0 φ ′ (s)ds, one gets that R d H(u(t), k)ϕ(t)dx + ǫ Qt η ′′ (u -k)|∇u| 2 ϕdxds + Qt η ′′ (u -k)|∇G(u)| 2 ϕdxds = -ǫ Qt η ′ (u -k)∇u∇ϕdxds + R d H(u 0 , k)ϕ(0)dx (1) 
+ Qt H(u, k)∂ t ϕ + φ η (u, k)∆ϕ -F η (u, k)∇ϕ dxds + Qt η ′ (u -k)ϕh(x, u)dw(s)dx + Qt [η ′ (u -k)g(x, u) + 1 2 η ′′ (u -k)[h(x, u)] 2 ]ϕdxds.
Note that the second integral on the left hand side is non-negative. Moreover, one might expect that the first integral term on the right hand side of the equation tends to 0 as ǫ tends to 0.

Therefore, if we can show that the solutions of (P ǫ ) converge in an appropriate sense to a function u as ǫ tends to 0, the limit function will satisfy the entropy inequality [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] where ǫ = 0 and the equality sign is replaced by an inequality.

So we propose

Definition 1 A solution to Problem (P) is any

u ∈ N 2 w (0, T, L 2 (R d ))∩L ∞ (0, T, L 2 (Ω× R d )) such that G(u) ∈ L 2 ((0, T ) × Ω, H 1 (R d ))
and satisfying, a.s. the entropy formulation:

∀k ∈ R, ∀ϕ ∈ D + ([0, T [×R d ), ∀η ∈ E, Q H(u, k)∂ t ϕ + φ η (u, k)∆ϕ -F η (u, k)∇ϕ + η ′ (u -k)g(x, u)ϕ dxds + Q η ′ (u -k)ϕh(x, u)dw(s)dx + 1 2 Q η ′′ (u -k)[h(x, u)] 2 ϕdxds ≥ Q η ′′ (u -k)|∇G(u)| 2 ϕdxds - R d H(u 0 , k)ϕ(0)dx.
Let us first make some remarks on the definition.

Remark 1 1. Note that if G(u) ∈ L 2 ((0, T ) × Ω, H 1 (R d )), then φ(u) ∈ L 2 ((0, T ) × Ω, H 1 (R d ))
and, thanks to Lemma 3 (see Section 5), the entropy inequality is equivalent to

Q H(u, k)∂ t ϕ + φ η (u, k)∆ϕ -F η (u, k)∇ϕ + η ′ (u -k)g(x, u)ϕ dxds + Q η ′ (u -k)ϕh(x, u)dw(s)dx + 1 2 Q η ′′ (u -k)[h(x, u)] 2 ϕdxds. ≥ Q |∇ u 0 η ′′ (σ -k)G ′ (σ)dσ| 2 ϕdxds - R d H(u 0 , k)ϕ(0)dx 2.
Following Remark 2.6 in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF], one has that a solution in the sense of the above definition is also, a.s., a weak solution of (P).

3. Following now Remark 2.7 of the same paper, one gets that a solution u in the sense of the above definition satisfies ess lim

t→0 + E K |u -u 0 |dx = 0 for any compact K of R d , but also, ess lim t→0 + E R d |u -u 0 |ϕ(x)dx = 0 for any ϕ ∈ L 2 (R d ).
Let us also remark that any solution u belongs to

L 2 [(0, T ), L 2 (Ω × R d )],
and it is the same for u -t 0 h(x, u)dw(s) thanks to the properties of the Itô integral. As u is also a weak solution of (P),

∂ t [u - t 0 h(x, u)dw(s)] belongs to L 2 [(0, T ), L 2 (Ω, H -1 (R d ))]. Thus, u ∈ C([0, T ], L 2 (Ω, H -1 (R d ))). Since by definition u belongs to L ∞ (0, T, L 2 (Ω × R d ))
, Lemma 1.4 p.263 of [START_REF] Temam | Navier-Stokes equations[END_REF] yields: u is weakly continuous in time with values in L 2 (Ω × R d ).

Let us now present the main result of the paper.

Theorem 1

Under the assumptions H 1 to H 4 , there exists a unique solution in the sense of Definition 1.

Considering two initial conditions u 0,2 , u 0,1 , the corresponding solutions u 2 , u 1 and the weight α(x) = min(1, R a |x| a ) where R > 1 and a > d/2, there exists c > 0 such that for any positive t:

E R d |u 2 (t, x) -u 1 (t, x)|α(x)dx ≤ e ct R d |u 0,2 (x) -u 0,1 (x)|α(x)dx.
Moreover, if the initial conditions and g(•, 0) are also elements of L1 (R d ) and h(•, 0) = 0, then the solutions are in L ∞ (0, T, L 1 (Ω × R d )) and one has for any t,

(u 2 -u 1 )(t) L 1 (Ω×R d ) ≤ e ct u 0,2 -u 0,1 L 1 (R d ) .

Existence of a solution

Let us denote in the sequel u ǫ the solution of Problem (P ǫ ) with initial condition

u ǫ 0 ∈ D(R d ) that converges to a given u 0,2 in L 2 (R d ) and consider u δ a solution of Problem (P δ ) with initial condition u δ 0 ∈ D(R d ) that converges to a given u 0,1 in L 2 (R d ).
Based on the Kruzhkov's doubling variables method, our aim in this section is formally to pass to the limit when ǫ and δ go to 0 in a Kato's inequality. The compactness we use is the one given by the theory of Young measures and the classical uniqueness method for entropy solutions ensures the uniqueness of the limit point of the sequence of viscous approximation. This then yields the convergence of the whole sequence to an entropy solution in the sense of Definition 1. To prove such Kato's inequality, [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] used that ∆u δ ∈ L 2 (Ω × Q). In the present case, such a regularity is not possible to obtain and one needs to regularize u δ by convolution. Then, for a given mollifier-sequence ρ θ in R d , using in the equation satisfied by u δ the test function ϕ * ρ θ for any ϕ ∈ D(R d+1 ), one gets that u δ * ρ θ is a solution to the stochastic problem 1 :

u δ * ρ θ (t = 0) = u δ 0 * ρ θ and ∂ t [u δ * ρ θ - t 0 h(x, u δ ) * ρ θ dw] -[δ∆(u δ * ρ θ ) + ∆(φ(u δ ) * ρ θ ) + div f (u δ ) * ρ θ ] = g(x, u δ ) * ρ θ .
Note in particular that this problem is posed in L 2 (R d ) and not anymore in

H -1 (R d ).
Then, for any ϕ ∈ D([0, T [×R d ) (when needed in the sequel, one denotes by K the support of ϕ) any real k, the Itô formula applied to H(u δ * ρ θ (t, x), k)ϕ(t, x) where η ∈ E and H(v, k) = η(v -k), yields a.e.

H(u δ * ρ θ (t), k)ϕ(t) -H(u δ 0 * ρ θ , k)ϕ(0) -δ t 0 ∆[u δ * ρ θ ][η ′ (u δ * ρ θ -k)ϕ]ds - t 0 ∆[φ(u δ ) * ρ θ ][η ′ (u δ * ρ θ -k)ϕ]ds - t 0 div[ f (u δ ) * ρ θ ][η ′ (u δ * ρ θ -k)ϕ]ds = t 0 H(u δ * ρ θ , k)∂ t ϕds + t 0 η ′ (u δ * ρ θ -k)ϕ[h(x, u δ ) * ρ θ ]dw(s) + t 0 [η ′ (u δ * ρ θ -k)g(x, u δ ) * ρ θ + 1 2 η ′′ (u δ * ρ θ -k)[h(x, u δ ) * ρ θ ] 2 ]ϕds i.e., by integrating over Q δ Q η ′′ (u δ * ρ θ -k)|∇[u δ * ρ θ ]| 2 ϕdxds + δ Q η ′ (u δ * ρ θ -k)∇[u δ * ρ θ ]∇ϕdxds + Q η ′′ (u δ * ρ θ -k)∇[φ(u δ ) * ρ θ ]∇[u δ * ρ θ ]ϕdxds + Q η ′ (u δ * ρ θ -k)∇[φ(u δ ) * ρ θ ]∇ϕdxds + Q η ′′ (u δ * ρ θ -k)[ f (u δ ) * ρ θ ]∇[u δ * ρ θ ]ϕdxds + Q η ′ (u δ * ρ θ -k)[ f (u δ ) * ρ θ ]∇ϕdxds = Q H(u δ * ρ θ , k)∂ t ϕdxds + Q η ′ (u δ * ρ θ -k)ϕ[h(x, u δ ) * ρ θ ]dw(s)dx + R d H(u δ 0 * ρ θ , k)ϕ(0)dx + Q [η ′ (u δ * ρ θ -k)g(x, u δ ) * ρ θ + 1 2 η ′′ (u δ * ρ θ -k)[h(x, u δ ) * ρ θ ] 2 ]ϕdxds.
Or, if one agrees to denote, for any

v in L 2 (R d ), v * ρ θ by v θ , δ Q η ′′ (u δ θ -k)|∇u δ θ | 2 ϕdxds + Q η ′′ (u δ θ -k)∇φ(u δ ) θ ∇u δ θ ϕdxds = -δ Q η ′ (u δ θ -k)∇u δ θ ∇ϕdxds + R d H(u δ 0 * ρ θ , k)ϕ(0)dx + Q H(u δ θ , k)∂ t ϕ -η ′ (u δ θ -k)∇φ(u δ ) θ ∇ϕ -η ′ (u δ θ -k)[ f (u δ ) θ ]∇ϕdxds - Q η ′′ (u δ θ -k)[ f (u δ ) θ ]∇u δ θ ϕdxds + Q η ′ (u δ θ -k)ϕh(x, u δ ) θ dw(s)dx + Q [η ′ (u δ θ -k)g(x, u δ ) θ + 1 2 η ′′ (u δ θ -k)[h(x, u δ ) θ ] 2 ]ϕdxds. (2) 
In the sequel of this section, unless for the two integrals with ǫ as a factor term2 , we will present the proofs in such a way that it can also be done for a entropy solution u (i.e. ǫ = 0). The main regularity difference between u ǫ and u is that

u ǫ ∈ H 1 (R d ) while u ∈ L 2 (R d ) with G(u) ∈ H 1 (R d ).
So we need to use carefully a chain-rule; instead of the classical one, we will use a generalized chain-rule (see Lemma 3). Let ψ be an element of

D + ([0, T [ 2 ×R 2d ). The idea in the sequel is to replace ψ(t, s, x, y) by ϕ(t, x)ρ n (t -s)ρ m (x -y) for a given ϕ ∈ D + ([0, T [×R) and mollifier sequences ρ n in time with supp ρ n ⊂ [ -2
n , 0] and ρ m in space with sufficiently large n and m. Thus, multiplying (1) at time t = T by ρ l [u δ * ρ θ (s, y) -k] and integrating the result over R × Q for the variables k, s and y, yields

ǫ R×Q 2 η ′′ (u ǫ -k)|∇u ǫ | 2 ψρ l [u δ θ (s, y) -k]dkdxdtdsdy + R×Q 2 η ′′ (u ǫ -k)|∇G(u ǫ )| 2 ψρ l [u δ θ (s, y) -k]dkdxdtdsdy = -ǫ R×Q 2 η ′ (u ǫ -k)∇u ǫ ∇ x ψρ l [u δ θ (s, y) -k]dkdxdtdsdy + R×R d ×Q H(u ǫ 0 , k)ψ(0)ρ l [u δ θ (s, y) -k]dkdxdsdy + R×Q 2 H(u ǫ , k)∂ t ψ + φ η (u ǫ , k)∆ x ψ -F η (u ǫ , k)∇ x ψ + η ′ (u ǫ -k)g(x, u δ ) θ ϕ ×ρ l [u δ θ (s, y) -k]dkdxdtdsdy + R×Q 2 η ′ (u ǫ -k)ψh(x, u ǫ )dw(t)ρ l [u δ θ (s, y) -k]dkdxdsdy + 1 2 R×Q 2 η ′′ (u ǫ -k)[h(x, u ǫ )] 2 ψρ l [u δ θ (s, y) -k]dkdtdxdsdy.
Similarly, considering (2) and multiplying by ρ l [u ǫ (t, x) -k] and integrating with respect to k, x and t, δ

R×Q 2 η ′′ (u δ θ -k)|∇u δ θ | 2 ψρ l [u ǫ (t, x) -k]dydsdkdxdt + R×Q 2 η ′′ (u δ θ -k)∇φ(u δ ) θ ∇u δ θ ρ l [u ǫ (t, x) -k]ψdydsdkdxdt = -δ R×Q 2 η ′ (u δ θ -k)∇u δ θ ∇ y ψρ l [u ǫ (t, x) -k]dydsdkdxdt + Q×R×R d H(u δ 0,θ , k)ψ(0)ρ l [u ǫ (t, x) -k]dydkdxdt + R×Q 2 H(u δ θ , k)∂ s ψ -η ′ (u δ θ -k)∇φ(u δ ) θ ∇ y ψ -η ′ (u δ θ -k)[ f (u δ ) θ ]∇ y ψ +η ′ (u δ θ -k)[g(y, u δ ) θ ]ψ ρ l [u ǫ (t, x) -k]dydsdkdxdt - R×Q 2 η ′′ (u δ θ -k)[ f (u δ ) θ ]∇u δ θ ψρ l [u ǫ (t, x) -k]dydsdkdxdt + R×Q 2 η ′ (u δ θ -k)ψh(y, u δ ) θ dw(s)ρ l [u ǫ (t, x) -k]dy + 1 2 R×Q 2 η ′′ (u δ θ -k)[h(y, u δ ) θ ] 2 ψρ l [u ǫ (t, x) -k]dsdydkdxdt.
Adding the two equations, by grouping similar terms together, we get:

ǫ R×Q 2 η ′′ (u ǫ -k)|∇u ǫ | 2 ψρ l [u δ θ (s, y) -k]dxdtdkdyds +δ R×Q 2 η ′′ (u δ θ -k)|∇u δ θ | 2 ψρ l [u ǫ (t, x) -k]dydsdkdxdt + Q×R×Q η ′′ (u ǫ -k)|∇G(u ǫ )| 2 ψρ l [u δ θ (s, y) -k]dxdtdkdyds + Q×R×Q η ′′ (u δ θ -k)[∇φ(u δ ) θ ∇u δ θ ]ψρ l [u ǫ (t, x) -k]dydsdkdxdt = -ǫ R×Q 2 η ′ (u ǫ -k)∇u ǫ ∇ x ψρ l [u δ θ (s, y) -k]dxdtdkdyds -δ R×Q 2 η ′ (u δ θ -k)∇u δ θ ∇ y ψρ l [u ǫ (t, x) -k]dydsdkdxdt + Q×R×R d H(u ǫ 0 , k)ψ(t = 0)ρ l [u δ θ (s, y) -k]dxdkdyds + Q×R×R d H(u δ 0,θ , k)ψ(s = 0)ρ l [u ǫ (t, x) -k]dydkdxdt + R×Q 2 H(u ǫ , k)∂ t ψ + φ η (u ǫ , k)∆ x ψ -F η (u ǫ , k)∇ x ψ ×ρ l [u δ θ (s, y) -k]dxdtdkdyds + R×Q 2 H(u δ θ , k)∂ s ψ -η ′ (u δ θ -k)∇φ(u δ ) θ ∇ y ψ -η ′ (u δ θ -k)[ f (u δ ) θ ∇ y ψ] ρ l [u ǫ (t, x) -k]dydsdkdxdt - R×Q 2 η ′′ (u δ θ -k)[ f (u δ ) θ ∇u δ θ ]ψρ l [u ǫ (t, x) -k]dydsdkdxdt + 1 2 R×Q 2 η ′′ (u ǫ -k)[h(x, u ǫ )] 2 ψρ l [u δ θ (s, y) -k]dtdxdkdyds + 1 2 R×Q 2 η ′′ (u δ θ -k)[h(y, u δ ) θ ] 2 ψρ l [u ǫ (t, x) -k]dydsdkdxdt + R×Q 2 η ′ (u ǫ -k)ψh(x, u ǫ )dw(t)ρ l [u δ θ (s, y) -k]dxdkdyds + R×Q 2 η ′ (u δ θ -k)ψh(y, u δ ) θ dw(s)ρ l [u ǫ (t, x) -k]dydkdxdt + R×Q 2 η ′ (u ǫ -k)ψg(x, u ǫ )dtρ l [u δ θ (s, y) -k]dxdkdyds + R×Q 2 η ′ (u δ θ -k)ψg(y, u δ ) θ dsρ l [u ǫ (t, x) -k]dydkdxdt,
i.e., I 1 + I 2 = I 3 + I 4 + I 5 + I 6 + I 7 + I 8 , where each I j denotes a sum of two corresponding integrals of the same type in the above equality.

Let us now study each of the terms I 1 , • • • , I 8 in detail. Our aim is to pass to the limit, successively with first n to infinity, then θ to 0, l to infinity, then ǫ, δ to 0. Then, depending on the situation (1 to 3), we pass to the limit with respect to τ to 0 (i.e. with η = η τ to the absolute-value function) and m to infinity, in an appropriate order.

In the sequel, we adopt the following notation: lim a,b means lim b lim a , also with lim sup or lim inf.

1) Since η is a convex function,

I 1 := ǫ Q 2 ×R η ′′ (u ǫ -k)|∇u ǫ | 2 ψρ l [u δ θ (s, y) -k]dxdtdkdyds +δ Q 2 ×R η ′′ (u δ θ -k)|∇u δ θ | 2 ψρ l [u ǫ (t, x) -k]dydsdkdxdt ≥ 0,
so, this term can be omitted in the sequel.

2) Remind that G(x) =

x 0 φ ′ (σ)dσ. Consider now

I 2 := Q×R×Q η ′′ (u ǫ -k)|∇G(u ǫ )| 2 ψρ l [u δ θ (s, y) -k]dxdtdkdyds + Q×R×Q η ′′ (u δ θ -k)[∇φ(u δ ) θ ∇u δ θ ]ψρ l [u ǫ (t, x) -k]dydsdkdxdt
Then, replacing ψ(t, s, x, y) by ϕ(t, x)ρ n (t -s)ρ m (x -y), classical properties of Lebesgue's points and convolution yield

lim n EI 2 = E Q×R×R d η ′′ (u ǫ -k)|∇G(u ǫ )| 2 ϕρ m (x -y)ρ l [u δ θ (t, y) -k]dxdtdkdy +E Q×R×R d η ′′ (u δ θ -k)[∇φ(u δ ) θ ∇u δ θ ]ϕρ m (x -y)ρ l [u ǫ (t, x) -k]dydkdxdt
Again, by properties of approximation by mollification,

G(u ǫ ), G(u δ ) ∈ L 2 (Ω × (0, T ); H 1 (R d ))
and since the nonlinear functions are bounded, one has lim n,θ

EI 2 = E Q×R×R d η ′′ (u ǫ -k)|∇G(u ǫ )| 2 ϕρ m (x -y)ρ l [u δ (t, y) -k]dxdtdkdy +E Q×R×R d η ′′ (u δ -k)[∇φ(u δ )∇u δ ]ϕρ m (x -y)ρ l [u ǫ (t, x) -k]dydkdxdt,
and, lim n,θ,l

EI 2 = E Q×R d η ′′ (u ǫ -u δ )|∇G(u ǫ )| 2 ϕρ m (x -y)dxdtdy +E Q×R d η ′′ (u δ -u ǫ )[∇φ(u δ )∇u δ ]ϕρ m (x -y)dydxdt = E Q×R d η ′′ (u ǫ -u δ )[|∇G(u ǫ )| 2 + |∇G(u δ )| 2 ]ϕρ m (x -y)dxdtdy
Now, following the idea of [START_REF] Chen | Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients[END_REF], one gets

Ĩ2 := E Q×R d η ′′ (u ǫ -u δ )[|∇G(u ǫ )| 2 + |∇G(u δ )| 2 ]ϕρ m (x -y)dxdtdy ≥ 2E Q×R d η ′′ (u ǫ (t, x) -u δ (t, y))∇G(u ǫ ).∇G(u δ )ϕρ m (x -y)dydxdt = 2E Q×R d η ′′ (u ǫ (t, x) -u δ (t, y)) φ ′ (u δ )∇ x G(u ǫ ).∇ y u δ ϕρ m (x -y)dydxdt = 2E Q×R d ∇ x G(u ǫ ).∇ y Ψ(u ǫ , u δ )ϕρ m (x -y)dydxdt := I 2 where Ψ(a, b) = b a η ′′ (a -σ) φ ′ (σ)dσ. Thus, Ĩ2 ≥ I 2 = -2E Q×R d Ψ(u ǫ , u δ )∇ x G(u ǫ ).∇ y [ϕρ m (x -y)]dydxdt.
Note that, for a fixed b, one has that

|Ψ(a, b)| ≤ φ ′ ∞ η ′ (|a -b|) is bounded by assumptions and Ψ(a, b) -Ψ(a 0 , b) ≤ b a [η ′′ (σ -a 0 ) -η ′′ (σ -b)] φ ′ (σ)dσ + a a0 η ′′ (σ -a 0 ) φ ′ (σ)dσ ≤ C(1 + |a -b|)|a -a 0 |.
Thus, for a fixed b, a → Ψ(a, b) is a continuous and bounded function, so, Lemma 3 and Green's formula yield:

I 2 = -2E Q×R d ∇ x u ǫ u δ Ψ(µ, u δ ) φ ′ (µ)dµ .∇ y [ϕρ m (x -y)]dydxdt = 2E Q×R d u ǫ u δ Ψ(µ, u δ ) φ ′ (µ)dµ div x ∇ y [ϕρ m (x -y)]dydxdt = 2E Q×R d u ǫ u δ u δ µ η ′′ (µ -σ) φ ′ (σ)dσ φ ′ (µ)dµ div x ∇ y [ϕρ m (x -y)]dydxdt.
In the sequel, we pass to the limit with δ and ǫ to zero in the sense of Young measures as in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF]. This Young measure can be written as a function of the same variables, plus an additional one living in (0, 1). To keep in mind the origin of the sequence, we denote by u 1 (•, δ) the first limit and by u 2 (•, ǫ) the second one. lim δ,ǫ

I 2 = 2E Q×R d ×(0,1) 2 u2(t,x,ǫ) u1(t,y,δ) u1(t,y,δ) µ η ′′ (µ -σ) φ ′ (σ)dσ φ ′ (µ)dµ ×div x ∇ y [ϕρ m (x -y)]dǫdδdydtdx.
3) Next, let us consider

I 3 := -ǫ Q×R×Q η ′ (u ǫ -k)∇u ǫ ∇ x ψρ l [u δ θ (s, y) -k]dxdtdkdyds -δ Q×R×Q η ′ (u δ θ -k)∇u δ θ ∇ y ψρ l [u ǫ (t, x) -k]dydsdkdxdt. |I 3 | ≤ ǫ Q×R×Q η ′ (u ǫ -k)∇u ǫ ∇ x ψρ l [u δ θ (s, y) -k]dxdtdkdyds +δ Q×R×Q η ′ (u δ θ -k)∇u δ θ ∇ y ψρ l [u ǫ (t, x) -k]dydsdkdxdt ≤ ǫ Q×R×Q ∇u ǫ ∇ x ψ ρ l [u δ θ (s, y) -k]dxdtdkdyds +δ Q×R×Q ∇u δ θ ∇ y ψ ρ l [u ǫ (t, x) -k]dydsdkdxdt = ǫ Q×Q ∇u ǫ ∇ x ψ dxdtdyds + δ Q×Q ∇u δ θ ∇ y ψ dydsdxdt ≤ ǫ Q ∇u ǫ (t, x) Q ∇ x ψ(t, x, s, y) dydsdxdt +δ Q ∇u δ θ (s, y) Q ∇ y ψ(t, x, s, y) dxdtdyds
Thus, replacing ψ(t, x, s, y) by ϕ(t, x)ρ n (t -s)ρ m (x -y),

|EI 3 | ≤ E|I 3 | ≤ ǫE K ∇u ǫ (t, x) Q ρ n (t -s) ϕ∇ x ρ m (x -y) + ρ m (x -y)∇ϕ dydsdxdt +δE K ∇u δ θ (s, y) Q ρ n (t -s) ϕ∇ y ρ m (x -y) dxdtdyds ≤ C(m, K) ǫ ∇u ǫ L 2 (Ω×Q) + δ ∇u δ L 2 (Ω×Q) ≤ C(m, K)[ √ ǫ + √ δ]
thanks to the a priori estimates (see Lemma 4). Therefore, lim n,θ,l,δ,ǫ EI 3 = 0.

4) Now let us consider the integrals coming from the initial conditions, i.e.

I 4 : = Q×R×R d H(u ǫ 0 , k)ψ(t = 0)ρ l [u δ θ (s, y) -k]dxdkdyds + Q×R×R d H(u δ 0,θ , k)ψ(s = 0)ρ l [u ǫ (t, x) -k]dydkdxdt.
If ψ(t, x, s, y) = ϕ(t, x)ρ n (t -s)ρ m (x -y), then

I 4 = Q×R×R d H(u ǫ 0 , k)ϕ(0, x)ρ n (-s)ρ m (x -y)ρ l [u δ θ (s, y) -k]dxdkdyds + Q×R×R d H(u δ 0,θ , k)ϕρ n (t)ρ m (x -y)ρ l [u ǫ (t, x) -k]dydkdxdt = Q×R×R d H(u ǫ 0 , k)ϕ(0, x)ρ n (-s)ρ m (x -y)ρ l [u δ θ (s, y) -k]dxdkdyds
as supp ρ n ⊂ [-2/n, 0], and then a slight modification of similar arguments in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF] yields lim n,θ,l,δ,ǫ

EI 4 = R 2d ϕ(0, x)η(u 0,1 -u 0,2 )ρ m (x -y)dxdy.

5) Consider now

I 5 := Q×R×Q H(u ǫ , k)∂ t ψ + φ η (u ǫ , k)∆ x ψ -F η (u ǫ , k)∇ x ψ ×ρ l [u δ θ (s, y) -k]dxdtdkdyds + Q×R×Q H(u δ θ , k)∂ s ψ -η ′ (u δ θ -k)∇φ(u δ ) θ ∇ y ψ -η ′ (u δ θ -k)[ f (u δ ) θ ∇ y ψ] ×ρ l [u ǫ (t, x) -k]dydsdkdxdt - Q×R×Q η ′′ (u δ θ -k)[ f (u δ ) θ ∇u δ θ ]ψρ l [u ǫ (t, x) -k]dydsdkdxdt Since H(x, k) = η(x -k)
with an even function η,

I 5 = Q×R×Q H(u ǫ , u δ θ (s, y) -ζ)∂ t ψ + φ η (u ǫ , u δ θ (s, y) -ζ)∆ x ψ -F η (u ǫ , u δ θ (s, y) -ζ)∇ x ψ ρ l [ζ]dxdtdζdyds + Q×R×Q H(u δ θ , u ǫ (t, x) + ζ)∂ s ψ -η ′ (u δ θ -u ǫ (t, x) -ζ)∇φ(u δ ) θ ∇ y ψ -η ′ (u δ θ -u ǫ (t, x) -ζ)[ f (u δ ) θ ∇ y ψ] ρ l [u ǫ (t, x) -u ǫ (t, x) -ζ]dydsdζdxdt - Q 2 ×R η ′′ (u δ θ -u ǫ (t, x) -ζ)[ f (u δ ) θ ∇u δ θ ]ψρ l [u ǫ (t, x) -u ǫ (t, x) -ζ]dydsdζdxdt
Replacing ψ(t, s, x, y) by ϕ(t, x)ρ n (t -s)ρ m (x -y), one gets

I 5 = Q×R×Q H(u ǫ , u δ θ (s, y) -ζ)[∂ t ϕ]ρ n (t -s)ρ m (x -y) +φ η (u ǫ , u δ θ (s, y) -ζ)∆ x [ϕρ n (t -s)ρ m (x -y)] -F η (u ǫ , u δ θ (s, y) -ζ)∇ x [ϕρ n (t -s)ρ m (x -y)] ρ l [ζ]dxdtdζdyds - Q×R×Q η ′ (u δ θ -u ǫ (t, x) -ζ)∇φ(u δ ) θ ∇ y [ϕρ n (t -s)ρ m (x -y)] +η ′ (u δ θ -u ǫ (t, x) -ζ)[ f (u δ ) θ ∇ y [ϕρ n (t -s)ρ m (x -y)]] ρ l [ζ]dydsdζdxdt - Q 2 ×R η ′′ (u δ θ -u ǫ (t, x) -ζ)[ f (u δ ) θ ∇u δ θ ][ϕρ n (t -s)ρ m (x -y)]ρ l [ζ]dydsdζdxdt
Thus, passing to the limit with respect to n,

lim n EI 5 = E Q×R×R d H(u ǫ , u δ θ (t, y) -ζ)[∂ t ϕ]ρ m (x -y) +φ η (u ǫ , u δ θ (t, y) -ζ)∆ x [ϕρ m (x -y)] -F η (u ǫ , u δ θ (t, y) -ζ)∇ x [ϕρ m (x -y)] ρ l [ζ]dxdtdζdy -E Q×R×R d η ′ (u δ θ -u ǫ (t, x) -ζ)∇φ(u δ ) θ ∇ y [ϕρ m (x -y)] +η ′ (u δ θ -u ǫ (t, x) -ζ)[ f (u δ ) θ ∇ y [ϕρ m (x -y)]] ρ l [ζ]dydζdxdt -E Q×R×R d η ′′ (u δ θ -u ǫ (t, x) -ζ)[ f (u δ ) θ ∇u δ θ ][ϕρ m (x -y)]ρ l [ζ]dydζdxdt
and, passing to the limit with respect to θ,

lim n,θ EI 5 = E Q×R×R d H(u ǫ , u δ (t, y) -ζ)[∂ t ϕ]ρ m (x -y) +φ η (u ǫ , u δ (t, y) -ζ)∆ x [ϕρ m (x -y)] -F η (u ǫ , u δ (t, y) -ζ)∇ x [ϕρ m (x -y)] ρ l [ζ]dxdtdζdy -E Q×R×R d η ′ (u δ -u ǫ (t, x) -ζ)∇φ(u δ )∇ y [ϕρ m (x -y)] +η ′ (u δ -u ǫ (t, x) -ζ)[ f (u δ )∇ y [ϕρ m (x -y)]] ρ l [ζ]dydζdxdt -E Q×R×R d η ′′ (u δ -u ǫ (t, x) -ζ)[ f (u δ )∇u δ ][ϕρ m (x -y)]ρ l [ζ]dydζdxdt
Then, formulas of Green's type give lim n,θ,l

EI 5 = E Q×R d η(u ǫ -u δ )[∂ t ϕ]ρ m (x -y) dxdtdy + E Q×R d φ η (u ǫ , u δ (t, y))∆ x [ϕρ m (x -y)] + φ η (u δ , u ǫ (t, x))∆ y [ϕρ m (x -y)] dydxdt - E Q×R d F η (u ǫ , u δ (t, y))∇ x [ϕρ m (x -y)] + F η (u δ , u ǫ (t, x))∇ y [ϕρ m (x -y)] dydxdt.
Passing to the limits with respect to δ and ǫ gives lim n,θ,l,δ,ǫ

EI 5 = E Q×R d ×(0,1) 2 η[u 2 (t, x, ǫ) -u 1 (t, y, δ)]∂ t ϕρ m (x -y)dǫdδdxdtdy +E Q×R d ×(0,1) 2 φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))∆ x [ϕρ m (x -y)] +φ η (u 1 (t, y, δ), u 2 (t, x, ǫ))∆ y [ϕρ m (x -y)] dǫdδdydxdt -E Q×R d ×(0,1) 2 F η (u 2 (t, x, ǫ), u 1 (t, y, δ))∇ x [ϕρ m (x -y)] +F η (u 1 (t, y, δ), u 2 (t, x, ǫ))∇ y [ϕρ m (x -y)] dǫdδdydxdt.
6) Let us now consider the additional deterministic integrals coming from the Itô integral formula:

I 6 := 1 2 Q×R×Q η ′′ (u ǫ -k)[h(x, u ǫ )] 2 ψρ l [u δ θ (s, y) -k]dtdxdkdyds + 1 2 Q×R×Q η ′′ (u δ θ -k)[h(y, u δ ) θ ] 2 ψρ l [u ǫ (t, x) -k]dydsdkdxdt.
Passing to the limit with respect to n, θ, then l, one obtains lim n,θ,l

EI 6 = 1 2 E Q×R d |h(x, u ǫ )| 2 + |h(y, u δ )| 2 ϕρ m (x -y)η ′′ (u ǫ -u δ )dxdtdy
Then, like in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF], we need to add this term to the one in item 7).

7) Now let us consider the stochastic Itô integral terms:

I 7 := Q×R×Q η ′ (u ǫ -k)ψh(x, u ǫ )dw(t)ρ l [u δ θ (s, y) -k]dxdkdyds + Q×R×Q η ′ (u δ θ -k)ψh(y, u δ ) θ dw(s)ρ l [u ǫ (t, x) -k]dydkdxdt
Taking the expectation, replacing ψ(t, s, x, y) by ϕ(t, x)ρ n (t -s)ρ m (x -y) and since the support of ρ n is negative, as already remarked in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF], the second integral vanishes and one gets that

EI 7 = E Q×R×Q η ′ (u ǫ -k)ψh(x, u ǫ )dw(t)ρ l [u δ θ (s, y) -k]dxdkdyds = E Q R R d s s-2/n η ′ (u ǫ (t, x) -k)ϕ(t, x)h(x, u ǫ (t, x))ρ n (t -s)dw(t) ×ρ m (x -y)ρ l [u δ θ (s, y) -k]dxdkdyds = E Q R R d F(x, s, k)ρ m (x -y)ρ l [u δ θ (s, y) -k]dxdkdyds = -E Q R R d F(x, s, k)ρ m (x -y) ∂ ∂k Sgn l [u δ θ (s, y) -k]dxdkdyds = E Q R R d ∂ ∂k F(x, s, k)ρ m (x -y)Sgn l [u δ θ (s, y) -k]dxdkdyds = E T 0 R R d ∂ ∂k F(x, s, k) R d Sgn l [u δ θ (s, y) -k] -Sgn l [u δ θ (s -2/n, y) -k] ×ρ m (x -y)dydxdkds,
where, for convenience, one denotes by Sgn l an antiderivative of ρ l and

F(x, s, k) = s s-2/n η ′ (u ǫ (t, x) -k)ϕ(t, x)h(x, u ǫ (t, x))ρ n (t -s)dw(t).

Thanks to Itô's formula, if one denotes by

A δ (s, y) = δ∇u δ θ + ∇φ(u δ ) θ + f (u δ ) θ (remind : du δ θ -div A δ dt = g(y, u δ ) θ dt + h(y, u δ ) θ dw), we find Sgn l [u δ θ (s, y) -k] -Sgn l [u δ θ (s -2/n, y) -k] ρ m (x -y) = s s-2/n div A δ Sgn ′ l [u δ θ (σ, y) -k]ρ m (x -y)] dσ + 1 2 s s-2/n Sgn ′′ l [u δ θ (σ, y) -k]ρ m (x -y)(h(y, u δ ) θ ) 2 dσ + s s-2/n Sgn ′ l [u δ θ (σ, y) -k]ρ m (x -y)h(y, u δ ) θ dw(σ) Since ∂ ∂k F(x, s, k) = - s s-2/n η ′′ (u ǫ (t, x) -k)ϕ(t, x)h(x, u ǫ (t, x))ρ n (t -s)dw(t)
(thanks to [START_REF] Kunita | Stochastic differential equations and stochastic flows of diffeomorphisms[END_REF](Theorem 7.6, p. 180)), following [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF], one gets that lim n,θ,l 

EI 7 = -E Q×R d η ′′ (u ǫ -u δ )h(x, u ǫ )h(y, u δ )ρ m (x -y)dxdtdy. Therefore, lim n,θ,l EI 6 + lim n,θ,l EI 7 = 1 2 E Q×R d |h(x, u ǫ )| 2 + |h(y, u δ )| 2 ϕρ m (x -y)η ′′ (u ǫ -u δ )dxdtdy -E Q×R d η ′′ (u ǫ -u δ )h(x, u ǫ )h(y, u δ )ρ m (x -y)dxdtdy = 1 2 E Q×R d |h(x, u ǫ ) -h(y, u δ )| 2 ϕρ m (x -y)η ′′ (u ǫ -u δ )
EI 7 ] = 1 2 E Q×R d ×(0,1) 2 |h(x, u 2 (t, x, ǫ)) -h(y, u 1 (t, y, δ))| 2 ϕρ m (x -y)
×η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dǫdδdxdtdy.

8)

Finally, let us consider the reaction terms:

I 8 := R×Q 2 η ′ (u ǫ -k)ψg(x, u ǫ )ρ l [u δ θ (s, y) -k] +η ′ (u δ θ -k)ψg(y, u δ ) θ ρ l [u ǫ (t, x) -k] dydsdkdxdt.
Classical convergence arguments for integrals yield lim n,θ,l Coming back to the contributions, we started with

EI 8 = E R d ×Q η ′ (u ǫ -u δ )ϕ[g(x, u ǫ ) -g(y, u δ )]ρ m (x -y)dydxdt ≤ E R d ×Q ϕ|g(x, u ǫ ) -g(y, u δ )|ρ m (x -y)dydxdt,
I 1 + I 2 = I 3 + I 4 + I 5 + I 6 + I 7 + I 8
to get, in a first step

EI 2 ≤ C(m, K)[ √ ǫ + √ δ] + EI 4 + EI 5 + EI 6 + EI 7 + EI 8 .
Then we can estimate 

I 2 ≤ Ĩ2 = lim n,θ,l EI 2 ≤ C(m, K)[ √ ǫ + √ δ] + lim n,
EI 8 ≤ R 2d ϕ(0, x)η(u 0,1 -u 0,2 )ρ m (x -y)dxdy +E Q×R d ×(0,1) 2 η[u 2 (t, x, ǫ) -u 1 (t, y, δ)]∂ t ϕρ m (x -y)dǫdδdxdtdy +E Q×R d ×(0,1) 2 φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))∆ x [ϕρ m (x -y)] +φ η (u 1 (t, y, δ), u 2 (t, x, ǫ))∆ y [ϕρ m (x -y)] dǫdδdydxdt -E Q×R d ×(0,1) 2 F η (u 2 (t, x, ǫ), u 1 (t, y, δ))∇ x [ϕρ m (x -y)] +F η (u 1 (t, y, δ), u 2 (t, x, ǫ))∇ y [ϕρ m (x -y)] dǫdδdydxdt + 1 2 E Q×R d ×(0,1) 2 |h(x, u 2 (t, x, ǫ)) -h(y, u 1 (t, y, δ))| 2 ϕρ m (x -y) ×η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dxdtdy +E R d ×Q×(0,1) 2 ϕ|g(x, u 2 (t, x, ǫ)) -g(y, u 1 (t, y, δ))|ρ m (x -y)dδdǫdydxdt.
Developing terms we find

0 ≤ R 2d ϕ(0, x)η(u 0,1 -u 0,2 )ρ m (x -y)dxdy +E Q×R d ×(0,1) 2 η(u 2 (t, x, ǫ) -u 1 (t, y, δ))∂ t ϕρ m (x -y)dǫdδdxdtdy +E Q×R d ×(0,1) 2 φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))∆ϕ -F η (u 2 (t, x, ǫ), u 1 (t, y, δ))∇ϕ ×ρ m (x -y)dǫdδdydxdt +2E Q×R d ×(0,1) 2 φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))∇ϕ∇ρ m (x -y)dǫdδdydxdt +E Q×R d ×(0,1) 2 ϕ∆ρ m (x -y) φ η (u 2 (t, x, ǫ), u 1 (t, y, δ)) +φ η (u 1 (t, y, δ), u 2 (t, x, ǫ)) dǫdδdydxdt -E Q×R d ×(0,1) 2 ϕ F η (u 2 (t, x, ǫ), u 1 (t, y, δ)) -F η (u 1 (t, y, δ), u 2 (t, x, ǫ)) ×∇ρ m (x -y)dǫdδdydxdt + 1 2 E Q×R d ×(0,1) 2 |h(x, u 2 (t, x, ǫ)) -h(y, u 1 (t, y, δ))| 2 ϕρ m (x -y) ×η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dxdtdy +E R d ×Q×(0,1) 2 ϕ|g(x, u 2 (t, x, ǫ)) -g(y, u 1 (t, y, δ))|ρ m (x -y)dδdǫdydxdt +2E Q×R d ×(0,1) 2 u2(t,x,ǫ) u1(t,y,δ) u1(t,y,δ) µ η ′′ (µ -σ) φ ′ (σ)dσ φ ′ (µ)dµ ×[∇ϕ∇ρ m (x -y) + ϕ∆ρ m (x -y)]dǫdδdydtdx.
Then, thanks to Lemma 1 and assumptions on h,

0 ≤ R 2d ϕ(0, x)|u 0,1 -u 0,2 |ρ m (x -y)dxdy (3) 
+E

Q×R d ×(0,1) 2 |u 2 (t, x, ǫ) -u 1 (t, y, δ)|∂ t ϕρ m (x -y)dǫdδdxdtdy +E Q×R d ×(0,1) 2 |φ(u 2 (t, x, ǫ)) -φ(u 1 (t, y, δ))|∆ϕ -F (u 2 (t, x, ǫ), u 1 (t, y, δ))∇ϕ ρ m (x -y)dǫdδdydxdt +E R d ×Q×(0,1) 2 ϕ|g(x, u 2 (t, x, ǫ)) -g(y, u 1 (t, y, δ))|ρ m (x -y)dδdǫdydxdt +τ R d ϕ(0, x)dx + τ Q |∂ t ϕ| + c(φ)|∆ϕ| + c( f )|∇ϕ|dxdt +c(h)E Q×R d ×(0,1) 2 |u 2 (t, x, ǫ) -u 1 (t, y, δ)| 2 ϕρ m (x -y)η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dxdtdy +c(h)E Q×R d ×(0,1) 2 |ω h ( x -y )| 2 ϕρ m (x -y)η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dxdtdy -E Q×R d ×(0,1) 2 ϕ F η (u 2 (t, x, ǫ), u 1 (t, y, δ)) -F η (u 1 (t, y, δ), u 2 (t, x, ǫ)) ×∇ρ m (x -y)dǫdδdydxdt +2E Q×R d ×(0,1) 2 φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))∇ϕ∇ρ m (x -y)dǫdδdydxdt +E Q×R d ×(0,1) 2 ϕ∆ρ m (x -y) φ η (u 2 (t, x, ǫ), u 1 (t, y, δ)) + φ η (u 1 (t, y, δ), u 2 (t, x, ǫ)) ×dǫdδdydxdt +2E Q×R d ×(0,1) 2 I τ (u 1 (t, y, δ), u 2 (t, x, ǫ))[∇ϕ∇ρ m (x -y) + ϕ∆ρ m (x -y)]dǫdδdydtdx = A 1 + A 2 + A 3 + A 4 + A 5 + A 6 + A 7 + A 8 + A 9 + A 10
where one sets, for any a, b,

I τ (a, b) := b a a µ η ′′ (µ -σ) φ ′ (σ)dσ φ ′ (µ)dµ.
Note that η ′′ (x) ≤ C/τ in [-τ, τ ] for a given constant, so that

|A 5 + A 6 | = c(h)E Q×R d ×(0,1) 2 |u 2 (t, x, ǫ) -u 1 (t, y, δ)| 2 ϕρ m (x -y)η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dxdtdy +c(h)E Q×R d ×(0,1) 2 |ω h ( x -y )| 2 ϕρ m (x -y)η ′′ (u 2 (t, x, ǫ) -u 1 (t, y, δ))dxdtdy ≤ c(h)τ Q×R d ϕρ m (x -y)dxdtdy + c(h) τ Q×R d |ω h ( x -y )| 2 ϕρ m (x -y)dxdtdy ≤ c(h)τ Q ϕdxdt + c(h)|ω h ( 1 m )| 2 τ Q ϕdxdt.
Moreover,

|A 7 | = E Q×R d ×(0,1) 2 ϕ F η (u 2 (t, x, ǫ), u 1 (t, y, δ)) -F η (u 1 (t, y, δ), u 2 (t, x, ǫ)) ×∇ρ m (x -y)dǫdδdydxdt ≤ Cτ Q×R d ϕ|∇ρ m (x -y)|dydxdt ≤ τ mC Q ϕdxdt • First situation: h(x, u) = h(u). Then, ω h = 0 and, m being fixed, lim τ →0 A 4 + A 5 + A 6 + A 7 = 0. Moreover, A 8 + A 9 + A 10 = 2E Q×R d ×(0,1) 2 [I τ (u 1 (t, y, δ), u 2 (t, x, ǫ)) + φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))] ×∇ϕ∇ρ m (x -y)dǫdδdydxdt +E Q×R d ×(0,1) 2 [2I τ (u 1 (t, y, δ), u 2 (t, x, ǫ)) + φ η (u 2 (t, x, ǫ), u 1 (t, y, δ)) +φ η (u 1 (t, y, δ), u 2 (t, x, ǫ))]ϕ∆ρ m (x -y)dǫdδdydxdt.
Note that, thanks to Lemma 2-(6), each integrand goes to 0 with τ and is bounded, respectively by

c(φ ′ )|u 2 (t, x, ǫ) -u 1 (t, y, δ)||∇ϕ∇ρ m (x -y)| and c(φ ′ )|u 2 (t, x, ǫ) -u 1 (t, y, δ)||ϕ∆ρ m (x -y)|.
Thus, one concludes that lim τ →0 A 8 + A 9 + A 10 = 0 and one can pass to the limit over m.

• Second situation: assume that φ = 0 or linear and that there exists θ ∈ (0, 1) such that ω h (r) 1+θ r → r→0 0 (this is the case for example if ω h (r) = |r| β for a given β > 1/2 by setting 1 > θ > (1 -β)/β). Then, A 8 + A 9 + A 10 = 0 and by setting τ = ω h (1/m) 1+θ , one has

|A 4 + A 5 + A 6 + A 7 + A 8 + A 9 + A 10 | ≤ C[τ + ω h (1/m) 2 τ ] + τ m],
and one concludes that lim m A 4 + A 5 + A 6 + A 7 + A 8 + A 9 + A 10 = 0.

• Last situation: assume the same for h, that φ is not linear and that t → φ ′ (t) has a modulus of continuity ω φ such that

ω φ [ω h (r) 1+θ ] r
→ r→0 0 (this is the case for example if ω φ (r) = C|r|). By using the classical form of the mollifier sequence 4 , where P (t) = (8 -2d)t 4 + 4(d -1)t 2 -2d. Note that there exists a ∈ (0, 1) such that P (t) ≤ 0 in [0, a] and P (t) ≥ 0 in [a, 1], so that with (5) (see Lemma 2), A 8 + A 9 + A 10 ≤ B where

ρ m (x) = cm d ρ(m x ) with ρ(t) = e 1 t 2 -1 1 {|t|<1} , one gets that ∇ρ m (x) = mρ m (x) -2m x (m 2 x 2 -1) 2 x x and ∆ρ m (x) = m 2 ρ m (x) P (m x ) (m 2 x 2 -1)
B := 2E Q×R d ×(0,1) 2 [I τ (u 1 (t, y, δ), u 2 (t, x, ǫ)) + φ η (u 2 (t, x, ǫ), u 1 (t, y, δ))] ×∇ϕ∇ρ m (x -y)dǫdδdydxdt +E [Q×R d ×(0,1) 2 ]∩{m x-y ∈[a,1]} [2I τ (u 1 (t, y, δ), u 2 (t, x, ǫ)) + φ η (u 2 (t, x, ǫ), u 1 (t, y, δ)) +φ η (u 1 (t, y, δ), u 2 (t, x, ǫ))]ϕ∆ρ m (x -y)dǫdδdydxdt.
Then, thanks to Lemma 2-( 7), one has

|B| ≤ Cτ Q×R d |∇ϕ∇ρ m (x -y)|dydxdt +Cω φ (τ ) 2 E Q×R d ×(0,1) 2 |u 2 (t, x, ǫ) -u 1 (t, y, δ)|[|∇ϕ∇ρ m (x -y)| +ϕ|∆ρ m (x -y)|1 {m x-y ∈[a,1]} ]dǫdδdydxdt. ≤ Cmτ + Cmω φ (τ ) 2 E Q×R d ×(0,1) 2 |u 2 (t, x, ǫ) -u 1 (t, y, δ)| 2 ρ m (x -y)dǫdδdydxdt × Q×R d ρ m (x -y)| 4m 2 x -y 2 |∇ϕ| 2 (m 2 x -y 2 -1) 4 dydxdt +Cm 2 ω φ (τ ) 2 E Q×R d ×(0,1) 2 ϕ|u 2 (t, x, ǫ) -u 1 (t, y, δ)| 2 ρ m (x -y)dǫdδdydxdt × Q×R d ρ m (x -y)| [ϕP (m x -y )] 2 (m 2 x -y 2 -1) 8 1 {m x-y ∈[a,1]} dydxdt ≤ C[mτ + m 2 ω φ (τ ) 2 ].
With the configuration of the previous situation, setting τ = ω h (1/m) 1+θ

and

|B| ≤ Cmτ + C mω φ (ω h (1/m) 1+θ 2 .
Then, with the assumption on the modulus ω φ , B converges to 0 when m goes to +∞.

Finally, whatever the situation, passing to the limit with respect to m, the following Kato inequality holds, for any ϕ

∈ D + ([0, T [×R d ), 0 ≤ R d |u 0,2 -u 0,1 |ϕ(0, x)dx +E Q×(0,1) 2 |u 2 (ǫ, •) -u 1 (δ, •)|∂ t ϕ + |g(•, u 2 (ǫ, •)) -g(•, u 1 (δ, •))|ϕ dδdǫdxdt +E Q×(0,1) 2 φ(u 2 (ǫ, •)) -φ(u 1 (δ, •)) ∆ϕ -F (u 2 (ǫ, •), u 1 (δ, •))∇ϕ dδdǫdxdt or, similarly, for any ϕ ∈ D + ([0, T [, H 1 (R d )), 0 ≤ R d |u 0,2 -u 0,1 |ϕ(0, x)dx +E Q×(0,1) 2 |u 2 -u 1 |∂ t ϕ + |g(•, u 2 ) -g(•, u 1 )|ϕ dδdǫdxdt -E Q ∇ (0,1) 2 φ(u 2 ) -φ(u 1 ) dδdǫ + (0,1) 2 F (u 2 , u 1 )dδdǫ ∇ϕdxdt
Following the idea of [START_REF] Andreianov | A note on uniqueness of entropy solutions to degenerate parabolic equations in R N[END_REF] |x| 2 is in L 2 ({|x| > R}). Thus,

0 ≤ R d |u 0,2 -u 0,1 |γ(0)α(x)dx +E Q×(0,1) 2 |u 2 -u 1 |γ ′ (t) + |g(•, u 2 ) -g(•, u 1 )|γ(t) α(x)dδdǫdxdt +E T 0 {|x>R|}×(0,1) 2 φ(u 2 ) -φ(u 1 ) ∆α(x) -F (u 2 , u 1 )∇α(x) γ(t)dδdǫdxdt -E T 0 γ(t) ∂{|x|>R}×(0,1) 2 φ(u 2 ) -φ(u 1 ) ∇α. ndδdǫdσdt. Since ∇α(x). n = -a R x. n = a R > 0 on ∂{|x| > R}, this yields 0 ≤ R d |u 0,2 -u 0,1 |γ(0)α(x)dx +E Q×(0,1) 2 |u 2 -u 1 |γ ′ (t) + |g(•, u 2 ) -g(•, u 1 )|γ(t) α(x)dδdǫdxdt +E T 0 {|x>R|}×(0,1) 2 α(x)γ(t) a(2+2ǫ-a) |x| 2 φ(u 2 )-φ(u 1 ) + a |x| F (u 2 , u 1 ). x |x| dδdǫdxdt,
and as |x| > R in the last integral,

0 ≤ R d |u 0,2 -u 0,1 |γ(0)α(x)dx +E Q×(0,1) 2 |u 2 -u 1 |γ ′ (t) + |g(•, u 2 ) -g(•, u 1 )|γ(t) α(x)dδdǫdxdt +C(d) R + 1 R 2 E T 0 {|x>1|}×(0,1) 2 α(x)γ(t) φ(u 2 ) -φ(u 1 ) + |F (u 2 , u 1 )| dδdǫdxdt.
Using now that R ≥ 1 and the Lipschitz properties of φ, f and g,

0 ≤ R d |u 0,2 -u 0,1 |γ(0)α(x)dx +E Q×(0,1) 2 |u 2 -u 1 |α(x) γ ′ (t) + C(d, φ, f , g)γ(t) dδdǫdxdt.
Assume now, by an approximation argument, that γ(t) = e -ct min(1, n(T -t) + ) where c = C(d, φ, f , g) + 1, then

n T T -1/n E R d ×(0,1) 2 |u 2 -u 1 |α(x)e -ct dδdǫdxdt +E Q×(0,1) 2 |u 2 -u 1 |α(x)e -ct dδdǫdx min(1, n(T -t) + )dt ≤ R d |u 0,2 -u 0,1 |α(x)dx. (4) 
Thus, if one assumes that u 0,2 = u 0,1 , passing to the limit over n yields,

E Q×(0,1) 2 |u 2 -u 1 |α(x)e -ct dδdǫdxdt ≤ 0.
This means on the one hand that u 1 and u 2 are the same functions, but also on the other hand that they are not functions of the additional variables ǫ and δ respectively. Thus, one is able to conclude that the whole sequence of viscous approximation converges, weakly in L 2 (Ω × Q) and strongly in L p (Ω × (0, T ), L p loc (R d )) for any p < 2 to a weak entropy solution u in the sense of our definition. Then, back to (4), one gets by passing to the limit over n,

lim inf n n T T -1/n E R d |u 2 -u 1 |α(x)e -ct dxdt +E Q |u 2 -u 1 |α(x)e -ct dxdt ≤ R d |u 0,2 -u 0,1 |α(x)dx. Thanks to Remark 1, t → u 2 -u 1 is weakly continuous with values in L 2 (Ω×R d ) and since u ∈ L 2 (Ω × R d ) → E R d
|u|αdx is a non-negative convex continuous function, it is l.s.c. for the weak topology and

E R d |u 2 -u 1 |(T )α(x)dx + E Q |u 2 -u 1 |(t)α(x)e c(T -t) dxdt ≤ e cT R d |u 0,2 -u 0,1 |α(x)dx.
Since the time T is arbitrary, this last assertion closes the proof of the existence of a solution, limit of the viscous approximation and the stability of such solutions in L 1 (R, αdx). After the proof of the uniqueness of the solution in the sense of Definition 1 (see next section) this will prove the first part of the theorem.

Assume now that the initial conditions and g(•, 0) are elements of L 1 (R d ) and also h(•, 0) = 0. Thus, thanks to Remark 2, the corresponding solutions are in L ∞ (0, T, L 1 (Ω × R d )). Then, the above estimate yields

E R d |u 2 -u 1 |(T ) min(1, R a |x| a )dx ≤ e cT R d |u 0,2 -u 0,1 | min(1, R a |x| a )dx ≤ e cT R d |u 0,2 -u 0,1 |dx.
Thus, by Beppo Levi's theorem, one concludes that (u 2 -u 1 )(t), a priori element of L 2 (Ω × R d ), is an element of L 1 (Ω × R d ) with the information that

E R d |u 2 -u 1 |(T )dx ≤ e cT R d |u 0,2 -u 0,1 |dx.

Uniqueness of the solution

Our aim is to prove, as in [START_REF] Bauzet | The Cauchy problem for a conservation law with a multiplicative stochastic perturbation[END_REF], that any solution in the sense of our definition is unique by proving that it is equal to the solution obtained by viscous approximation. The method used to prove this result is exactly the same as the one proposed in the section dedicated to the result of existence, considering a solution u (i.e. ǫ = 0) and u δ . Coming back to the proofs, the only difference lies in the terms I 1 and I 3 where one has to set ǫ = 0. In the other terms, the proofs are the same since we used intentionally the generalized chain-rule (Lemma 3) instead of the classical one for Sobolev-functions since u is in general not a Sobolev-function, but G(u) is. This remark allows us to prove the theorem.

Technical lemmata

Lemma 1 For any Lipschitz-continuous function g : R → R and any

η ∈ E, ∀x, k ∈ R, g η (x, k) -sgn 0 (x -k)[g(x) -g(k)] ≤ lip(g)τ.
Proof. This comes from the remark that ∀x, k ∈ R,

g η (x, k) -sgn 0 (x -k)[g(x) -g(k)] = x k [η ′ (σ -k) -sgn 0 (σ -k)]g ′ (σ)dσ .
Lemma 2 Set, for any a, b:

I τ (a, b) := b a a µ η ′′ (µ -σ) φ ′ (σ)dσ φ ′ (µ)dµ. Then, I τ (a, b) = I τ (b, a), 0 ≤ 2I τ (a, b) + φ η (a, b) + φ η (b, a) = 1 2 b a b a η ′′ (µ -σ)[ φ ′ (σ) -φ ′ (µ)] 2 dµdσ ≤ 2 φ ′ ∞ |b -a| (5 
)

and 3 φ ′ ∞ |b -a| ≥ |I τ (a, b) + φ η (b, a)| + |I τ (a, b) + φ η (a, b)| → τ →0 0. ( 6 
)
Moreover, if √ φ ′ admits a modulus of continuity ω φ , then

2I τ (a, b) + φ η (a, b) + φ η (b, a) ≤ w φ (τ ) 2 |b -a|, (7) max 
[|I τ (a, b) + φ η (b, a)|, |I τ (a, b) + φ η (a, b)|] ≤ 1 2 w φ (τ ) 2 |b -a| + φ ′ ∞ min(τ, |b -a|).
Proof. Note that, by Fubini's theorem,

I τ (a, b) = - b a µ a η ′′ (µ -σ) φ ′ (σ) φ ′ (µ)dσdµ = - b a b σ η ′′ (σ -µ) φ ′ (σ) φ ′ (µ)dσdµ
and since η ′′ is even, one gets that I τ (a, b) = I τ (b, a) since the above remark yields

I τ (a, b) = - 1 2 b a b a η ′′ (µ -σ) φ ′ (σ) φ ′ (µ)dσdµ.
As η ′ is odd and η(r) ≤ |r| when |r| ≤ τ , we get thanks to Saks lemma and since G(D) is at most countable.

2I τ (a, b) + φ η (a, b) + φ η (b, a) = b a [η ′ (µ -a) -η ′ (µ -b)]φ ′ (µ) - b a η ′′ (µ -σ) φ ′ (σ) φ ′ (µ)dσ dµ = b a b a η ′′ (σ -µ)[ φ ′ (µ) -φ ′ (σ)] φ ′ (µ)dσdµ = b a b a η ′′ (µ -σ)[ φ ′ (σ) -φ ′ (µ)] φ ′ (σ)dµdσ = - b a b a η ′′ (σ -µ)[ φ ′ (µ) -φ ′ (σ)] φ ′ (σ)dµdσ = 1 2 b a b a η ′′ (µ -σ)[ φ ′ (σ) -φ ′ (µ)] 2 dµdσ ≤ φ ′ ∞ |b -a|. Therefore, sup I τ (a, b) + φ η (b, a), I τ (a, b) + φ η (a, b) ≤ 1 4 b a b a η ′′ (µ -σ)[ φ ′ (σ) -φ ′ (µ)] 2 dµdσ + 1 2 b a |η ′ (µ -a) + η ′ (µ -b)|φ ′ (σ)dσ ≤ 1 4 b a b a η ′′ (µ -σ)[ φ ′ (σ) -φ ′ (µ)] 2 dµdσ + φ ′ ∞ min(τ, |b -a|) ≤ 2 φ ′ ∞ |b -a| + φ ′ ∞ min(τ, |b -a|). Finally, if one assumes that b > a (a > b is similar), then b a b a η ′′ (µ -σ)[ φ ′ (σ) -φ ′ (µ)] 2 dµdσ ≤ b a τ -τ η ′′ (α)| φ ′ (µ) -φ ′ (µ + α)| 2 dαdµ = τ -τ η ′′ (α) b a | φ ′ (µ) -φ ′ (µ + α)| 2 dµdα. In particular, since lim α→0 b a | φ ′ (µ -α) -φ ′ (µ)|
a boundary), u ∈ L 2 (O), f ∈ L ∞ (R), G a Lipschitz-continuous function with G(0) = 0 and assume that G(u) ∈ H 1 (O). Then v = u b f (s)G ′ (s)ds ∈ H 1 (O)
The conclusion is then that, in L where η denotes the even convex function, defined for any positive x by: η(x) = Note that if u ∈ H 1 (R d ), there exists a sequence (u n ) ∈ D(R d ) that converges to u in H 1 (R d ), so that Remark 2 Assume that u 0 , g(•, 0) ∈ L 1 (R d ), h(•, 0) = 0 and that (u ǫ ) converges weakly to a given u in L 2 (Ω × Q). Since η is a convex continuous function, one gets at the limit that:

2 (O) d , f (u)∇G(u) ← f oG -1 ǫ (G(u))∇G(u) = ∇ u b f oG -1 ǫ (G(s))G ′ (s)ds → ∇ u b f ( 
R d f (u)∇η ′ (u)dx = n R d f (u n )∇η ′ (u n )dx = lim n R d f (u n )η ′′ (u n )∇u n dx = lim n R d
Ω×Q η(u)dxdt ≤ lim inf ǫ Ω×Q η(u ǫ )dxdt ≤ C[ R d η(u 0 )dx + 1] ≤ C[ u 0 L 1 (R d ) + 1].
Since η is monotone with respect to its parameter τ , Beppo Levi's theorem yields u ∈ L ∞ (0, T, L 1 (Ω × R d )).

  , u 2 (t, x, ǫ)) -g(y, u 1 (t, y, δ))|ρ m (x -y)dδdǫdydxdt.

  , denote by ϕ(t, x) = γ(t)α(x) where γ ∈ D + ([0, T [), α is the function defined by α(x) = min(1, R a |x| a ) where R ≥ 1 and a = d/2 + ǫ, ǫ > 0 in order to have α in L 2 (R d ). Thus, ∇α(x) = -aR a |x| -a-1 x |x| 1 {|x|>R} = -a α(x) |x| x |x| 1 {|x|>R} ∈ L 2 (R d ) d ; and, in the set {|x| > R}, one has that ∆α(x) = a(2+2ǫ-a) α(x)

  2 dµ = 0 by continuity of the translations in L 2 , one gets the convergence to 0 claimed in the lemma. Lemma 3 (A generalized chain rule) Consider O ⊂ R d a domain with a Lipschitz boundary (if there is

  where b ∈ R if O has a finite measure and b = 0 else, and, a.e.∇ u b f (s)G ′ (s)ds = f (u)∇G(u).

Lemma 4 sup t u ǫ 2 L 2 (

 422 s)G ′ (s)ds and the result holds in that first case: a non-decreasing Lipschitz function G and a bounded continuous function f . Note that the same proof yields the result for a decreasing Lipschitz function G and any pointwise limit of sequences of bounded continuous function (f n ), uniformly bounded by a same constant. Thus, the result holds for the Baire class of uniformly bounded continuous function, i.e., the bounded Borel functions f . Now, since, in the Lebesgue class of f ∈ L ∞ (R), there exists a Borel function f , bounded by the same value ||f || L ∞ (R) , one hasf (u)∇G(u) = ∇ u b f (s)G ′ (s)ds = ∇ u b f (s)G ′ (s)ds.If now D denotes the negligible set where f and f differs,[ f (u) -f (u)]∇G(u) ≤ f (u) -f (u) ∇G(u) 1 {G(u)∈G(D)} = 0 a.e.since G(D) is negligible (D is negligible and G Lipschitz, non-decreasing) and by using Saks Lemma.To finish the proof, just remind that any Lipschitz function is the difference of Lipschitz non-decreasing functions. The weak solution u ǫ to Problem (P ǫ ) satisfies the following estimates:Ω×R d ) (t) + ǫ ∇u ǫ 2 L 2 (Ω×Q) + ∇G(u ǫ ) 2 L 2 (Ω×Q ≤ C. If, moreover, u 0 , g(•, 0) ∈ L 1 (R d) and h(•, 0) = 0, sup t E R d η(u ǫ (t))dx ≤ e c(h,g)T [ R d η(u ǫ 0 )dx + T c(g)[τ + g(x, 0) L 1 (R d ) ]

x 2 2τ 1 {ηη(u ǫ ) 2 η

 212 x|<τ } + (x -τ 2 )1 { x|≥τ } .Proof. Denote by η a non-negative convex-function, with η ′ Lipschitz-continuous, and assume that |η(u)| ≤ C|u| 2 for a given constant C. Thanks to Itô's formula, for any t,′′ (u ǫ )[ǫ + φ ′ (u ǫ )]|∇u ǫ | 2 + η ′′ (u ǫ ) f (u ǫ )∇u ǫ dxds = u ǫ )η ′ (u ǫ )dxdw(s) , u ǫ ) 2 η ′′ (u ǫ )dxds + t 0 R d g(x, u ǫ )η ′ (u ǫ )dxds. ′′ (u ǫ )ǫ|∇u ǫ | 2 + η ′′ (u ǫ )|∇G(u ǫ )| 2 ′′ (u ǫ )dxds + 2E t 0 R d h(x, 0) 2 η ′′ (u ǫ )dxds +c(g)E t 0 R d (|u ǫ | + |g(x, 0)|)|η ′ (u ǫ )|dxds.

η(u ǫ ) 2 η 2 L 2 (Ω×Q) ≤ u ǫ 0 2 L 2 (0 u ǫ 2 L 2 (u ǫ 2 L 2 ( 2 L 2

 22222222222 ′′ (u ǫ )ǫ|∇u ǫ | 2 + η ′′ (u ǫ )|∇G(u ǫ )| 2 dxds ≤ ′′ (u ǫ )dxds + 2E t 0 R d h(x, 0) 2 η ′′ (u ǫ )dxds +c(g)E t 0 R d (|u ǫ | + |g(x, 0)|)|η ′ (u ǫ )|dxds.Assume first that η(x) = x 2 . Then, this yields (the constants c(h) and c(g) may change from one line to another)u ǫ 2 L 2 (Ω×R d ) (t) + ǫ ∇u ǫ 2 L 2 (Ω×Q + ∇G(u ǫ ) R d ) + [c(h) + c(g)] t Ω×R d ) (s)ds +c(g)T g(x, 0) 2 L 2 (R d ) + 4T h(x, 0) 2 L 2 (R d ) ,and Gronwall's lemma implies that supt Ω×R d ) (t) + ǫ ∇u ǫ 2 L 2 (Ω×Q) + ∇G(u ǫ ) (Ω×Q ≤ C.Assume now that u 0 , g(•, 0) ∈ L 1 (R d ) and that h(•, 0) = 0 and denote by η = η the classical even and convex approximation of the absolute value function introduced in the lemma. Note that 0 ≤ η(x) ≤ 4x 2 τ , |xη ′ (x)| ≤ 2η(x) + τ and that x 2 η′′ (x) ≤ η(x) for any x. Then, ǫ )dxds+T c(g)[τ + g(x, 0) L 1 (R d ) ],and thanks to Gronwall's lemma, sup t E R d η(u ǫ (t))dx ≤ e c(h,g)T [ R d η(u ǫ 0 )dx + T c(g)[τ + g(x, 0) L 1 (R d ) ].

Here we don't mean pathwise, nor martingale solutions.

To adapt the proof of the main result of this paper, one just needs to consider the resolvant (I -∆) -1 instead of (-∆) -1 .

One uses that ρ θ is even and the properties of the Itô integral with continuous linear operators.

integrals that will disappear when ǫ will go to 0
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Proof. First, assume that f is a continuous function and that G is a nondecreasing function.

ǫ is well-defined on R and it is a Lipschitzcontinuous function. Then, the classical chain rule yields

To this end we consider the two following possible cases: -Assume that x is such that:

ǫ (G(x)) ≥ y, and at the limit when y → x -, one gets

and, regarding the definition of a(x) and the previous case,

since, if a(s) = s, then G ′ (s) = 0, unless for a countable number of points. f and G ′ are bounded function, so that the Lebesgue theorem yields the convergence of