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Abstract. We introduce a variant of the deterministic rendezvous prob-
lem for a pair of heterogeneous agents operating in an undirected graph,
which differ in the time they require to traverse particular edges of the
graph. Each agent knows the complete topology of the graph and the
initial positions of both agents. The agent also knows its own traversal
times for all of the edges of the graph, but is unaware of the correspond-
ing traversal times for the other agent. The goal of the agents is to meet
on an edge or a node of the graph. In this scenario, we study the time
required by the agents to meet, compared to the meeting time TOPT in
the offline scenario in which the agents have complete knowledge about
each others speed characteristics. When no additional assumptions are
made, we show that rendezvous in our model can be achieved after time
O(nTOPT) in a n-node graph, and that such time is essentially in some
cases the best possible. However, we prove that the rendezvous time
can be reduced to Θ(TOPT) when the agents are allowed to exchange
Θ(n) bits of information at the start of the rendezvous process. We then
show that under some natural assumption about the traversal times of
edges, the hardness of the heterogeneous rendezvous problem can be
substantially decreased, both in terms of time required for rendezvous
without communication, and the communication complexity of achieving
rendezvous in time Θ(TOPT).

1 Introduction

Solving computational tasks using teams of agents deployed in a network gives
rise to many problems of coordinating actions of multiple agents. Frequently, the
communication capabilities of agents are extremely limited, and the exchange
of large amounts of information between agents is only possible while they are
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located at the same network node. In the rendezvous problem, two identical
mobile agents, initially located in two nodes of a network, move along links from
node to node, with the goal of occupying the same node at the same time. Such
a question has been studied in various models, contexts and applications [1].

In this paper we focus our attention on heterogeneous agents in networks,
where the time required by an agent to traverse an edge of the network depends
on the properties of the traversing agent. In the most general case we consider,
the traversal time associated with every edge and every agent operating in the
graph may be different. Scenarios in which traversal times depend on the agent
are easy to imagine in different contexts. In a geometric setting, one can consider
a road connection network, with agents corresponding to different types of vehi-
cles moving in an environment. One agent may represent a typical road vehicle
which performs very well on paved roads, but is unable to traverse other types
of terrain. By contrast, the other agent may be a specialized mobile unit, such as
a vehicle on caterpillars or an amphibious vehicle, which is able to traverse dif-
ferent types of terrain with equal ease, but without being capable of developing
a high speed. In a computer network setting, agents may correspond to soft-
ware agents with different structure, and the transmission times of agents along
links may depend on several parameters of the link being traversed (transmission
speed, transmission latency, ability to handle data compression, etc.).

In general, it may be the case that one agent traverses some links faster
than the other agent, but that it traverses other links more slowly. We will also
analyze more restricted cases, where we are given some a priori knowledge about
the structure of the problem. Specially, we will be interested in the case of ordered
agents, i.e., where we assume that one agent is always faster than the other one,
and the case of ordered edges, where we assume that if in a fixed pair of links,
one agent takes more time to traverse the first link, the same will also be true
for the other agent.

We study the rendezvous problem under the assumption that each agent
knows the complete topology of the graph and its traversal times for all edges,
but knows nothing about the traversal times or the initial location of the other
agent. In all of the considered cases, we will ask about the best possible time
required to reach rendezvous, compared to that in the “offline scenario”, in which
each of the agents also has complete knowledge of the parameters of the other
agent. We will also study how this time can be reduced by allowing the agents
to communicate (exchange a certain number of bits at a distance) at the start
of the rendezvous process.

1.1 The model and the problem

Let us consider a simple graph G = (V,E) and its weight functions wA : E 7→ N+

and wB : E 7→ N+, where N+ is the set of positive integers. Let sA, sB ∈ V ,
sA 6= sB , be two distinguished nodes of G – the agents’ A and B starting nodes.
We assume that initially an agent K ∈ {A,B} knows the graph G, sA, sB and
wK . Thus, A knows wA but it does not know wB , and B knows wB but it does
not now wA. We assume that the nodes of G have unique identifiers and that
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G is given to each agent together with the identifiers. The latter in particular
implies that the agents have unique identifiers – they can ‘inherit’ the identifiers
of the nodes sA and sB . Also, the agents do not see each other unless they meet.

The weight functions indicate the time required for A and B to move along
edges. That is, given an edge e = {u, v}, an agent K ∈ {A,B} needs wK(e) units
of time to move along e (in any direction). We assume that both agents start
their computation at time 0 by exchanging messages. The time required to send
and to receive a message is negligible.

Once an agent K ∈ {A,B} is located at a node v, it can do one of the
following actions:

– the agent can wait t ∈ N+ units of time at v; after time t the agent will
decide on performing another action,

– the agent can start a movement from v to one of its neighbors u; in such case
the agent moves with the uniform speed from v to u along the edge {u, v}
and after wK({v, u}) units of time K arrives at u and then performs its next
action.

While an agent is performing its local computations preceding an action, it has
access to all messages sent by the other agent at time 0. We assume that the
time of agent’s computations preceding an action is negligible.

We say that A and B rendezvous at time t (or simply meet) if they share the
same location at time t,

– they both are located at the same node at time t, or

– K ∈ {A,B} started a movement from uK to vK at time tK < t, uA = vB ,
vA = uB , e = {uA, vA}, tK + wK(e) < t and t−tA

wA(e) = 1 − t−tB
wB(e) (infor-

mally speaking, the agents ‘pass’ each other on e as they start from opposite
endpoints of e), or

– K ∈ {A,B} started a movement from u to v at time tK < t, e = {u, v},
tK + wK(e) < t and t−tA

wA(e) = t−tB
wB(e) (informally speaking, both agents start

at the same endpoint but the one of them ‘catches up’ the other: tA < tB
and wA(e) > wB(e), or tA > tB and wA(e) < wB(e)).

Observe that the last case is not possible in an optimum offline solution, as
the agents could rendezvous earlier in the vertex u.

We are interested in the following problem:

Given two integers b and t, does there exist an algorithm whose execution by
A and B guarantees that the agents send to each other at time 0 messages
consisting of at most b bits in total, and A and B meet after time at most t?

Given an algorithm for the agents, we refer to the total number of bits sent
between the agents as the communication complexity of the algorithm. The ren-
dezvous time of an algorithm is the minimum time length t such that the agents
meet at time t as a result of the execution of the algorithm.
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1.2 Related work

The rendezvous problem has been thoroughly studied in the literature in different
contexts. In a general setting, the rendezvous problem was first mentioned in [26].
Authors investigating rendezvous (cf. [1] for an extensive survey) considered
either the geometric scenario (rendezvous in an interval of the real line, see,
e.g., [5, 6, 18], or in the plane, see, e.g., [2, 3]) or the graph scenario (see, e.g.,
[14, 17, 23]). A natural extension of the rendezvous problem is that of gathering
[16,20,24,28], when more than two agents have to meet in one location.

Rendezvous in anonymous graphs. In the anonymous graph model, the agents
rely on local knowledge of the graph topology, only. Nodes have no unique iden-
tifiers, and maintain only a local labeling of outgoing edges (ports) leading to
their neighbors. When studying the feasibility and efficiency of deterministic ren-
dezvous in anonymous graphs, a key problem which needs to be resolved is that
of breaking symmetry. Without resorting to marking nodes, this can be achieved
by taking advantage of the different labels of agents [14, 23, 25]. Labeled agents
allowed to mark nodes using whiteboards were considered in [29]. Rendezvous of
labeled agents using variants of Universal Exploration Sequences was also inves-
tigated in [23,27] in the synchronous model, who showed that such meeting can
be achieved in time polynomial in the number of nodes of the graph and in the
length of the smaller of the labels of the agents. For the case of unlabeled agents,
rendezvous is not always feasible when the agents move in synchronous rounds
and are allowed only to meet on nodes. However, for any feasible starting con-
figuration, rendezvous of anonymous agents can be achieved in polynomial time,
and even more strongly, using only logarithmic memory space of the agent [12].
In the asynchronous scenario, it has recently been shown that agents can always
meet within a polynomial number of moves if they have unique labels [15]. For
the case of anonymous agents, the class of instances for which asynchronous ren-
dezvous is feasible is quite similar to that in the synchronous case, though under
the assumption that agents are also allowed to meet on edges (which appears
to be indispensable in the asynchronous scenario), certain configurations with a
mirror-type symmetry also turn out to be gatherable [19].

Location-aware rendezvous. The anonymous scenario may be sharply contrasted
with the case in which the agent has full knowledge of the map of the environ-
ment, and knows its position within it. Such assumption, partly fueled by the
availability and the expansion of the Global Positioning System (GPS), is some-
times called the location awareness of agents or nodes of the network. Thus, the
only unknown variable is the initial location of the other agent. In [4,9] the au-
thors study the rendezvous problem of location-aware agents in the asynchronous
case. The authors of [9] introduced the concept of covering sequences that per-
mitted location aware agents to meet along the route of polynomial length in
the initial distance d between the agents for the case of multi-dimensional grids.
Their result was further advanced in [4], where the proposed algorithm provides
a route, leading to rendezvous, of length being only a polylogarithmic factor
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away from the optimal rendezvous trajectory. The synchronous case of location-
aware rendezvous was studied in [8], who provided algorithms working in linear
time with respect to the initial distance d for trees and grids, also showing that
for general networks location-aware rendezvous carried a polylogarithmic time
overhead with respect to n, regardless of the initial distance d.

Problems for heterogenous agents. Scenarios with agents having different capa-
bilities have been also studied. In [13] the authors considered multiple colliding
robots with different velocities traveling along a ring with a goal to determine
their initial positions and velocities. Mobile agents with different speeds were also
studied in the context of patrolling a boundary, see e.g. [11, 22]. In [10] agents
capable of traveling in two different modes that differ with maximal speeds were
considered in the context of searching a line segment. We also mention that
speed, although very natural, is not the only attribute that can be used to dif-
ferentiate the agents. For example, authors in [7] studied robots with different
ranges or, in other words, with different battery sizes limiting the distance that
a robot can travel.

1.3 Additional notation

Let TK(u, v, w), K ∈ {A,B}, denote the minimum time required by agent K
to move from u to v in G with a weight function w. If w = wK , then we write
TK(u, v) in place of TK(u, v, wK), K ∈ {A,B}. In other words TK(u, v) is the
length of the shortest path from u to v in G with weight function wK , where the
length of a path composed of edges e1, . . . , el is

∑l
j=1 wK(ej). We use the symbol

TOPT(sA, sB) to denote the minimum time for rendezvous in the off-line setting
where agents that are initially placed on sA and sB know all parameters. We will
skip starting positions if it will not lead to confusion writing simply TOPT. Denote
also MK := max{wK(e)

∣∣ e ∈ E}, K ∈ {A,B}, and let M := max{MA,MB}.
All logarithms have base 2, i.e., we write for brevity log in place of log2.

The following lemma, informally speaking, implies that we do not have to
consider scenarios in which rendezvous occurs on edges, and by doing so we
restrict ourselves to solutions among which there exists one that is within a
constant factor from an optimal one. Let TRV(sA, sB , v) denote the minimum
time for rendezvous at v, that is, TRV(sA, sB , v) = max{TA(sA, v), TB(sB , v)}.
Let any node u that minimizes the TRV(sA, sB , u) be called a rendezvous node.

Lemma 1. For each graph G = (V,E) and for each sA, sB ∈ V , if u ∈ V is the
rendezvous node, then TRV(sA, sB , u) ≤ 2TOPT(sA, sB).

Proof. If the two agents can achieve rendezvous on a node in time TOPT(sA, sB),
then the lemma follows and hence we assume in the following that rendezvous
occurs on an edge. For K ∈ {A,B}, let vK be the last node visited by K prior
to rendezvous that the two agents achieve in time TOPT(sA, sB). Observe that
vA 6= vB and e = {vA, vB} ∈ E.
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In an optimum solution at least one of the agents traversed at least half of
e, so

2TOPT(sA, sB) ≥ min{TA(sA, vB), TB(sB , vA)}. (1)

Moreover, TA(sA, vB) > TB(sB , vB) and TB(sB , vA) > TA(sA, vA) , so

min{TA(sA, vB), TB(sB , vA)} = min{max{TA(sA, vB), TB(sB , vB)},
max{TB(sB , vA), TA(sA, vA)}} (2)

= min{TRV(sA, sB , vB), TRV(sA, sB , vA)}.
If u is a rendezvous node, then

min{TRV(sA, sB , vB), TRV(sA, sB , vA)} ≥ TRV(sA, sB , u).

This, (1) and (2) prove the lemma. ⊓⊔

1.4 Possible restrictions on weight functions

Arbitrary weight functions might cause very bad performance of rendezvous
(see Theorems 2 and 7). Thus, beside the arbitrary case, we will be interested
in restricted cases, namely:

1. wA and wB are arbitrary functions,
2. ∀e1,e2∈E wA(e1) < wA(e2) ⇐⇒ wB(e1) < wB(e2),
3. ∀e∈E wA(e) ≤ wB(e) or ∀e∈E wB(e) ≤ wA(e).

Case 1 reflects the situation where both agents and edges are not related
in terms of time needed to move along them. Whenever two functions have the
property case 2, we will refer to the problem instance as the case of ordered edges.
Informally, in such scenario both agents obtain the same ordering of edges (up to
resolving ties) with respect to their weights. The last case reflects the situation
where one of the agents is always at least as fast as the other one. Instances with
this property are referred to as the cases of ordered agents.

1.5 Our results

In this work we analyze the following two extreme scenarios. In the first scenario
(the middle column in Table 1) we consider the communication complexity of
algorithms that guarantee that rendezvous occurs in time Θ(TOPT) regardless
of the starting positions. In the second scenario (the third column) we provide
bounds on the rendezvous time in case when the agents send no messages to
each other.

2 Communication complexity for Θ(TOPT) time

In this section we determine upper and lower bounds for communication com-
plexity of algorithms that achieve rendezvous in asymptotically optimal time.
Section 2 is subdivided into three parts reflecting the three cases of weight func-
tions we consider.
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Table 1. Summary of results (n is the number of nodes of the input graph)

communication complexity for
rendezvous in time Θ(TOPT)

rendezvous time in case
of no communication

Case 1: arbitrary O(n · (log log(M · n))) (Thm. 1)
Ω(n) (Thm. 2)

Θ(n · TOPT) (Thms 6, 7)

Case 2: ordered edges O(log logM + log2 n) (Thm. 3)
Ω(log n) (Thm. 4)

O(n · TOPT) (Thm. 6)
Ω(

√
n · TOPT) (Thm. 8)

Case 3: ordered agents none (Thm. 5) Θ(TOPT) (Thm. 5)

2.1 The case of arbitrary functions

We start by giving an upper bound on communication complexity of asymp-
totically optimal rendezvous. Our method is constructive, i.e., we provide an
algorithm for the agents (see proof of Theorem 1). Then, (cf. Theorem 2) we
give the corresponding lower bound.

Theorem 1. There exists an algorithm that guarantees rendezvous in Θ(TOPT)
time and has communication complexity O(n(log log(M ·n))) for arbitrary func-
tions.

Proof. Let I0 = [0, 1], and for j > 0 let Ij = (2j−1, 2j ]. Denote V = {v1, . . . , vn},
where the vertices are ordered according to their identifiers. We first formulate
an algorithm and then we prove that it has the required properties. We assume
that A is the executing agent and B is the other agent (the algorithm for B is
analogous).

1. For each j = 1, . . . , n (in this order) send to B the integer r(A, j) such that
TA(sA, vj) ∈ Ir(A,j).

2. After receiving the corresponding messages from B, construct T ′ : V 7→ N+

such that

T ′(vj) := max{2r(A,j), 2r(B,j)}, j ∈ {1, . . . , n}.

3. Find a node vρ with minimum value of T ′(vρ). If more than one such node
vρ exists, then take vρ to be the one with minimum identifier.

4. Go to vρ along a shortest path and stop.

Note that both agents compute the same function T ′. This in particular
implies that the same vertex vρ, to which each agent goes, is selected by both
agents. Hence, the agents rendezvous at vρ. The transmission of r(K, j) requires
O(log log(M · n)) bits because r(K, j) = O(log(M · n)) for each K ∈ {A,B}
and j ∈ {1, . . . , n}. Thus, the communication complexity of the algorithm is
O(n log log(M · n)).

We now give an upper bound on the rendezvous time at vρ. By definition,
for each j ∈ {1, . . . , n} and for each K ∈ {A,B} we have

2r(K,j)−1 ≤ TK(sK , vj) ≤ 2r(K,j).
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Thus, having in mind that TRV(sA, sB , v) = max{TA(sA, v), TB(sB , v)}, we ob-
tain:

1

2
T ′(vj) ≤ TRV(sA, sB , vj) ≤ T ′(vj), j ∈ {1, . . . , n}. (3)

Now, let u be a rendezvous node. By (3), the choice of index ρ, again by (3) and
by Lemma 1 we obtain

TRV(sA, sB , vρ) ≤ T ′(vρ) ≤ T ′(u) ≤ 2TRV(sA, sB , u) ≤ 4TOPT(sA, sB),

which completes the proof. ⊓⊔

Theorem 2. Each algorithm that guarantees rendezvous in time Θ(TOPT) has
communication complexity Ω(n) for some n-node graphs.

Proof. Let G be a class of graph such that each G ∈ G is a complete bipartite
graph K2,n with V = {sA, sB , v1, v2, . . . vn} and E = EA ∪ EB , where EK ={
{sK , vj}

∣∣ j ∈ {1, 2, . . . n}
}
, K ∈ {A,B}, and, for each K ∈ {A,B}, wK(e) =

X for each e ∈ E \ EK and wK(e) ∈ {1, X} for each e ∈ EK , where X is a
sufficiently big integer, e.g., X = n.

Note that for each G ∈ G, TOPT ∈ {1, X}. Moreover, TOPT = 1 if and only if
there exists an index j ∈ {1, . . . , n} such that wA({sA, vj}) = wB({sB , vj}) = 1.
A problem to find such an index j is equivalent to a known problem of set
intersection [21] and requires Ω(n) bits to be transmitted between A and B. ⊓⊔

2.2 The case of ordered edges

Theorem 3. There exists an algorithm that guarantees rendezvous in Θ(TOPT)
time and has communication complexity O(log logM + log2 n) in case of mono-
tone edges.

Proof. Let I0 = [0, 1], and for j > 0 let Ij = (2j−1, 2j ]. For K ∈ {A,B} and a
function wK : E 7→ N+ let m(wK) be the maximum integer such that the removal
of all edges from G with weights greater than m(wK) disconnects G in such a
way that sA and sB belong to different connected components. For K ∈ {A,B}
and j ≥ 0, define rKj = |{e ∈ E

∣∣ wK(e) ∈ Ij}|.
We now give a statement of an algorithm with communication complexity

O(log logM+log2 n). Then, we prove that its execution by each agent guarantees
rendezvous in time Θ(TOPT).

1. Let A be the executing agent and let B be the other agent (the statement for
B is analogous). Send to B the index cA such that m(wA) ∈ IcA (this requires
sending log cA ≤ log logm(wA) = O(log logM) bits). Set c := min{cA, cB}
(cB is in the corresponding message received from B).

2. Send to B the value of rAc and, for each j ∈ {1, . . . , ⌈log n⌉} send to B the
values of rAc+j and rAc−j (this requires sending O(log2 n) bits in total).

3. Send to B the value of rA := rA0 +rA1 +· · ·+rAc−⌈logn⌉−1 (this requires sending

O(log n) bits).
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4. After receiving the corresponding messages from B construct a weight func-
tion w̃B : E 7→ N+ as follows. First, sort the edges so that wA(ej) ≤ wA(ej+1)
for each j ∈ {1, . . . , |E| − 1}. Denote

EB
0 = {e1, . . . , erB} and EB

∞ = E \ {e
∣∣ w̃B(e) ∈ I0 ∪ · · · ∪ Ic+⌈logn⌉}.

Then, w̃B(e) := 0 for each e ∈ EB
0 ; w̃B(e) = +∞ for each e ∈ EB

∞; and
for each edge e ∈ E \ (EB

0 ∪ EB
∞) set w̃B(e) := 2j

′−1 if e ∈ Ij′ (this can be
deduced from messages received from B).

5. Calculate the function w̃A (i.e., the function that B constructs based on the
information sent to B).

6. Find a node vρ ∈ V such that max{TA(sA, vρ, w̃A), TB(sB , vρ, w̃B)} is min-
imum. If more than one such node exists, then take vρ to be the one with
minimum identifier.

7. Go to vρ along a shortest path and stop.

Note that the communication complexity of the above algorithm is O(log logM+
log2 n). Also, both agents calculate w̃A and w̃B and hence the node vρ is the
same for both agents, which implies that the algorithm guarantees rendezvous.

Therefore, it remains to prove that

max{TA(sA, vρ), TB(sB , vρ)} = O(TOPT(sA, sB)).

Due to Lemma 1, it is enough to show that

max{TA(sA, vρ), TB(sB , vρ)} = O(TRV(sA, sB , u)), (4)

where u is a rendezvous node. For K ∈ {A,B} and x ∈ {u, vρ}, let P x
K be the

set of edges of a shortest path from sK to x in G with weight function wK and
let P̃ x

K be the set of edges of a shortest path from sK to x in G with weight
function w̃K .

Note that (4) follows from

max
{
wA(P

vρ

A ), wB(P
vρ
B )

}
= O (max{wA(Pu

A), wB(Pu
B)}) . (5)

Hence, we focus on proving the latter equation.
First note that for each K ∈ {A,B} and X ⊆ E it holds:

wK(X ∩EK
0 ) ≤ |X| ·2c−⌈logn⌉−1 ≤ |X|

n
·2c−1 ≤ |X|

n
·min{m(wA),m(wB)}. (6)

Thus, for each K ∈ {A,B},

wK(P̃
vρ

K ∩ EK
0 ) ≤ |P̃ vρ

K ∩ EK
0 |

n
· min{m(wA),m(wB)}

< min{m(wA),m(wB)}
(7)

because the edges in P̃
vρ

K form a path which in particular gives |P̃ vρ

K ∩EK
0 | < n.

Inequality (7) implies that, for each K ∈ {A,B},

wK(P̃
vρ

K ) ≤ min{m(wA),m(wB)} + wK(P̃
vρ
K \ EK

0 ). (8)
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Note that
Pu
K ∩ EK

∞ = ∅, K ∈ {A,B}. (9)

Indeed, otherwise wK(Pu
K) > 2c+⌈logn⌉ ≥ n2c contradicting that u is a ren-

dezvous node (the agent K with cK = c can reach the starting position of the
other agent in time not greater than (n− 1)2cK = (n− 1)2c).

Denote YK = {e ∈ E
∣∣ wK(e) > 2c−1} for each K ∈ {A,B}. We prove that

YA ∩ Pu
A 6= ∅ or YB ∩ Pu

B 6= ∅. (10)

Suppose for a contradiction that YA∩Pu
A = ∅ and YB ∩Pu

B = ∅. Assume without
loss of generality that |YA| ≤ |YB | (the analysis in the opposite case is analogous).
By definition of YA, wA(e) ≤ 2c−1 for each e ∈ Pu

A. Since we consider the case of
monotone edges, |YA| ≤ |YB | implies that wA(e) ≤ 2c−1 for each e ∈ Pu

B . This
however means that a subset of edges in Pu

A ∪ Pu
B gives a path whose each edge

e satisfies wA(e) ≤ 2c−1 ≤ 2cA−1, contradicting the choice of cA. This completes
the proof of (10). Note that (10) implies

min{m(wA),m(wB)} ≤ 2c ≤ 2 max {wA(Pu
A), wB(Pu

B)} . (11)

By the definition of P
vρ
K and by (8) we have

wK(P
vρ

K ) ≤ wK(P̃
vρ

K ) ≤ wK(P̃
vρ
K \ E0) + min{m(wA),m(wB)}. (12)

Recall that wK(e) ≤ 2w̃K(e) for each e ∈ E \ EK
0 and K ∈ {A,B}. Thus,

wK(P̃
vρ

K \ E0) ≤ 2w̃K(P̃
vρ

K \ E0). (13)

Since w̃K(e) = 0 for each e ∈ EK
0 and K ∈ {A,B},

w̃K(P̃
vρ

K \ E0) = w̃K(P̃
vρ
K ). (14)

Combining (12), (13) and (14) we obtain

wK(P
vρ
K ) ≤ 2w̃K(P̃

vρ

K ) + min{m(wA),m(wB)}. (15)

By definition of P̃u
K and (9),

w̃K(P̃u
K) ≤ w̃K(Pu

K) ≤ wK(Pu
K), K ∈ {A,B}. (16)

By (15), the choice of vρ, (16) and (11),

max
{
wA(P

vρ

A ), wB(P
vρ
B )

}
≤

≤ min{m(wA),m(wB)} + 2 max
{
w̃A(P̃

vρ

A ), w̃B(P̃
vρ

B )
}

≤ min{m(wA),m(wB)} + 2 max
{
w̃A(P̃u

A), w̃B(P̃u
B)

}

≤ min{m(wA),m(wB)} + 2 max {wA(Pu
A), wB(Pu

B)}
≤ 4 max {wA(Pu

A), wB(Pu
B)} .

This proves (5) and completes the proof of the theorem. ⊓⊔
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Theorem 4. Each algorithm that guarantees rendezvous in time Θ(TOPT) has
communication complexity Ω(log n) for some n-node graphs in case of ordered
edges.

Proof. Let k be a positive integer. We first define a family of graphs G =
{G1, . . . , Gk}. Each graph in G has the same structure, namely, the vertices
sA and sB are connected with k node-disjoint paths but the graphs in G have
different weight functions associated with them. Each of those paths consists of
exactly k + 2 edges (see Figure 1).

b bbb

b

b

b

b

b b

b

b

b

bb

bb b

bb bb

b b bb

b b bb

b

b

b

b

bb b

b b b

b b b

b bb

b bb

b b bb b

sa sb

k2 + k + 1

k2 + k + 2

k2 + 2k − 1

k2 + 2k

1

k + 1

(k − 2)k + 1

(k − 1)k + 1

2

k + 2

(k − 2)k + 2

(k − 1)k + 2

k

2k

(k − 1)k

k2

k2 + k

k2 + k − 1

k2 + 2

k2 + 1

Fig. 1. The structure of the graphs in the proof of Theorems 4 and 8; the numbers
give ordering of edges with respect to agents’ weight functions

Thus, each graph in G has k2 + k + 2 nodes and m = k2 + 2k edges. The
edges are denoted by e1, . . . , em. The location of each edge in G is shown in
Figure 1, where for improving the presentation we write i in place of ei for each
i ∈ {1, . . . ,m}. We will set the labels of the edges so that wK(e1) < · · · < wK(em)
for each K ∈ {A,B}. Now, for each graph in G, we put

wA(ei) := X + i for each i ∈ {1, . . . ,m},

where X = k4. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}, we set the weight function
wB for Gj as follows:

wB(ei) :=





i, for i ≤ jk,

X + i, for jk < i ≤ k2 + k − j + 1,

kX + i, for k2 + k − j + 1 < i.

Note that wA(e1) < · · · < wB(em) and wB(e1) < · · · < wB(em) in each graph
Gj ∈ G which ensures that all problem instances are cases of ordered edges.

Let Gj ∈ G. Denote by H1, . . . , Hk the k edge-disjoint paths connecting sA
and sB , where Hj′ is the path containing the edge ek2+k+j′ incident to sA,
j′ ∈ {1, . . . , k}. We argue that if A and B rendezvous on a path Hj′ in time
at most kX/2, then j′ = j. First note that A is not able to reach any vertex
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adjacent to sB in time kX/2. Also, j′ < j is not possible for otherwise B would
traverse one of the edges ek2+k−j+2, . . . , ek2+k, each of weight at least kX — a
contradiction. Now, suppose for a contradiction that j′ > j. Then, one of the
agents traverses at least half of the path Hj′ , i.e., it traverses at least k/2 + 1
of its edges. If this agent is A, then clearly rendezvous occurs not earlier than
(k/2+1)X — a contradiction. If this agent is B, then it does not traverse any of
the edges e1, . . . , ejk, since those belong to paths H1, . . . , Hj and we have j′ > j.
Hence, by the definition of wB , we also have rendezvous after more than kX/2
time units, which gives the required contradiction. We have proved that, in Hj ,
rendezvous is obtained before time kX/2 only if it occurs on the path Hj .

Observe that for n large enough it holds TOPT(sA, sB) < 2X for each Gj ∈ G.
To see that, let A traverse the edge ek2+k+j , and let B traverse the remain-
ing edges of Hj , i.e., e(j−1)k+1, e(j−1)k+2, . . . , e(j−1)k+k and ek2+k−j+1. We have
wA(ek2+k+j) = X + Θ(k2) and

wB(ek2+k−j+1) +

k∑

l=1

wB(e(j−1)k+l) = X + k2 + k − j + 1 +

k∑

l=1

((j − 1)k + l)

= X + O(k3).

Since X = k4, we obtain that TOPT(sA, sB) < 2X for n large enough.
Suppose for a contradiction that there exists an algorithm A that guarantees

rendezvous in time Θ(TOPT) and has communication complexity o(log n). Let
C be such a constant that the rendezvous time guaranteed by A is bounded
by CTOPT. We will show that for n > C4, the algorithm A that sends at most
C2 log n bits, where C2 = 3

8 , cannot guarantee rendezvous in time CTOPT, which
will give the desired contradiction.

Note that in each algorithm, and thus in particular in A, if the agent A
receives the same message from B in two different graphs in G, then A must
traverse the same sequence of edges for both graphs.

The number of all possible messages that A might receive using C2 log n bits
is at most 2C2 logn. Observe that 2C2 logn < k

C . Indeed,

C2 =
3

8
=

log n3/4

2 log n
<

log(n/C)

2 log n
<

log(k/C)

log n

implies the required inequality. Thus, there must exist G′, a subset of G, with
at least C + 1 elements such that A traverses the same sequence of edges for all
graphs in G′.

To traverse an edge adjacent to sA from Hi, the agent A requires X + i > X
units of time. In order to traverse any of the remaining edges, A requires to
traverse back the mentioned edge first using X + i > X units of time again.
Hence, during CTOPT < 2CX time, A is able to traverse at most C edges
adjacent to sA. It implies that there must exist an index j such that Gj ∈ G′

and agent A does not traverse an edge from Hj adjacent to sA. It means that A
has not met B in time 2CX > CTOPT, a contradiction. ⊓⊔
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2.3 The case of ordered agents

Now we will present a general solution which achieves Θ(TOPT(sA, sB)) time
without communication for the case of ordered agents. This property allows us
to obtain our asymptotically tight bounds both for communication complexity
of optimal-time rendezvous and for optimal rendezvous time with no communi-
cation. We point out that, unlike in previous cases, the algorithms for the agents
are different, i.e., A and B perform different (asymmetric) actions. We assume
that the algorithm for the agent A (respectively, B) is executed by the agent
whose starting node has smaller (bigger, respectively) identifier. Note that, since
both agents know the graph and both starting nodes, they can correctly decide
on executing an algorithm.

Simple Algorithm Tasks of agent A:

1. wait TA(sA, sB) units of time,
2. go to sB along an arbitrarily chosen shortest path (according to the weight

function wA) from sA to sB , and return to sA along the same path and stop.

Tasks of agent B:

1. wait TB(sA, sB) units of time,
2. go to sA along an arbitrarily chosen shortest path (according to the weight

function wB) from sB to sA and stop.

Lemma 2. For the case of ordered agents, Simple Algorithm guarantees ren-
dezvous in time 6 min{TA(sA, sB), TB(sA, sB)}.

Proof. For sure, A and B will eventually rendezvous, as both of them reach sA
and stay there. Let y be the time point at which the agents rendezvous. Let us
consider agent A. It might meet B while:

1. waiting TA(sA, sB) units of time at sA. In this case y = 2TB(sA, sB) ≤
TA(sA, sB).

2. moving towards sB or on the way back to sA. Clearly y ≤ 3TA(sA, sB). Also,
agent B at time point y is either at sB or is moving from sB to sA. Thus,
y ≤ 2TB(sA, sB).

3. arriving at sA, i.e., rendezvous occurs at sA at the moment when A returns
to sA. Clearly, y ≤ 3TA(sA, sB). As the agents have not met at sA before A
started moving, we have TA(sA, sB) ≤ 2TB(sA, sB). So, y ≤ 6TB(sA, sB).

4. waiting for B at sA after the path traversals. Clearly, y = 2TB(sA, sB). In this
case, as the agents have not met at sB , we have TB(sA, sB) ≤ 2TA(sA, sB).
So, y ≤ 4TA(sA, sB).

⊓⊔

We remark that the constant 6 from Lemma 2 might be reduced to 2
√

2 + 3
if we would allow both agents A and B to wait a little longer in the initial state:√

2TA(sA, sB) and
√

2TB(sA, sB) respectively.
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Lemma 3. In the case of ordered agents we have

min{TA(sA, sB), TB(sA, sB)} ≤ 2TOPT(sA, sB)

Proof. Suppose that both agents rendezvous at x after TOPT(sA, sB) units of
time. If rendezvous does not occur at a node, then with a slight abuse of notation
we write TK(u, x) to denote the time an agent K needs to go from a node u to x.
Suppose without loss of generality that A is a ‘faster’ agent, i.e., wA(e) ≤ wB(e)
for each edge e. This in particular implies that TA(sA, sB) ≥ TB(sA, sB) and
hence it remains to provide the upper bound on TA(sA, sB). Moreover, by first
using the triangle inequality we have TA(sA, sB) ≤ TA(sA, x) + TA(x, sB) ≤
TA(sA, x) + TB(x, sB) ≤ 2TOPT(sA, sB). ⊓⊔

Now, due to Lemmas 2 and 3, we are ready to conclude:

Theorem 5. In the case of ordered agents (case 3) there exists an algorithm
that guarantees rendezvous in time Θ(TOPT(sA, sB)) without performing any
communication. ⊓⊔

3 Rendezvous with no communication

3.1 The case of arbitrary functions

Theorem 6 below gives the upper bound on rendezvous time without communi-
cation. Then, Theorem 7 provides our lower bound for this case.

Theorem 6. There exists an algorithm that without performing any communi-
cation guarantees rendezvous in time O(n ·TOPT(sA, sB)), where n is the number
of nodes of the network.

Proof. We start by giving an algorithm. Its first step in an initialization and the
remaining steps form a loop. Denote V = {v1, . . . , vn}.

1. Let initially x := 1. Let K be the executing agent.
2. For each j ∈ {1, . . . , n} do:

2.1. If TK(sK , vj) ≤ x, then set x′ := TK(sK , vj) and go to vj along a shortest
path. Otherwise, set x′ := 0.

2.2. Wait x− x′ time units at the current node.
2.3. Return to sK along a shortest path. (This step is vacuous if x′ = 0.)
2.4. Wait x− x′ time units.

3. Set x := 2x and return to Step 2.

Let us introduce some notation regarding the above algorithm. We divide the
time into phases, where the p-th phase, p ≥ 0, consists of all time units in which
both agents were performing actions determined in Step 2 for x = 2p. Then, each
phase is further subdivided into stages, where the s-th stage, s ∈ {1, . . . , n}, of
the p-th phase consists of all time units in which both agents were performing
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actions determined in Step 2 for x = 2p and j = s. Note that these definitions
are correct since both agents simultaneously start at time 0.

First observe, by a simple induction on the total number of stages, that at
the beginning of each stage each agent K ∈ {A,B} is present at sK . We now
prove that both agents are guaranteed to rendezvous at a rendezvous node v in
the p-th phase, where 2p ≥ max{TA(sA, v), TB(sB , v)}. Consider the s-th stage
of p-th phase such that vs = v. Since 2p ≥ max{TA(sA, v), TB(sB , v)}, both
agents reach v in at most 2p moves. Due to the waiting time of 2p−TK(sK , v) of
agent K ∈ {A,B} after reaching v, we obtain that both agents are present at v
at the end of the 2p-th time unit of the s-stage in the p-th phase. This completes
the proof of the correctness of our algorithm.

It remains to bound the time in which the agents rendezvous. The du-
ration of the p-th phase is O(n2p). The total number of phases is at most
P = ⌈log max{TA(sA, v), TB(sB , v)}⌉. Thus, the agents rendezvous in time

O(n

P∑

p=1

2p) = O(n2P ) = O (n · max{TA(sA, v), TB(sB , v)}) .

Lemma 1 implies that the agents rendezvous in time O(n · TOPT(sA, sB)) as
required. ⊓⊔

Theorem 7. Any algorithm that without performing any communication guar-
antees rendezvous uses time Ω(n ·TOPT(sA, sB)), where n is the number of nodes
of the network.

Proof. Let us consider the complete bipartite graph G given in the proof of
Theorem 2 with V (G) = {sA, sB , v1, v2, . . . vn} and E = EA ∪ EB , where

EK =
{
{sK , vj}

∣∣ j ∈ {1, 2, . . . n}
}
, K ∈ {A,B}.

Let wA(e) = X for each e ∈ EB and wA({sA, vi}) = 1 for each e ∈ EA, where
X is some sufficiently big integer, say X = n. We will now give a partial definition
of wB , starting with wB(e) = X for each e ∈ EA. This weight functions will be
constructed in such a way that rendezvous at time 1 is possible. Informally, we
will set only one edge in EB to have weight 1 for the agent B while the remaining
edges will have weight X. This is done by analyzing possible moves of the agent
A.

Now, we consider an arbitrary sequence of moves of agent A during the first
n time units. Clearly, after this time, agent A is not able to reach sB . There also
exists an edge {sA, vj} ∈ EA that agent A performed no move along it, i.e., A
did not visit vj . We set wB({sA, vj}) := 1 and wB({sA, vi}) := X for all i 6= j.

It is easy to observe that TOPT(sA, sB) is equal to 1 and this time can be
achieved only by a meeting at vj . However, A and B did not rendezvous during
the first n time units. Thus, there exists no algorithm that guarantees rendezvous
in time o(n · TOPT(sA, sB)). ⊓⊔
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3.2 Lower bound for the case of ordered edges without

communication

Theorem 8. In the case of ordered edges, any algorithm that guarantees ren-
dezvous without performing any communication uses time Ω(

√
n·TOPT(sA, sB)),

where n is the number of nodes of the network.

Proof. We will use the same family of graphs G as constructed in the proof of
Theorem 4; see also Figure 1. Recall that if A and B rendezvous on a path Hj′

in time at most kX/2, then j′ = j and TOPT = O(X) for each Gj ∈ G.

Note that, the agent A has the same input for each graph in G since wA is the
same for all graphs in G. Thus, for any algorithm A, the agent A traverses the
same sequence of edges for each graph in G. Moreover, rendezvous time bounded
by kX/2 (see the proof of Theorem 4) implies that there exist edges adjacent to
sA that A does not traverse. In other words, there exists j ∈ {1, . . . , k} such that
A traverses no edge of Hj . Therefore, we obtain that A and B cannot rendezvous
in Gj in time less than kX/2. Since k = Θ(

√
n) and rendezvous can be achieved

in time O(X) for each graph in G the proof has been completed. ⊓⊔

4 Final remarks

It seems that the most interesting and challenging among the analyzed cases
is the one of ordered edges without communication. There is still a substantial
gap between the lower and the upper bounds we have provided and we leave
it an interesting open question whether there exists an algorithm with a better
approximation ratio than that of O(nTOPT). It is also intersting if the upper
bound M on the weights of the edges affects the communication complexity for
arbitrary functions and the cases of ordered edges.

Another interesting research direction is to analyze scenarios in which we
allow agents to communicate at any time. To point out an advantage that the
agents may gain in such case, note that the agents can rendezvous very quickly
in graphs that we used for a lower bound in the proof of the Theorem 4. Indeed,
transmitting just one bit in the moment correlated with the index of the preferred
(optimal for rendezvous) path would help the agents to learn which path they
should follow.
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