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Motivations

In actuarial or financial sciences, quantities of interest often involve sums of random variables. For example, in the individual risk model, the total amount of claims on a portfolio of insurance contracts is described by the sum of all claims on the individual policies. Consequently, it is natural to aim at estimating the density of sums of random variables, and estimating these directly from observations of the variables. A solution to this question is proposed in [START_REF] Chesneau | Fast nonparametric estimation for convolutions of densities[END_REF]. But the measures associated to the variables are also often not so precise, and clearly, measurement errors can occur. Thus, we consider the model

Y j = X j + ε j , j = 1, . . . , n, (1) 
where the Y j 's are i.i.d. with density f Y , X j 's are i.i.d. with density f and ε j 's i.i.d. with density f ε . We assume that X j and ε j are independent, and that f is unknown whereas, in a first step, f ε is known. Note that our assumptions imply that f Y (u) = (f ⋆ f ε )(u), where (h ⋆ k)(t) = h(tx)k(x)dx denotes the convolution product. Our aim is to estimate the ℓ-fold convolution of f for any integer ℓ ≥ 1, i.e. to estimate g ℓ defined by

(2)

g ℓ (u) =(f ⋆ • • • ⋆ f ) ℓ times (u).
ϕ 2 = |ϕ(u)| 2 du, by ϕ, ψ the scalar product ϕ, ψ = ϕ(u) ψ(u)du. We recall the inverse Fourier formula ϕ(x) = (2π) -1 e iux ϕ * (u)du, and that, for the convolution product (ϕ ⋆ ψ)(t) = ϕ(tx)ψ(x)dx, we have by Fourier transform (ϕ ⋆ ψ) * (u) = ϕ * (u)ψ * (u). Lastly ϕ, ψ = (2π) -1 ϕ * , ψ * .

Moreover, we work all along the paper under the assumption (A1) f * ε (u) = 0, ∀u ∈ R. 2.2. Estimators when the noise density is known. We define now our estimators, considering that the observations are drawn from model (1) and assuming that f ε is known and satisfies (A1).

The idea for this construction is based on the following relation. First under independence of X j and ε j in model (1), we have

f Y = f ⋆ f ε , which implies f * Y = f * f * ε .
Since in addition g * ℓ (u) = (f * (u)) ℓ , we have, using (A1),

g ℓ (x) = 1 2π g * ℓ (u)e iux du = 1 2π (f * (u)) ℓ e iux du = 1 2π f * Y (u) f * ε (u) ℓ e iux du.
Then f * Y can easily be estimated by its empirical counterpart

f * Y (u) = 1 n n j=1
e -iuY j .

But a pure plug-in approach leads to integrability problems, this is why a cutoff has to be introduced, which can be seen as a truncated version of the empirical estimator: f * Y (u)1 I [-πm,πm] (u). Thus, we propose the estimator, ∀m ∈ N,

ĝℓ,m (x) = 1 2π πm -πm f * Y (u) f * ε (u) ℓ e iux du. (3) 
Naturally, the performance of ĝℓ,m depends on the choice of m. We make ĝℓ,m adaptive by considering the estimator: ĝℓ, m, where m is the integer defined by (4) m = arg min m∈{1...,n} ĝℓ,m 2 + pen ℓ (m) .

where, for numerical constant ϑ specified later,

(5) pen ℓ (m) = ϑ2 2ℓ-1 λ 2ℓ ℓ (m, ∆ ℓ (m))

∆ ℓ (m) n ℓ , ∆ ℓ (m) = 1 2π πm -πm 1 |f * ε (u)| 2ℓ du and (6) λ ℓ (m, D) = max 2 -1/ℓ+1 log(1 + m 2 D)) 1/2 , 2 2-1/(2ℓ) √ n log(1 + m 2 D) .
2.3. Risk bound for ĝℓ,m . Now we can prove the following risk bound for the MISE, a decomposition which explains our adaptive strategy and will allow to discuss rates.

Proposition 2.1. Consider data from model (1), g ℓ given by (2), and assume that (A1) is fulfilled and f is square integrable. Let ĝℓ,m be defined by (3). Then all m in N, we have

(7) E( ĝℓ,m -g ℓ 2 ) ≤ 1 2π |u|≥πm |f * (u)| 2ℓ du + 2 ℓ -1 2π ℓ k=1 ℓ k C k n k πm -πm |f * (u)| 2(ℓ-k) |f * ε (u)| 2k du,
with C k = (72k) 2k (2k/(2k -1)) k .

Inequality (7) deserves two comments. First, we note that this bound is non asymptotic, and so is the adaptive strategy inspired from it. Secondly, we can see the usual antagonism between the bias term (π) -1 |u|≥πm |f * (u)| 2ℓ du which is smaller for large m and the variance term which gets larger when m increases. Now, we can see how Inequality (7) allows us to explain the definition of the model selection given in (4). The bias term can also be written

g ℓ 2 -g ℓ,m 2 with g * ℓ,m (u) = g * ℓ (u)1 I [-πm,πm] (u); as g ℓ 2 is a constant, only -g ℓ,m
2 is estimated, byĝℓ,m 2 . Usually, the variance is replaced by its explicit bound, given here by the second right-hand-side term of (7). It is noteworthy that here, the variance bound is the sum of ℓ terms and only the last term is involved in the penalty. This is rather unexpected and specific to our particular setting. These considerations explain the definition of (4) and the selection procedure.

2.4. Rates of convergence for ĝℓ,m . Now, from an asymptotic point of view, we can investigate the rates of convergence of our estimators according to the smoothness assumptions on f and f ε . The following balls of function spaces are considered, for positive α, β,

A(β, L) = f ∈ L 1 ∩ L 2 (R); |f * (u)| 2 exp(2|u| β )du ≤ L, sup u∈R |f * (u)| 2 exp(2|u| β ) ≤ L and S(α, L) = f ∈ L 1 ∩ L 2 (R); |f * (u)| 2 (1 + u 2 ) α du ≤ L, sup u∈R |f * (u)| 2 (1 + u 2 ) α ≤ L .
As the noise density is assumed to be known, regularity assumptions on f * ε are standardly formulated in the following way, for positive a, b:

[OS(a) ] f * ε is OS(a) if ∀u ∈ R, c ε (1 + u 2 ) a ≤ |f * ε (u)| 2 ≤ C ε (1 + u 2 ) a . [SS(b) ] f * ε is SS(b) if ∀u ∈ R, c ε e -2|u| b ≤ |f * ε (u)| 2 ≤ C ε e -2|u| b .
Note that the lower bound for f * ε is the one used to obtain upper bound of the risk. These classical sets allow to compute rates, depending on the types of f and f ε and to get the following consequence of Proposition 2.1.

Corollary 2.1. Under the assumptions of Proposition 2.1, the following table exhibits the values of m and ϕ n such that ϕ n is the sharpest rates of convergence satisfying "there exists a constant

C * ℓ > 0 such that E( ĝℓ,m -g ℓ 2 ) ≤ C * ℓ ϕ n "
, according some smoothness assumptions on f and f ε .

f ∈ A(β, L), f ε OS(a) f ∈ S(α, L), f ε SS(b) f ∈ S(α, L), f ε OS(a) m opt 1 π log(n) 2ℓ 1/β 1 π log(n) 4ℓ 1/b n k 0 /(2ak 0 +2αk 0 +1) ϕ n 1 n (log(n)) -4ℓα/b n -2αℓ/(2a+2α+1) ∨ n -1
where k 0 is the integer such that a k 0 -1 < 2α < a k 0 where a 0 = 0,

a k = (2ak + 1)/(ℓ -k), k = 1, . . . , ℓ -1.
The parametric rate of convergence 1/n is attained for the case f ∈ A(β, L), f ε OS(a), and in the case f ∈ S(α, L), f ε OS(a) when ℓ > 1+ (a+ 1/2)/α. To the best of our knowledge, Theorem 2.1 is the first result showing (sharp) rates of convergence for an estimator in the context of (1) for different types of smoothness on f and f ε . The results correspond to classical deconvolution rates for ℓ = 1 (see [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF]). Moreover, this completes and improves the rate of convergence determined in (Chesneau and Navarro, 2014, Proposition 5.1).

The case where both f and f ε are super smooth is not detailed. For ℓ = 1, the rates corresponding to this case, are implicit solutions of optimization equations (see [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias[END_REF]) and recursive formula are given in [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF]. Explicit polynomial rates can be obtained, and also rates faster than logarithmic but slower than polynomial. We do not investigate them here for sake of conciseness. We can emphasize that the function f being unknown, its regularity is also unknown, and the asymptotic optimal choice of m can not be done in practice. This is what makes an automatic choice of m mandatory to obtain a complete estimation procedure. The automatic resulting trade-off avoids tedious computations of asymptotic rates and perform at best for all sample sizes. 2.5. Risk bound on the adaptive estimator ĝℓ, m. Theorem 2.1 determines risk bound for the MISE of the estimator ĝℓ, m.

Theorem 2.1. Consider Model (1) under Assumption (A1). Let ĝℓ, m be defined by ( 3)-( 4) and define

(8) V ℓ (m) := 2 ℓ -1 π ℓ k=1 ℓ k C k 1 n k πm -πm |f * (u)| 2(ℓ-k) |f * ε (u)| 2k du.
Then, there exists ϑ 0 such that for any ϑ ≥ ϑ 0 , we have

E( ĝℓ, m -g ℓ 2 ) ≤ 2 2ℓ min m∈{1,...,n} g -g ℓ 2 + V ℓ (m) + pen ℓ (m) + c ℓ n ℓ
where c ℓ is a constant independent of n. Note that ϑ 0 = 1 suits.

The result in Theorem 2.1 shows that the adaptive estimator ĝℓ, m performs an automatic trade-off between the bias and variance terms described in Proposition 2.1. Moreover, the bound on the risk given in Theorem 2.1 is non asymptotic, and holds for all sample size.

As a consequence, we can derive asymptotic results. Table 1 exhibits the sharpest rate of convergence ϕ n satisfying "there exists a constant C * * ℓ > 0 such that E( ĝℓ, mg ℓ 2 ) ≤ C * * ℓ ϕ n ", depending on smoothness assumptions on f and f ε . Theorem 2.1 implies thus that g ℓ, m attains similar rates of convergence to g ℓ,m with automatic "optimal" choices for m. The only difference is possibly a logarithmic term.

f ∈ A(β, L), f ε OS(a) f ∈ S(α, L), f ε SS(b) f ∈ S(α, L), f ε OS(a) ϕ n log(n)/n (log(n)) -4ℓα/b (n/ log(n)) -2αℓ/(2a+2α+1) ∨ (log(n)/n)

Estimation with unknown noise density

We consider now that f ε is unknown, but still satisfying (A1). For the problem to be identifiable, we assume that we have at hand a sample ε ′ 1 , . . . , ε ′ M of i.i.d. replications of ε 1 , independent of the first sample.

3.1. Risk bound for fixed m. We have to replace in (3) the noise characteristic function f * ε by an estimator, and to prevent it from getting too small in the denominator. Thus, we propose the estimator, ∀m ∈ N,

gℓ,m (x) = 1 2π πm -πm f * Y (u) f * ε (u) ℓ e iux du, (9) 
where still f * Y (u) = n -1 n j=1 e -iuY j and now

(10) fε (u) = f * ε (u) if f * ε (u) ≥ k M (u) k M (u) otherwise where f * ε (u) = 1 M M j=1 e -iuε ′ j , and (11) 
k M (u) = κs M (u)M -1/2 .
The definition of s M is simply 1 when considering one estimator in the collection, and more elaborated to deal with the adaptive case. To study the risk bound of the estimator, we recall the following key Lemma (see [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF], [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] and [START_REF] Kappus | Adaptive nonparametric estimation for Lévy processes observed at low frequency[END_REF]).

Lemma 3.1. Assume that (A1) holds. Let s M (u) ≡ 1 in (11) for fε defined by (10), then for all p ≥ 1, there exists a constant τ p such that, ∀u ∈ R,

E 1 f * ε (u) - 1 f * ε (u) 2p ≤ τ p 1 |f * ε (u)| 2p ∧ (k M (u)) 2p |f * ε (u)| 4p .
To study the MISE of the gℓ,m , we write gℓ,mg ℓ 2 = g ℓg ℓ,m 2 + gℓ,mg ℓ,m 2 , which starts the bias-variance decomposition. Then we can split the integrated variance term of gℓ,m into three terms

gℓ,m -g ℓ,m 2 = 1 2π πm -πm f * Y (u) f * ε (u) - f * Y (u) f * ε (u) + f * Y (u) f * ε (u) ℓ - f * Y (u) f * ε (u) ℓ 2 du = 1 2π πm -πm ℓ k=1 ℓ k f * Y (u) f * ε (u) ℓ-k f * Y (u) f * ε (u) - f * Y (u) f * ε (u) k 2 du ≤ 2 ℓ -1 2π πm -πm ℓ k=1 ℓ k f * Y (u) f * ε (u) 2(ℓ-k) f * Y (u) f * ε (u) - f * Y (u) f * ε (u) 2k du ≤ 2 ℓ 2π (T 1 + T 2 + T 3 )
with

T 1 = πm -πm ℓ k=1 ℓ k 3 2k-1 f * Y (u) f * ε (u) 2(ℓ-k) f * Y (u) -f * Y (u) f * ε (u) 2k du T 2 = πm -πm ℓ k=1 ℓ k 3 2k-1 f * Y (u) f * ε (u) 2(ℓ-k) ( f * Y (u) -f * Y (u)) 1 f * ε (u) - 1 f * ε (u) 2k du T 3 = πm -πm ℓ k=1 ℓ k 3 2k-1 f * Y (u) f * ε (u) 2(ℓ-k) f * Y (u) 1 f * ε (u) - 1 f * ε (u) 2k du.
Clearly, T 1 is the term corresponding to known f * ε and we have E(T 1 ) ≤ 3 2ℓ-1 V ℓ . Using the first bound in Lemma 3.1 and the independence of the samples, we have also E(T 2 ) ≤ 3 2ℓ-1 V ℓ . The novelty comes from T 3 , where we use the second bound given in Lemma 3.1:

E(T 3 ) ≤ ℓ k=1 ℓ k 3 2k-1 πm -πm |f * Y (u)| 2ℓ |f * ε (u)| 2(ℓ-k) τ k M -k |f * ε (u)| 4k du ≤ ℓ k=1 ℓ k 3 2k-1 τ k 1 M k πm -πm |f * Y (u)| 2ℓ |f * ε (u)| 2(ℓ+k) du = ℓ k=1 ℓ k 3 2k-1 τ k 1 M k πm -πm |f * (u)| 2ℓ |f * ε (u)| 2k du := W ℓ . (12) 
Therefore, the following result holds.

Proposition 3.1. Consider model (1) under (A1). Let gℓ,m be defined by ( 9)-( 11) with s M (u) ≡ 1. Then there exists constants

C * * ℓ , C * * * ℓ > 0 (independent of n) such that E( gℓ,m -g ℓ 2 ) ≤ 1 π |u|≥πm |f * (u)| 2ℓ du + C * * ℓ V ℓ + C * * * ℓ W ℓ ,
where V ℓ is defined by ( 8) and W ℓ by ( 12).

We can see that if M ≥ n, we have

1 M k πm -πm |f * (u)| 2ℓ |f * ε (u)| 2k du ≤ 1 n k πm -πm |f * (u)| 2(ℓ-k) |f * ε (u)| 2k du and thus W ℓ ≤ C (4) ℓ V ℓ .
Thus, for M ≥ n, the risk of gℓ,m has the same order as the risk of ĝℓ,m and the estimation of the noise characteristic function does not modify the rate of the estimator. The results given in Corollary 2.1 are thus still valid. Obviously, if the noise sample size M is smaller than n, it may imply deteriorations of the rates. Moreover, the above result is a generalization of [START_REF] Neumann | On the effect of estimating the error density in nonparametric deconvolution[END_REF] and [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], which both correspond to the case ℓ = 1.

3.2. Adaptive procedure. Adaptation estimation here is a difficult task. We apply the methodology recently proposed by [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF] in the context ℓ = 1, improving the results of [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]. In particular the estimator f * ε is now taken with s M in (11) defined as follows. Let for a given δ > 0,

∀u ∈ R, w(u) = (log(e + |u|)) -1 2 -δ ,
originally introduced in Neumann and Reiss ( 2009), and f * ε given by ( 10)-( 11) and by ( 13)

s M (u) = (log M ) 1/2 w -1 (u).
With this threshold, the bound given in Proposition 3.1 becomes

E( gℓ,m -g ℓ 2 ) ≤ 1 π |u|≥πm |f * (u)| 2ℓ du + V ℓ with (14) V ℓ = C * * ℓ V ℓ + C * * * * ℓ ℓ k=1 ℓ k 3 2k-1 τ k log k (M ) M k πm -πm w -2k (u)|f * (u)| 2ℓ |f * ε (u)| 2k du.
Clearly, the definition of s M here implies logarithmic loss if we compare the last term above with W ℓ given by ( 12). Then using k M defined by ( 11) and ( 13) and considering gℓ,m defined by ( 9)-( 10), we propose the following adaptive strategy. We set first

∆ℓ (m) = 1 2π πm -πm w(u) -2ℓ f * ε (u) 2ℓ du and ∆f ℓ (m) = 1 2π πm -πm w(u) -2ℓ | f * Y (u)| 2ℓ f * ε (u) 4ℓ du,
as estimators of ∆ ℓ (m) given by ( 5) and of

∆ f ℓ (m) = 1 2π πm -πm |f * (u)| 2ℓ |f * ε (u)| 2ℓ du.
We can now define the stochastic penalty associated with the adaptive procedure

qen ℓ (m) = qen ℓ,1 (m) + qen ℓ,2 (m) = 2 2ℓ+1 λ 2ℓ ℓ (m, ∆ℓ (m)) ∆ℓ (m) n ℓ + 2 2ℓ+1 κ 2ℓ log ℓ (M m) ∆f ℓ (m) M ℓ which estimates the deterministic quantities qen ℓ (m) = qen ℓ,1 (m) + qen ℓ,2 (m) = 2 2ℓ+1 λ 2ℓ ℓ (m, ∆ ℓ (m)) ∆ ℓ (m) n ℓ + 2 2ℓ+1 κ 2 log ℓ (M m) ∆ f ℓ (m)
M ℓ where the weights λ ℓ (m, D) are defined by ( 6). Then, we select the cutoff parameter m as a minimizer of the following penalized criterion

(15) m = arg min m∈{1,...,n} -gℓ,m 2 + qen ℓ (m) .
Theorem 3.1. Consider Model (1) under (A1), associated with an independent noise sample ε ′ 1 , . . . , ε ′ M . Let the estimator gℓ, m be defined by ( 9) and ( 15). Then there are positive constants C ad and C such that

(16) E g ℓ -gℓ, m 2 ≤ C ad inf m∈Mn g ℓ -g ℓ,m 2 + V ℓ (m) + qen ℓ (m) + C n ℓ + C M ℓ ,
where V ℓ is defined by ( 14).

This result is a generalization of [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF], which corresponds to the case ℓ = 1. As in the known density case, we do not use the whole variance for penalization, but only the last terms. Moreover, the final estimator automatically reaches the bias-variance compromise, up to logarithmic terms. 

Illustration

We now illustrate the theoretical results by a simulation study within the context described in Section 2 and Section 3. That is, we consider the problem of estimating the density g ℓ , emphasizing the case ℓ = 2, for both known and unknown types of noises. All simulations have been implemented under Matlab.

The performance of the proposed method is studied for four sets of test distributions for X j representing different degrees of smoothness (see Figure 1),

(1) Kurtotic distribution:

2 3 N (0, 1) + 1 3 N (0, (1/10) 2 ), (2) Standard normal distribution: N (0, 1), (3) Uniform distribution: U (-1, 1), (4) Claw distribution: 1 2 N (0, 1) + 4 l=0 N l/2 -1, (1/2) 2 .
Note that the two Gaussian mixture densities are taken from [START_REF] Marron | Exact Mean Integrated Squared Error[END_REF].

We consider two types of error density f ε , with the same variance σ 2 ε = 0.25. The first one is Laplace distribution, with f * ε OS(2), and the second one is the Gaussian distribution with f * ε SS(2).

(a) Laplace error:

f ε (x) = 1 2σε exp -|x| σε , f * ε (x) = 1 1+σ 2 ε x 2 . (b) Gaussian error: f ε (x) = 1 σε √ 2π exp -x 2 2σ 2 ε , f * ε (x) = exp -σ 2 ε x 2 2 ,
In the case of an entirely known noise distribution, the constant ϑ in ( 5) is set to 1.8 for all the tests and in the unknown case the penalties are chosen according to Theorem 3.1. We propose the following penalty:

qen ℓ (m) = κ 1 λ 2ℓ ℓ (m, ∆ℓ (m)) ∆ℓ (m) n ℓ + κ 2 κ 2ℓ log ℓ (M m) ∆f ℓ (m) M ℓ
with the associated constants penalties κ 1 = κ 2 = 1 and κ = 1.8. In both cases, the normalized sinc kernel was used throughout all experiments. As in [START_REF] Chesneau | Fast nonparametric estimation for convolutions of densities[END_REF], the estimators proposed in this paper are well suited for FFT-based method. Thus, the resulting estimators ĝℓ, m and gℓ, m are simple to implement and fast which allows us to perform the penalized criterion in a reasonable time. For numerical implementation, we consider an interval [a, b] that covers the range of the data and the density estimates were evaluated at M = 2 r equally spaced points t i = a + (ba)/M , i = 0, 1, . . . , M -1, between a and b, with r = 8, b = -a = 5 and M is the number of discretization points. In each case, the grid of m values that we have considered consisted of 50 values from 0.5 m0 to 1.1 m0 where m0 = n -ℓ/5 denotes a pilot bandwidth (see e.g. [START_REF] Silverman | Density estimation: for statistics and data analysis[END_REF]). In order to illustrate Theorem 2.1, we study the influence of the noise type on the numerical performances of the proposed estimator. For each density, samples of size n = 1000 were generated, with aim to estimate g ℓ from X 1 , . . . , X n drawn from any of the test densities. The results are depicted in Figure 2 and Figure 3 for Laplace and Gaussian noise respectively. Figures 23show the results of the numerical simulation of our adaptive estimator ĝℓ,m . Figure 4(a) contains a plot of the penalized criterion function versus the kernel bandwidth m and Figure 4(b) the estimated MISE as a function of m. We give this plot for kurtotic distribution and Laplace noise only, but the behaviour is the same in all the other cases. It is clear from Figure 4(a), that the value of m is the unambiguous minimizer ofĝℓ,m

2 + pen ℓ (m). We also see that m provides a result close to m MISE : in the Laplace case, for the Kurtotic density, the bandwidth which minimizes MISE(m) in this case is m MISE = 0.1306 and m = 0.1257. This holds true for all test densities. In practice, the minimum of the MISE is close to the minimum of the penalized loss function, thus supporting the choice dictated by our theoretical procedure. Therefore, the proposed estimator provides effective results for the four test densities.

We also compare the performance of ĝℓ, m with that of gℓ, m. For each density, samples with size n = 1000 were generated and the MISE was approximated as an average of the Integrated Squared Error over 100 replications. Table 2 presents the MISE from 100 repetitions for the two [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], estimating the characteristic function of the noise reduces the risk compared to knowing it. Indeed, for virtually all cases, gℓ, m consistently showed lower risk than ĝℓ, m, with the exception of the Gaussian density for which ĝℓ, m performs slightly better. 

g * ℓ,m (u) = g * ℓ (u)1 [-πm,πm] (u) = (f * (u)) ℓ 1 [-πm,πm] (u) = f * Y (u) f ε (u) ℓ 1 [-πm,πm] (u).
The support of (g ℓg ℓ,m ) * being [-πm, πm] c , disjoint from the support of (g ℓ,mĝℓ,m ) * , we get

E( ĝℓ,m -g ℓ 2 ) = g ℓ -g ℓ,m 2 + E( g ℓ,m -ĝℓ,m 2 ). ( 17 
)
The Parseval identity yields

g ℓ -g ℓ,m 2 = 1 2π |u|≥πm |g * ℓ (u)| 2 du = 1 2π |u|≥πm |f * (u)| 2ℓ du. ( 18 
)
The same argument gives

E( g ℓ,m -ĝℓ,m 2 ) = 1 2π πm -πm E |( f * Y (u)) ℓ -(f * Y (u)) ℓ | 2 |f * ε (u)| 2ℓ
du.

Using the binomial theorem and the inequality

| m i=1 b i a i | 2 ≤ ( m i=1 |b i |) m i=1 |b i ||a i | 2 , we get E |( f * Y (u)) ℓ -(f * Y (u)) ℓ | 2 = E |( f * Y (u) -f * Y (u) + f * Y (u)) ℓ -(f * Y (u)) ℓ | 2 = E   ℓ k=1 ℓ k ( f * Y (u) -f * Y (u)) k (f * Y (u)) ℓ-k 2   ≤ (2 ℓ -1) ℓ k=1 ℓ k E | f * Y (u) -f * Y (u)| 2k |f * Y (u)| 2(ℓ-k) .
The Marcinkiewicz & Zygmund Inequality inequality applied to the n i.i.d. random variables U 1 , . . . , U n with U j = e -iuY j -E(e -iuY 1 ), |U j | ≤ 2 and the exponent p = 2k (see Appendix) yields

E | f * Y (u) -f * Y (u)| 2k ≤ C k 1 n k , with C k = (72k) 2k (2k/(2k -1)) k . Therefore E |( f * Y (u)) ℓ -(f * Y (u)) ℓ | 2 ≤ (2 ℓ -1) ℓ k=1 ℓ k C k 1 n k |f * Y (u)| 2(ℓ-k) . Since f * Y (u) = f * (u)f * ε (u), we obtain E( g ℓ,m -ĝℓ,m 2 ) ≤ 2 ℓ -1 2π ℓ k=1 ℓ k C k 1 n k πm -πm |f * (u)| 2(ℓ-k) |f * ε (u)| 2k du. (19) 
Putting ( 17), ( 18) and ( 19) together, we get the desired result:

E( ĝℓ,m -g ℓ 2 ) ≤ 1 2π |u|≥πm |f * (u)| 2ℓ du + 2 ℓ -1 2π ℓ k=1 ℓ k C k 1 n k πm -πm |f * (u)| 2(ℓ-k) |f * ε (u)| 2k du.

Proof of Corollary 2.1.

Case f ∈ A(β, L) and f ε OS(a). The bias term is bounded by

L ℓ e -2ℓ(πm) β since |u|≥πm |f * (u)| 2ℓ du = |u|≥πm |f * (u)| 2 e -2|u| β |f * (u)| 2(ℓ-1) e 2(ℓ-1)|u| β e -2ℓ|u| β du ≤ L ℓ e -2ℓ(πm) β
All the terms containing powers of |f * | in the numerator are integrable as f ε is ordinary smooth. Therefore they are of order less than 1/n. Then we have the general bound

E( ĝℓ,m -g ℓ 2 ) ≤ L ℓ e -2ℓ(πm) β + 1 n ℓ πm -πm du |f ε (u)| 2ℓ + C n where πm -πm du/|f ε (u)| 2ℓ = O(m 2ℓa+1 ). Choosing m = π -1 (log(n)/(2ℓ)) 1/β gives the rate 1/n.
Case f ∈ S(α, L) and f ε SS(b). Applying Lemma 6.2, we obtain

E( ĝℓ,m -g ℓ 2 ) ≤ L ℓ (πm) -2ℓα + ℓ k=1 ℓ k C k L ℓ-k c ε n k πm -πm (1 + u 2 ) -(ℓ-k) e 2k|u| b du ≤ L ℓ (πm) -2ℓα + ℓ-1 k=1 ℓ k C k L ℓ-k c ε n k e 2k(πm) b (1 + u 2 ) -1 du + C 1 c ε n k m -b e 2ℓ(πm) b .
The choice m = π -1 (log(n)/(4ℓ)) 1/b makes all variance terms of order at most O(1/ √ n), so that it implies a rate (log(n)) -4ℓα/b , which is logarithmic, but faster when ℓ increases.

Case f ∈ S(α, L), f ε OS(a).

In this case, there exists a constant K ℓ > 0 such that

E( ĝℓ,m -g ℓ 2 ) ≤ K ℓ m -2αℓ + ℓ-1 k=1 m (2ak-2α(ℓ-k)+1) + log(m) 1 I 2ak-2α(ℓ-k)+1=0 n k + m 2aℓ+1 n ℓ .
Then α must be compared to the increasing sequence a k = (2ak + 1)/(ℓk).

First case: 2α < a 1 . Then the trade-off between m -2αℓ and m 2a-2α(ℓ-1)+1 /n implies the choice m opt = n 1/(2a+2α+1) and the rate n -2αℓ/(2a+2α+1) , where 2αℓ/(2a + 2α + 1) ∈ (0, 1). In this situation, the terms following have orders

ℓ-1 k=2 m 2ak-2α(ℓ-k)+1 opt n k + m 2aℓ+1 opt n ℓ
and we notice that

m 2ak-2α(ℓ-k)+1 opt n k = n 2ak-2α(ℓ-k)+1 2a+2α+1 -k = n -2αℓ-k+1 2a+2α+1 ≤ n -2αℓ 2a+2α+1 since k ≥ 2.
Therefore the rate is of order n -2αℓ/(2a+2α+1) . Notice that making compromise using another variance term can be checked to give larger choice of m and thus worse rate, when inserted in the first variance term. Note also that the resulting rate is the usual rate of deconvolution to the power ℓ.

Second case: 2α > a 1 . The term corresponding to k = 1 is of order O(1/n). Let k 0 ≥ 2 be such that a k 0 -1 < 2α < a k 0 . Then the risk bound is E( ĝℓ,m -g ℓ 2 ) ≤ C   m -2αℓ + 1 n + • • • + 1 n k 0 -1 + ℓ-1 k=k 0 m (2ak-2α(ℓ-k)+1) n k + m 2aℓ+1 n ℓ   .
Then the compromise is made between -2αℓ and m 2ak 0 -2α(ℓ-k 0 )+1 /n k 0 and implies the choice m opt = n k 0 /(2ak 0 +2αk 0 +1) and the rate n -2αℓk 0 /(2ak 0 +2αk 0 +1) . But clearly

- 2αℓk 0 2ak 0 + 2αk 0 + 1 ≤ -1 ⇔ 2α ≥ 2a ℓ -1 + k 0 -ℓ + 1 k 0 (ℓ -1) = 2a ℓ -1 + 1 ℓ -1 - ℓ -1 k 0 (ℓ -1)
and this last condition is fulfilled in our present case so that the rate is smaller than 1/n.

In the same way, we can check that plugging the above m opt in the other terms let them less than 1/n. Namely

m 2aℓ+1 opt n ℓ = n - 2αℓk 0 +ℓ-k 0 2ak 0 +2αk 0 +1 ≤ n -1 , m 2ak-2α(ℓ-k)+1 opt n k = n - 2αk 0 ℓ+k-k 0 2ak 0 +2αk 0 +1 ≤ n -1 , for k = k 0 + j, j ≥ 1.
Consequently, we have

if 2α > 2a ℓ -1 + 1 ℓ -1 , then E( ĝℓ,m -g ℓ 2 ) ≤ Cn -1 .
Gathering both cases, we get that the rate for f ∈ S(α, L), f ε OS(a) is n -2αℓ/(2a+2α+1) ∨ n -1 . 5.3. Proof of Theorem 2.1. The result of Proposition 2.1 can be written

(20) E( ĝℓ,m -g ℓ 2 ) ≤ g ℓ -g ℓ,m 2 + V ℓ (m),
where V ℓ (m) is defined by ( 8). Let us define the oracle

m ⋆ = arg min m∈Mn -g ℓ,m 2 + V ℓ (m) + pen(m)
and note that, since g ℓg ℓ,m 2 = g ℓ 2g ℓ,m 2 , we also have

m ⋆ = arg min m∈Mn g ℓ -g ℓ,m 2 + V ℓ (m) + pen(m) .
Now, we start by writing that ( 21)

g ℓ -ĝℓ, m 2 ≤ 2 g ℓ -ĝℓ,m ⋆ 2 + 2 ĝℓ,m ⋆ -ĝℓ, m 2 . i) We consider the random set Ω = { m ≤ m ⋆ }, on which it holds that (22) ĝℓ,m ⋆ -ĝℓ, m 2 1 I Ω = ( ĝℓ,m ⋆ 2 -ĝℓ, m 2 )1 I Ω .
Now, the definition of m implies that

(23) -ĝℓ, m 2 + pen ℓ ( m) ≤ -ĝℓ,m ⋆ 2 + pen ℓ (m ⋆ ),
and thus

ĝℓ,m ⋆ 2 -ĝℓ, m 2 ≤ pen ℓ (m ⋆ ) -pen ℓ ( m) ≤ pen ℓ (m ⋆ ). (24)
Then, ( 22) and ( 24) imply ĝℓ,m ⋆ĝℓ, m 2 1 I Ω ≤ pen ℓ (m ⋆ ). Plugging this in ( 21) yields

E g ℓ -ĝℓ, m 2 1 I Ω ≤ 2E( g ℓ -ĝℓ,m ⋆ 2 ) + 2pen ℓ (m ⋆ ) ≤ 2( g ℓ -g ℓ,m ⋆ 2 + V ℓ (m ⋆ )) + 2pen ℓ (m ⋆ ) with (20), = 2 min m∈Mn g ℓ -g ℓ,m 2 + V ℓ (m) + pen ℓ (m) by definition of m ⋆ .
Thus we have

(25) E g ℓ -ĝℓ, m 2 1 I Ω ≤ 4 min m∈Mn g ℓ -g ℓ,m 2 + V ℓ (m) + pen ℓ (m) ,
which ends step i).

ii) Now, we study the bound on Ω c . Let us define, for k > m

pen ℓ (m, k) = 2 2ℓ λ ℓ (m, k) (∆ ℓ (k) -∆ ℓ (m)), λ ℓ (m, k) = max 2 2ℓ-1 log(1 + (k -m) 2 (∆ ℓ (k) -∆ ℓ (m)) ℓ , 2 4ℓ-1 n ℓ log(1 + (k -m) 2 (∆ ℓ (k) -∆ ℓ (m)) 2ℓ . First we write ĝℓ,m ⋆ -ĝℓ, m 2 1 I Ω c = ĝℓ,m ⋆ -ĝℓ, m 2 -2 2ℓ-1 g ℓ, m -g ℓ,m ⋆ 2 -pen ℓ (m ⋆ , m) 1 I Ω c + 2 2ℓ-1 g ℓ, m -g ℓ,m ⋆ 2 + pen ℓ (m ⋆ , m) 1 I Ω c ≤ sup k≥m ⋆ ĝℓ,m ⋆ -ĝℓ,k 2 -2 2ℓ-1 g ℓ,k -g ℓ,m ⋆ 2 -pen ℓ (m ⋆ , k) + 1 I Ω c +2 2ℓ-1 g ℓ -g ℓ,m ⋆ 2 + k≥m ⋆ pen ℓ (m ⋆ , k)1 I k= m. (26) Now, Inequality (23) writes 1 2 pen ℓ ( m) ≤ ĝℓ, m 2 -ĝℓ,m ⋆ 2 + pen ℓ (m ⋆ ) - 1 2 pen ℓ ( m) and we notice that, if k = m > m ⋆ , then ĝℓ, m 2 -ĝℓ,m ⋆ 2 = ĝℓ, m -ĝℓ,m ⋆ 2 and pen ℓ (m ⋆ , k) ≤ 2pen ℓ (k), so that 1 4 pen ℓ (m ⋆ , k) ≤ ĝℓ,k -ĝℓ,m ⋆ 2 - 1 4 pen ℓ (m, k) + pen ℓ (m ⋆ ) + 1 4 pen ℓ (m, k) - 1 2 pen ℓ (k) ≤ ĝℓ,k -ĝℓ,m ⋆ 2 - 1 4 pen ℓ (m, k) -2 2ℓ-1 g ℓ,m ⋆ -g ℓ,k 2 +pen ℓ (m ⋆ ) + 2 2ℓ-1 g ℓ,m ⋆ -g ℓ,k 2 ≤ sup k≥m ⋆ ĝℓ,k -ĝℓ,m ⋆ 2 - 1 4 pen ℓ (m, k) -2 2ℓ-1 g ℓ,m ⋆ -g ℓ,k 2 +pen ℓ (m ⋆ ) + 2 2ℓ-1 g ℓ,m ⋆ -g ℓ 2 .
It follows that, on Ω c ,

1 4 k>m ⋆ pen ℓ (m ⋆ , k)1 I m=k ≤ sup k>m ⋆ ĝℓ,k -ĝℓ,m ⋆ 2 - 1 4 pen ℓ (m, k) -2 2ℓ-1 g ℓ,m ⋆ -g ℓ,k 2 +pen ℓ (m ⋆ ) + 2 2ℓ-1 g ℓ,m ⋆ -g ℓ 2 .
Inserting this in (26

) implies ĝℓ,m ⋆ -ĝℓ, m 2 1 I Ω c ≤ 3 sup k≥m ⋆ ĝℓ,m ⋆ -ĝℓ,k 2 -2 2ℓ-1 g ℓ,k -g ℓ,m ⋆ 2 -pen ℓ (m ⋆ , k) + 1 I Ω c +3 2 2ℓ-1 g ℓ -g ℓ,m ⋆ 2 + 2pen ℓ (m ⋆ ). ( 27 
)
We can prove the following proposition, see Section 5.4. Proposition 5.1. Under the assumptions of Theorem 2.1, there exists a constant K ℓ such that

E sup k>m ⋆ ĝℓ,m ⋆ -ĝℓ,k 2 -2 2ℓ-1 g ℓ,k -g ℓ,m ⋆ 2 -pen ℓ (m ⋆ , k) + ≤ K ℓ n ℓ .
Then Inequality ( 27) and Proposition 5.1 imply

E( ĝℓ,m ⋆ -ĝℓ, m 2 1 I Ω c ) ≤ 3 2 2ℓ-1 g ℓ -g ℓ,m ⋆ 2 + 2pen ℓ (m ⋆ ) + 3K ℓ n ℓ ≤ 4[ g ℓ -g ℓ,m ⋆ 2 + V ℓ (m ⋆ ) + pen ℓ (m ⋆ )] + 3K ℓ
n ℓ which gives the result on Ω c , by using again the definition of m ⋆ and plugging this in (21). Gathering the two steps i) and ii) gives the result of Theorem 2.1.

The rates of convergence follow from those of Theorem 2.1 and Corollary 2.1.

5.4. Proof of Proposition 5.1. The proof of Proposition 5.1 relies on the following Lemma:

Lemma 5.1. Let X 1 , . . . , X n be centered independent and identically distributed random variables, with |X i | ≤ b, ∀i a.s. and Var(X i ) ≤ v 2 . Then, for

S n = X 1 + • • • + X n , and H > 0, E S n n p -H p + ≤ 2 p Γ(p/2 + 1) n p/2 exp(-n2 2/p-2 H 2 /v 2 ) + 2 p Γ(p + 1) n p exp(-n2 1/p-2 H/b).
Proof of Lemma 5.1. The proof of Lemma 5.1 relies on Bernstein Inequality, which gives

P S n n ≥ x ≤ 2 exp - nx 2 /2 v 2 + bx ≤ 2 exp - nx 2 2v 2 + exp - nx 2b . Thus E S n n p -H p + ≤ +∞ 0 P S n n p -H p ≥ z dz ≤ +∞ 0 P S n n ≥ [H p + z] 1/p dz ≤ 2 +∞ 0 exp - n [H p + z] 2/p 2v 2 + exp - n [H p + z] 1/p 2b dz
Now we use that by concavity inequality, we have that, for q ≥ 1 and x, y ≥ 0, (x + y) 1/q ≥ 2 1/q-1 (x 1/q + y 1/q ), which implies for p ≥ 2,

E S n n p -H p + ≤ 2 exp(-n2 2/p-2 H 2 /v 2 ) +∞ 0 exp -n 2 2/p-1 z 2/p 2v 2 dz +2 exp(-n2 1/p-2 H/c) +∞ 0 exp -n 2 1/p-1 z 1/p 2b dz = 2 p Γ(p/2 + 1) n p/2 exp(-n2 2/p-2 H 2 /v 2 ) + 2 p Γ(p + 1) n p exp(-n2 1/p-2 H/b), which is the announced result. . Proof of Proposition 5.1. For k > m ⋆ , we have ĝℓ,k -ĝℓ,m ⋆ 2 = πm ⋆ ≤|u|≤πk f * Y (u) f * ε (u) 2ℓ du ≤ πm ⋆ ≤|u|≤πk 2 2ℓ-1 | f * Y (u) -f * Y (u)| 2ℓ |f * ε (u)| 2ℓ du + πm ⋆ ≤|u|≤πk 2 2ℓ-1 |f * Y (u)| 2ℓ |f * ε (u)| 2ℓ du = πm ⋆ ≤|u|≤πk 2 2ℓ-1 | f * Y (u) -f * Y (u)| 2ℓ |f * ε (u)| 2ℓ du + 2 2ℓ-1 g ℓ,k -g ℓ,m ⋆ 2 . Therefore E sup k>m ⋆ ĝℓ,m ⋆ -ĝℓ,k 2 -2 2ℓ-1 g ℓ,k -g ℓ,m ⋆ 2 -pen ℓ (m ⋆ , k) + ≤ E sup k>m ⋆ πm ⋆ ≤|u|≤πk 2 2ℓ-1 | f * Y (u) -f * Y (u)| 2ℓ |f * ε (u)| 2ℓ du -pen ℓ (m ⋆ , k) + ≤ k>m ⋆ E πm ⋆ ≤|u|≤πk 2 2ℓ-1 | f * Y (u) -f * Y (u)| 2ℓ |f * ε (u)| 2ℓ du -pen ℓ (m ⋆ , k) + = k>m ⋆ E πm ⋆ ≤|u|≤πk 2 2ℓ-1 |f * ε (u)| 2ℓ | f * Y (u) -f * Y (u)| 2ℓ - λ ℓ (m ⋆ , k) n ℓ + du . (28) 
We apply now Lemma 5.1 with b = v = 1 and

H 2ℓ ≥ 2 2ℓ-1 n ℓ log(1 + (k -m ⋆ ) 2 (∆ ℓ (k) -∆ ℓ (m ⋆ ))
ℓ in the first exponential term of the bound, and

H 2ℓ ≥ 2 4ℓ-1 n 2ℓ log(1 + (k -m ⋆ ) 2 (∆ ℓ (k) -∆ ℓ (m ⋆ )) 2ℓ
in the second term. We obtain

E | f * Y (u) -f * Y (u)| 2ℓ - λ ℓ (m ⋆ , k) n ℓ + ≤ 2 2ℓ ℓ! n ℓ 1 (k -m ⋆ ) 2 (∆ ℓ (k) -∆ ℓ (m ⋆ )) + 2 2ℓ (2ℓ)! n 2ℓ 1 (k -m ⋆ ) 2 (∆ ℓ (k) -∆ ℓ (m ⋆ ))
.

Plugging this into (28) yields

E sup k>m ⋆ ĝℓ,m ⋆ -ĝℓ,k 2 -2 2ℓ-1 g ℓ,k -g ℓ,m ⋆ 2 -pen ℓ (m ⋆ , k) + ≤ 2 2ℓ-1 2 2ℓ ℓ! n ℓ + 2 2ℓ (2ℓ)! n 2ℓ k>m ⋆ 1 (k -m ⋆ ) 2 ≤ π 2 6 2 4ℓ (2ℓ)! n ℓ .
This ends the proof Proposition 5.1.

5.5. Proof of Theorem 3.1. Let us first introduce some notations.

For k > m, set ∆(m, k) = ∆(k) -∆(m) and ∆f (m, k) = ∆f (k) -∆f (m), qen(m, k) := 2 2ℓ+1 λ2 1 (m, k) ∆(m, k) n ℓ + 2 2ℓ+1 κ 2ℓ log ℓ (M (k -m)) ∆f (m, k) M ℓ with λ1 (m, k) = max 2 -1/ℓ+2 log 1 + ∆(m, k)(k -m) 2 , 2 -1/2ℓ+2 √ n log 1 + ∆(m, k)(k -m) 2 .
Now we can start the proof of Theorem 3.1. We denote by m ⋆ the oracle cutoff defined by

m ⋆ = arg min m∈Mn -g ℓ,m 2 + V ℓ (m) + qen ℓ (m) ,
where V ℓ (m) is defined by ( 14). We have

(29) g ℓ -gℓ, m 2 ≤ 2 g ℓ -gℓ,m ⋆ 2 + 2 gℓ,m ⋆ -gℓ, m 2 • Let us notice on the set G = { m ≤ m ⋆ } : gℓ,m ⋆ -gℓ, m 2 1 G = gℓ,m ⋆ 2 -gℓ, m 2 1 G .
Besides according to the definition of m, one has the following inequality:

(30) -gℓ, m 2 + qen ℓ ( m) ≤ -gℓ,m ⋆ 2 + qen ℓ (m ⋆ ), which implies -gℓ, m 2 ≤ -gℓ,m ⋆ 2 + qen ℓ (m ⋆ ). Thus gℓ,m ⋆ -gℓ, m 2 1 G = gℓ,m ⋆ 2 -gℓ, m 2 1 G ≤ qen ℓ (m ⋆ ).
Taking expectation, we apply the following Lemma Lemma 5.2. There exists a positive constant C such that for any arbitrary m ∈ M n

(31) E [ qen ℓ (m)] ≤ Cqen ℓ (m).
It yields for some positive constant C

E g ℓ -gℓ, m 2 1 G ≤ 2E g ℓ -gℓ,m ⋆ 2 + 2E [ qen ℓ (m ⋆ )] ≤ 2 g ℓ -g ℓ,m ⋆ 2 + 2V ℓ (m ⋆ ) + 2Cqen ℓ (m ⋆ ).
We just proved the result on G

(32) E g ℓ -gℓ, m 2 1 G ≤ C inf m∈Mn g ℓ -g ℓ,m 2 + V ℓ (m) + qen ℓ (m) .
• We now consider the set

G c = { m > m ⋆ }. gℓ, m -gℓ,m ⋆ 2 1 G c = gℓ, m -gℓ,m ⋆ 2 -4 g ℓ, m -g ℓ,m ⋆ 2 - 1 2 qen(m ⋆ , m) 1 G c + 4 g ℓ, m -g ℓ,m ⋆ 2 + 1 2 qen(m ⋆ , m) 1 G c ≤ sup k≥m ⋆ k∈Mn gℓ,k -gℓ,m ⋆ 2 -4 g ℓ,k -g ℓ,m ⋆ 2 - 1 2 qen(m ⋆ , k) + + 4 g ℓ -g ℓ,m ⋆ 2 + 1 2 k≥m ⋆ k∈Mn qen(m ⋆ , k)1 { m = k} . (33) 
Let us first notice the following inequality

∀k > m, qen(m, k) ≤ qen ℓ (k). (34) 
Besides by definition of m (see ( 15)), on the set { m = k} ∩ G c and applying (30), we have

1 2 ( qen ℓ (k) -qen ℓ (m ⋆ )) ≤ gℓ, m -gℓ,m ⋆ 2 - 1 2 ( qen ℓ (k) -qen ℓ (m ⋆ )) so that 1 2 qen ℓ (k) ≤ gℓ, m -gℓ,m ⋆ 2 - 1 2 qen ℓ (m ⋆ , k) + 1 2 qen(m ⋆ ) ≤ gℓ, m -gℓ,m ⋆ 2 -4 g ℓ, m -g ℓ,m ⋆ 2 - 1 2 qen(m ⋆ , k) + 4 g ℓ, m -g ℓ,m ⋆ 2 + 1 2 qen ℓ (m ⋆ ) ≤ gℓ, m -gℓ,m ⋆ 2 -4 g ℓ, m -g ℓ,m ⋆ 2 - 1 2 qen(m ⋆ , k) + 4 g ℓ -g ℓ,m ⋆ 2 + 1 2 qen ℓ (m ⋆ ) (35)
Now using Inequalities (34) and ( 35)

1 2 k≥m ⋆ k∈Mn qen(m ⋆ , k) ≤ sup k≥m ⋆ k∈Mn gℓ,k -gℓ,m ⋆ 2 -4 g ℓ, m -g ℓ,m ⋆ 2 - 1 2 qen(m ⋆ , k) + + 4 g ℓ -g ℓ,m ⋆ 2 + 1 2 qen ℓ (m ⋆ ).
From Inequality (33), we now have

gℓ, m -gℓ,m ⋆ 2 1 G c ≤ 2 sup k≥m ⋆ k∈Mn gℓ,k -gℓ,m ⋆ 2 -4 g ℓ,k -g ℓ,m ⋆ 2 - 1 2 qen(m ⋆ , k) + +8 g ℓ -g ℓ,m ⋆ 2 + 1 2 qen ℓ (m ⋆ ).
Taking expectation the first summand is negligible by applying the following Proposition.

Proposition 5.2. Under (A1) and (A2), there is a positive constant C such that for any arbitrary m ∈ M n (36)

E    sup k≥m k∈Mn gℓ,k -gℓ,m 2 -2 2ℓ g ℓ,k -g ℓ,m 2 - 1 2 qen(m, k) +    ≤ C n ℓ + C M ℓ .
Finally gathering the last result with (29), we have

E g ℓ -gℓ, m 2 1 G c ≤ C g ℓ -g ℓ,m ⋆ 2 + V ℓ (m ⋆ ) + qen(m ⋆ ) + C ′ 1 n ℓ + 1 M ℓ (37)
This combining with (32) complete the proof. 5.6. Proof of Lemma 5.2. Before proving Lemma 5.2, we first need to prove two auxiliary lemmas. In the sequel, C will always denote some universal positive constant, but the value may vary from line to line.

Lemma 5.3. For an estimator of f * ε defined by ( 10), assume κ > √ c 1 p. Let τ ≥ 2κ and x ≥ 1.

Then for some positive constant C

P ∃u ∈ R : | f * ε (u) -f * ε (u)| > τ (log(M x)) 1/2 w(u) -1 M -1/2 ≤ Cx -p M -p
Proof of Lemma 5.3. We write the decomposition

f * ε (u) -f * ε (u) ≤ f * ε (u) -f * ε (u) + f * ε (u) -f * ε (u) ≤ 2k M (u) + f * ε (u) -f * ε (u) .
Using the previous inequality and applying Lemma 5.5 in [START_REF] Kappus | Adaptive nonparametric estimation for Lévy processes observed at low frequency[END_REF], we have

P ∃u ∈ R : | f * ε (u) -f * ε (u)| > τ (log(M x)) 1/2 w(u) -1 M -1/2 ≤ P ∃u ∈ R : | f * ε (u) -f * ε (u)| + 2k M (u) > τ (log(M x)) 1/2 w(u) -1 M -1/2 ≤ P ∃u ∈ R : | f * ε (u) -f * ε (u)| > (τ -2κ) (log(M x)) 1/2 w(u) -1 M -1/2 ≤ Cx -p M -p .
Proof of Lemma 5.2. For q = 1/2 or 1, using Cauchy-Schwarz's inequality, we have

E log q 1 + ∆(m)m 2 ∆(m) ≤ E log 2q 1 + ∆(m)m 2 E ∆2 (m) Let A p (x) = 1 f * ε (x) - 1 f * ε (x) 2p 1 |f * ε (x)| 2p ∧ k 2p M (x) |f * ε (x)| 4p ∆(m) = 1 2π πm -πm w(u) -2 | f * ε (u)| 2ℓ du = 1 2π πm -πm w(u) -2ℓ 1 f * ε (u) - 1 f * ε (u) + 1 f * ε (u) 2ℓ du ≤ 2∆(m) + 1 π πm -πm w(u) -2ℓ 1 f * ε (u) - 1 f * ε (u) 2ℓ du ≤ 2∆(m) + 2∆(m) sup u∈R A ℓ (u) ≤ 2∆(m)(1 + sup u∈R A ℓ (u))
and applying Lemma 4.1 in [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF], we get E ∆2 (m) ≤ 4C∆ 2 (m). By Jensen inequality (since log is concave)

E log 2q 1 + ∆(m)m 2 ≤ log 2q E 1 + ∆(m)m 2 ≤ log 2q 1 + E ∆(m) m 2 ≤ log 2q 1 + 2∆(m) 1 + E sup u∈R A ℓ (u) m 2 ≤ log 2q 1 + 2∆(m) (1 + C) m 2 ≤ C log 2q 1 + ∆(m)m 2 So E log q 1 + ∆(m)m 2 ∆(m) ≤ C log q 1 + ∆(m)m 2 ∆(m)
which means E[ qen 1 (m)] ≤ Cqen 1 (m). Consider now qen 2 (m). Another application of Lemma 4.1 in [START_REF] Kappus | Adaptive density estimation in deconvolution problems with unknown error distribution[END_REF] yields

1 M ℓ E 1 2π πm -πm w(u) -2ℓ | f * Y (u)| 2ℓ | f * ε (u)| 4ℓ du ≤ 2 M ℓ E 1 2π πm -πm w(u) -2ℓ |f * Y (u)| 2ℓ | f * ε (u)| 4ℓ du + 2 M ℓ E 1 2π πm -πm w(u) -2ℓ | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 4ℓ du ≤ 4 M ℓ E 1 2π πm -πm w(u) -2ℓ |f * (u)| 2ℓ |f * ε (u)| 2ℓ du E 1 + sup u∈R A 2ℓ (u) + 2 M ℓ E 1 2π πm -πm w(u) -2ℓ | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 4ℓ du ≤ 4 M ℓ ∆ f (m) E 1 + sup u∈R A 2ℓ (u) + 2 M ℓ E 1 2π πm -πm w(u) -2ℓ | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 4ℓ du
We use the fact that f * ε (u) ≥ M -1/2 (log M ) 1/2 w(u) -1 , w(u) ≤ 1 as well as the independence of f * Y and f * ε to find 

1 M ℓ E 1 2π πm -πm w(u) -2ℓ | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 4ℓ du = 1 M ℓ 1 2π πm -πm E | f * Y (u) -f * Y (u)| 2ℓ E w(u) -2ℓ | f * ε (u)| 4ℓ du ≤ c ℓ n ℓ E 1 2π πm -πm w(u) -2ℓ | f * ε (u)| 2ℓ
38) E sup k≥m 1 2π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du - 1 2 2ℓ+1 qen 1 (m, k) + ≤ C n ℓ Proof of Lemma 5.4. E    sup k≥m k∈Mn 1 2π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du - 1 2 2ℓ+1 qen 1 (m, k) +    ≤ E     k≥m k∈Mn E 1 2π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du - 1 2 2ℓ+1 qen 1 (m, k) + f * ε     ≤ E     k≥m k∈Mn 1 2π A(m,k) E | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ - 1 2 2ℓ+1 λ2 (m, k) n ℓ | f * ε (u)| 2ℓ + f * ε du     Now f * Y (u)/ f * ε (u) (conditional on f * ε (u)) is the sum of n i.i.d. random variables with variance v 2 ≤ 1/| f * ε (u)| 2 which are bounded by 2/ f * ε (u). Thus Lemma 5.1 gives E | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ - 1 2 2ℓ+1 λ2 (m, k) n ℓ | f * ε (u)| 2ℓ + f * ε ≤ 2 ℓ Γ(2 ℓ-1 + 1) n -ℓ | f * ε (u)| 2ℓ exp -λ2 (m, k) + 2 ℓ Γ(2 ℓ + 1) n -2ℓ | f * ε (u)| 2ℓ exp -n 1/2 λ(m, k) ≤ 2 ℓ Γ(2 ℓ-1 + 1) n -ℓ | f * ε (u)| 2ℓ (k -m) -2 ∆(m, k) -1 + 2 ℓ Γ(2 ℓ + 1) n -2ℓ | f * ε (u)| 2ℓ (k -m) -2 ∆(m, k) -1 ( 
where we used the fact that

λ(m, k) ≤ max 2 -1/ℓ+2 log 1 + ∆(m, k)(k -m) 2 , 2 -1/2ℓ+2 √ n log 1 + ∆(m, k)(k -m) 2 .
We have thus shown for a universal positive constant C that, for any m 

, k ∈ M n A(m,k) E | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ - 1 2 ℓ+1 λ2 (m, k) n ℓ | f * ε (u)| 2ℓ + f * ε du ≤ C n ℓ (k -m) -2 ∆(m, k) -1 A(m,k) du | f * ε (u)| 2ℓ ≤ C n ℓ (k -m) -2 . Finally E sup k≥m {(2π) -1 A(m,k) (| f * Y (u) -f * Y (u)| 2ℓ )/| f * ε (u)| 2ℓ du -2 -2ℓ+1 qen 1 (m, k)} + ≤ C/n ℓ ,
= 1 2π A(m,k) | f * Y (u))| 2ℓ | f * ε (u)| 2ℓ du = 1 2π A(m,k) | f * Y (u))| 2ℓ | f * ε (u)| 2ℓ 1 {| f * ε (u)|>|f * ε (u)|} du + 1 2π A(m,k) | f * Y (u))| 2ℓ | f * ε (u)| 2ℓ 1 {| f * ε (u)|≤|f * ε (u)|} du := S 1 + S 2 Let us consider S 1 . S 1 ≤ 2 2ℓ-1 π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du + 2 2ℓ-1 π A(m,k) |f * Y (u)| 2ℓ |f * ε (u)| 2ℓ du 2 2ℓ g ℓ,k -g ℓ,m 2 , ( 39 
) now S 2 , S 2 = 1 2π A(m,k) | f * Y (u)| 2ℓ 1 f * ε (u) - 1 f * ε (u) + 1 f * ε (u) 2ℓ 1 {| f * ε (u)|>|f * ε (u)|} du ≤ 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ 1 f * ε (u) - 1 f * ε (u) 2ℓ 1 {| f * ε (u)≤|f * ε (u)|} du + 2 2ℓ-1 π A(m,k) f * Y (u)) f * ε (u) 2ℓ 1 {| f * ε (u)≤|f * ε (u)|} du := S 2,1 + S 2,2 . (40) 
Yet for the second term of (40), we can notice

(41) S 2,2 ≤ 2 4ℓ-2 π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du + 2 4ℓ-1 g ℓ,k -g ℓ,m 2 .
For the first term of (40) we can write

S 2,1 = 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 2ℓ |f * ε (u)| 2ℓ 1 {| f * ε (u)≤|f * ε (u)|} du ≤ 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du. ( 42 
)
Let us introduce the set following set

(43) C(m, k) = ∀u ∈ R : | f * ε (u) -f * ε (u)| 2 ≤ 4κ 2 log (M (k -m)) w(u) -2 M -1
On C(m, k), the following inequalities can be deduced

1 2π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du ≤ 4 ℓ κ 2ℓ log ℓ (M (k -m)) M -ℓ 1 2π A(m,k) w(u) -2ℓ | f * Y (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)|≤|f * ε (u)|} du ≤ 4 ℓ κ 2ℓ log ℓ (M (k -m)) M -ℓ ∆f (m, k) ≤ 1 2 2ℓ+1 qen 2 (m, k).
Gathering Equations ( 39), ( 41) and ( 42), we have gℓ,kgℓ,m 2 = 2 4ℓ-2 π

A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du + 2 4ℓ-1 g ℓ,k -g ℓ,m 2 + 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du [1 C(m,k) + 1 C(m,k) c ] ≤ 2 4ℓ-2 π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du + 2 4ℓ-1 g ℓ,k -g ℓ,m 2 + 1 2 qen 2 (m, k) + 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du 1 C(m,k) c . ( 44 
)
Starting from (44), we can now write the following inequalities gℓ,kgℓ,m 2 -2 4ℓ-1 g ℓ,kg ℓ,m 2 -

1 2 qen(m, k) ≤ 2 4ℓ-2 π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du - 1 2 qen 1 (m, k) + 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du 1 C(m,k) c ≤ 2 2ℓ 1 2π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du - 1 2 2ℓ+1 qen 1 (m, k) + + 2 2ℓ-1 π A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du 1 C(m,k) c .
Taking expectation we get

E    sup k≥m k∈Mn gℓ,k -gℓ,m 2 -2 4ℓ-1 g ℓ,k -g ℓ,m 2 - 1 2 qen(m, k) +    ≤ k≥m k∈Mn E 2 2ℓ 1 2π A(m,k) | f * Y (u) -f * Y (u)| 2ℓ | f * ε (u)| 2ℓ du - 1 2 2ℓ+1 qen 1 (m, k) + + 2 2ℓ 2π k≥m k∈Mn E A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du 1 C(m,k) c .
We can notice that on C(m, k) c defined by (43) following Lemma 5.3 for x = km and p = 3ℓ, we have P [C(m, k) c ] ≤ M -3ℓ (km) -3ℓ and we get This completes the proof.

k≥m k∈Mn E A(m,k) | f * Y (u)| 2ℓ | f * ε (u) -f * ε (u)| 2ℓ | f * ε (u)| 4ℓ 1 {| f * ε (u)≤|f * ε (u)|} du 1 C(m,k) c ≤ k≥m k∈Mn E A(m,k) | f * Y (u)| 2ℓ 2 2ℓ |f * ε (u)| 2ℓ k 4ℓ M (u) 1 {| f * ε (u)≤|f * ε (u)|} du 1 C(m,k) c

Appendix

We recall the following result, which can be found in [START_REF] Shiryaev | Probability. Translated from the first[END_REF] 

U j | p ) ≤ B p E(| n j=1 |U j | 2 | p/2 ),
We also give the following useful lemma, see Lemma 2 p. 35 in [START_REF] Butucea | Sharp optimality in density deconvolution with dominating bias[END_REF]. For two functions u, v, we denote u(x) v(x) if there exists a positive constant C not depending on x such that u(x) ≤ Cv(x) and u(x) ≈ v(x) if u(x) v(x) and v(x) u(x). Lemma 6.2. Consider c, s nonnegative real numbers, and γ a real such that 2γ > -1 if c = 0 or s = 0. Then, for all m > 0,

• m -m (x 2 + 1) γ exp(c|x| s )dx ≈ m 2γ+1-s e cm s , and if in addition 2γ > 1 if c = 0 or s = 0, • ∞ m (x 2 + 1) -γ exp(-c|x| s )dx ≈ m -2γ+1-s e -cm s .

Figure 1 .

 1 Figure1. Test densities f (solid) and g 2 (dashed).

Figure 2 .

 2 Figure 2. Laplace noise. True density (dotted), density estimates (gray) and sample of 20 estimates (thin gray) out of 50 proposed to the selection algorithm obtained with a sample of n = 1000 data.

Figure 3 .

 3 Figure 3. Gaussian noise. True density (dotted), density estimates (gray) and sample of 20 estimates (thin gray) out of 50 proposed to the selection algorithm obtained with a sample of n = 1000 data.

Figure 4 .

 4 Figure 4. Laplace noise, Kurtotic density. (a): Graph of the function ĝℓ,m 2 + pen ℓ (m) against the smoothing parameter m. (b): MISE(m). The gray diamond represents the global minimizer of MISE(m) and the gray circle represents the global minimizer ofĝℓ,m 2 + pen ℓ (m). 5. Proofs 5.1. Proof of Proposition 2.1. Upper bound on the MISE of ĝℓ,m . Let us introduce the function g ℓ,m defined by

  du where c ℓ is the constant of the Rosenthal inequality. Applying the same arguments as for the bounding of E [ qen 1 (m)], we get E du ≤ C∆(m). This completes the proof. 5.7. Proof of Proposition 5.2. For k > m, let us introduce the following notation : A(m, k) := {u ∈ R, |u| ∈ [πm, πk]}. We need to prove auxiliary lemmas before proving Proposition 5.2. Lemma 5.4. There is a positive constant C such that for any arbitrary m ∈ M n

2

  2ℓ κ -4ℓ (log M ) -2ℓ w(u) 4ℓ M 2ℓ du 1 C(m,k) c ≤ k≥m k∈Mn 2 2ℓ κ -4ℓ (log M ) -2ℓ M 2ℓ (km)P [C(m, k) c ]

Table 1 .

 1 Examples of rates of convergence ϕ n of the estimator ĝℓ,

	m

Table 2 .

 2 1000×MISE values from 100 replications of sample sizes n = 1000

			Noise	
		Gaussian	Laplace
		known unknown known unknown
	Kurtotic 0.9200	0.4842	0.6678	0.4919
	Gaussian 0.0285	0.0397	0.0350	0.0389
	Uniform 1.4902	1.0301	1.1795	1.0300
	Claw	0.1130	0.0494	0.0556	0.0485
	types of errors. As noted in				

  which ends the proof.

	Proof of Proposition 5.2. Applying Plancherel's formula we get
	gℓ,k -gℓ,m	2

  (inequality (26) p.498). Lemma 6.1 (Marcinkiewicz & Zygmund Inequality). Let n be a positive integer, p > 1 and U 1 , . . . , U n be n zero mean independent random variables such that sup j∈{1,...,n} E(|U j | p ) < ∞. Then, for B p = (18p)

p (p/(p -1)) p/2 , E(| n j=1