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Abstract. We investigate the estimation of the ℓ-fold convolution of the density of an unob-
served variable X from n i.i.d. observations of the convolution model Y = X + ε. We first
assume that the density of the noise ε is known and define nonadaptive estimators, for which
we provide bounds for the mean integrated squared error (MISE). In particular, under some
smoothness assumptions on the densities of X and ε, we prove that the parametric rate of con-
vergence 1/n can be attained. Then we construct an adaptive estimator using a penalization
approach having similar performances to the nonadaptive one. The price for its adaptivity is
a logarithmic term. The results are extended to the case of unknown noise density, under the
condition that an independent noise sample is available. Lastly, we report a simulation study
to support our theoretical findings.

Keywords. Adaptive estimation. Convolution of densities. Measurement errors. Oracle inequal-
ity. Nonparametric estimator.
AMS Subject Classifications: 62G07 - 62G05

1. Motivations

In actuarial or financial sciences, quantities of interest often involve sums of random variables.
For example, in the individual risk model, the total amount of claims on a portfolio of insurance
contracts is described by the sum of all claims on the individual policies. Consequently, it is
natural to aim at estimating the density of sums of random variables, and estimating these
directly from observations of the variables. A solution to this question is proposed in Chesneau
et al. (2013). But the measures associated to the variables are also often not so precise, and
clearly, measurement errors can occur. Thus, we consider the model

Yj = Xj + εj , j = 1, . . . , n,(1)

where the Yj’s are i.i.d. with density fY , Xj’s are i.i.d. with density f and εj ’s i.i.d. with
density fε. We assume that Xj and εj are independent, and that f is unknown whereas, in
a first step, fε is known. Note that our assumptions imply that fY (u) = (f ⋆ fε)(u), where
(h⋆k)(t) =

∫
h(t−x)k(x)dx denotes the convolution product. Our aim is to estimate the ℓ-fold

convolution of f for any integer ℓ ≥ 1, i.e. to estimate gℓ defined by

(2) gℓ(u) =(f ⋆ · · · ⋆ f)︸ ︷︷ ︸
ℓ times

(u).
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A large and growing body of literature has investigated this problem without noise (εj = 0).
In this case, various methods and results can be found in e.g. Frees (1994), Saavedra and
Cao (2000), Ahmad and Fan (2001), Ahmad and Mugdadi (2003), Prakasa Rao (2004), Schick
and Wefelmeyer (2004, 2007), Du and Schick (2007), Giné and Mason (2007), Nickl (2007),
Nickl (2009) and Chesneau et al. (2013). However, the modeling of some complex phenomena
implies that error disrupts the observation of Xj . Thus, model (1) with εj 6= 0 (the so-called
“convolution model”) has been widely considered and the estimation of f in this context is
a well-known problem (“deconvolution estimator” corresponding to the case ℓ = 1). See e.g.
Caroll and Hall (1988), Devroye (1989), Fan (1991), Pensky and Vidakovic (1999), Fan and
Koo (2002), Butucea (2004) Butucea and Tsybakov (2008), Comte et al. (2006), Delaigle and
Gijbels (2006), Johannes (2009) and Meister (2009). The consideration of εj 6= 0 and ℓ ≥ 1 is
a more general challenge with potential applications in many fields. A first approach has been
investigated in Chesneau and Navarro (2014) via wavelet methods, with convincing numerical
illustrations but sub-optimal theoretical results.

In this paper, we consider Model (1) with special emphasis on the influences of ℓ and εj on the
estimation of gℓ. In a first part, we introduce non-adaptive estimators combining kernel methods
and Fourier analysis. Then we determine a sharp upper bound of its mean integrated squared
error (MISE) and exhibit fast rates of convergence according to different kinds of smoothness
of f and fε (and suitable values of a tuning parameter). In particular, as proved in Saavedra
and Cao (2000) and Chesneau et al. (2013) for the case εj = 0, we show that the parametric
rate of convergence 1/n can be attained under some assumptions on ℓ, f and fε. In a second
part, we develop an adaptive version of this estimator using a penalization approach. It has
similar performance to the non-adaptive one, up to a logarithmic factor. This result significantly
improves (Chesneau and Navarro, 2014, Proposition 5.1) in terms of rates of convergence and
assumptions on the model.

In a second time, we assume that the distribution of the noise is unknown. Then, for identifi-
ability purpose, some additional information on the errors has to be available. As in Neumann
(1997), Comte and Lacour (2011) and Kappus and Mabon (2013), we consider the setting where
an independent noise sample of size M is available. Other contexts may bring relevant informa-
tion for estimation, as for example a repeated measurement setting, see Delaigle et al. (2008),
Bonhomme and Robin (2010), Neumann (2007), Kappus and Mabon (2013); these settings are
not considered here. We shall take advantage of the tools developed in Kappus (2014) and
Kappus and Mabon (2013) to provide an adaptive strategy in this framework, which is more
realistic but more difficult than the known noise density case.

The paper is structured as follows. We first study in Section 2 the case where the noise density
is known. Our estimators are introduced in Section 2.2. Their performances in terms of MISE
and rates of convergence are presented in Sections 2.3 and 2.4. The adaptive strategy is proved
to reach an automatic bias-variance compromise up to negligible terms in Section 2.5. Section
3 is devoted to the case of unknown noise density: instead, to preserve identifiability of the
problem, we assume that an independent noise sample is available. New estimates are proposed
and studied: an adaptive procedure is proposed and proved to reach the best risk bound as
possible, up to logarithmic terms. Simulation results are presented in Section 4. All proofs are
relegated to Section 5.

2. Estimation with known noise density

2.1. Notations and assumption. For two real numbers a and b, we denote by a ∧ b the
minimum of a and b. For two functions ϕ and ψ belonging to L

1(R) ∩ L
2(R), we denote

by ϕ∗ the Fourier transform defined by ϕ∗(x) =
∫
ϕ(t)e−ixtdt, by ‖ϕ‖ the L

2-norm of ϕ,
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‖ϕ‖2 =
∫
|ϕ(u)|2du, by 〈ϕ,ψ〉 the scalar product 〈ϕ,ψ〉 =

∫
ϕ(u)ψ̄(u)du. We recall the in-

verse Fourier formula ϕ(x) = (2π)−1
∫
eiuxϕ∗(u)du, and that, for the convolution product

(ϕ ⋆ ψ)(t) =
∫
ϕ(t− x)ψ(x)dx, we have by Fourier transform (ϕ ⋆ ψ)∗(u) = ϕ∗(u)ψ∗(u). Lastly

〈ϕ,ψ〉 = (2π)−1〈ϕ∗, ψ∗〉.
Moreover, we work all along the paper under the assumption

(A1) f∗ε (u) 6= 0,∀u ∈ R.

2.2. Estimators when the noise density is known. We define now our estimators, con-
sidering that the observations are drawn from model (1) and assuming that fε is known and
satisfies (A1).

The idea for this construction is based on the following relation. First under independence
of Xj and εj in model (1), we have fY = f ⋆ fε, which implies f∗Y = f∗f∗ε . Since in addition

g∗ℓ (u) = (f∗(u))ℓ, we have, using (A1),

gℓ(x) =
1

2π

∫
g∗ℓ (u)e

iuxdu =
1

2π

∫
(f∗(u))ℓeiuxdu =

1

2π

∫ (
f∗Y (u)
f∗ε (u)

)ℓ

eiuxdu.

Then f∗Y can easily be estimated by its empirical counterpart

f̂∗Y (u) =
1

n

n∑

j=1

e−iuYj .

But a pure plug-in approach leads to integrability problems, this is why a cutoff has to be intro-
duced, which can be seen as a truncated version of the empirical estimator: f̂∗Y (u)1I[−πm,πm](u).
Thus, we propose the estimator, ∀m ∈ N,

ĝℓ,m(x) =
1

2π

∫ πm

−πm

(
f̂∗Y (u)

f∗ε (u)

)ℓ

eiuxdu.(3)

Naturally, the performance of ĝℓ,m depends on the choice of m. We make ĝℓ,m adaptive by
considering the estimator: ĝℓ,m̂, where m̂ is the integer defined by

(4) m̂ = arg min
m∈{1...,n}

(
−‖ĝℓ,m‖2 + penℓ(m)

)
.

where, for numerical constant ϑ specified later,

(5) penℓ(m) = ϑ22ℓ−1λ2ℓℓ (m,∆ℓ(m))
∆ℓ(m)

nℓ
, ∆ℓ(m) =

1

2π

∫ πm

−πm

1

|f∗ε (u)|2ℓ
du

and

(6) λℓ(m,D) = max

{
2−1/ℓ+1

(
log(1 +m2 D))

)1/2
,
22−1/(2ℓ)

√
n

log(1 +m2D)

}
.

2.3. Risk bound for ĝℓ,m. Now we can prove the following risk bound for the MISE, a decom-
position which explains our adaptive strategy and will allow to discuss rates.

Proposition 2.1. Consider data from model (1), gℓ given by (2), and assume that (A1) is
fulfilled and f is square integrable. Let ĝℓ,m be defined by (3). Then all m in N, we have

(7) E(‖ĝℓ,m − gℓ‖2) ≤
1

2π

∫

|u|≥πm
|f∗(u)|2ℓdu+

2ℓ − 1

2π

ℓ∑

k=1

(
ℓ

k

)
Ck

nk

∫ πm

−πm

|f∗(u)|2(ℓ−k)

|f∗ε (u)|2k
du,

with Ck = (72k)2k(2k/(2k − 1))k.
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Inequality (7) deserves two comments. First, we note that this bound is non asymptotic, and
so is the adaptive strategy inspired from it. Secondly, we can see the usual antagonism between
the bias term (π)−1

∫
|u|≥πm |f∗(u)|2ℓdu which is smaller for large m and the variance term which

gets larger when m increases.
Now, we can see how Inequality (7) allows us to explain the definition of the model selection

given in (4). The bias term can also be written ‖gℓ‖2−‖gℓ,m‖2 with g∗ℓ,m(u) = g∗ℓ (u)1I[−πm,πm](u);

as ‖gℓ‖2 is a constant, only −‖gℓ,m‖2 is estimated, by −‖ĝℓ,m‖2. Usually, the variance is replaced
by its explicit bound, given here by the second right-hand-side term of (7). It is noteworthy
that here, the variance bound is the sum of ℓ terms and only the last term is involved in the
penalty. This is rather unexpected and specific to our particular setting. These considerations
explain the definition of (4) and the selection procedure.

2.4. Rates of convergence for ĝℓ,m. Now, from an asymptotic point of view, we can investi-
gate the rates of convergence of our estimators according to the smoothness assumptions on f
and fε. The following balls of function spaces are considered, for positive α, β,

A(β,L) =

{
f ∈ L

1 ∩ L
2(R);

∫
|f∗(u)|2 exp(2|u|β)du ≤ L, sup

u∈R

(
|f∗(u)|2 exp(2|u|β)

)
≤ L

}

and

S(α,L) =
{
f ∈ L

1 ∩ L
2(R);

∫
|f∗(u)|2(1 + u2)αdu ≤ L, sup

u∈R

(
|f∗(u)|2(1 + u2)α

)
≤ L

}
.

As the noise density is assumed to be known, regularity assumptions on f∗ε are standardly
formulated in the following way, for positive a, b:

[OS(a) ] f∗ε is OS(a) if ∀u ∈ R,

cε
(1 + u2)a

≤ |f∗ε (u)|2 ≤ Cε

(1 + u2)a
.

[SS(b) ] f∗ε is SS(b) if ∀u ∈ R,

cεe
−2|u|b ≤ |f∗ε (u)|2 ≤ Cεe

−2|u|b .

Note that the lower bound for f∗ε is the one used to obtain upper bound of the risk.
These classical sets allow to compute rates, depending on the types of f and fε and to get the
following consequence of Proposition 2.1.

Corollary 2.1. Under the assumptions of Proposition 2.1, the following table exhibits the values
of m and ϕn such that ϕn is the sharpest rates of convergence satisfying “there exists a constant
C∗
ℓ > 0 such that E(‖ĝℓ,m − gℓ‖2) ≤ C∗

ℓϕn”, according some smoothness assumptions on f and
fε.

f ∈ A(β,L), fε OS(a) f ∈ S(α,L), fε SS(b) f ∈ S(α,L), fε OS(a)

mopt
1

π

(
log(n)

2ℓ

)1/β 1

π

(
log(n)

4ℓ

)1/b

nk0/(2ak0+2αk0+1)

ϕn
1

n
(log(n))−4ℓα/b n−2αℓ/(2a+2α+1) ∨ n−1

where k0 is the integer such that ak0−1 < 2α < ak0 where a0 = 0, ak = (2ak + 1)/(ℓ − k),
k = 1, . . . , ℓ− 1.



ESTIMATION OF CONVOLUTION IN THE MODEL WITH NOISE 5

The parametric rate of convergence 1/n is attained for the case f ∈ A(β,L), fε OS(a), and in
the case f ∈ S(α,L), fε OS(a) when ℓ > 1+(a+1/2)/α. To the best of our knowledge, Theorem
2.1 is the first result showing (sharp) rates of convergence for an estimator in the context of (1)
for different types of smoothness on f and fε. The results correspond to classical deconvolution
rates for ℓ = 1 (see Comte et al. (2006)). Moreover, this completes and improves the rate of
convergence determined in (Chesneau and Navarro, 2014, Proposition 5.1).

The case where both f and fε are super smooth is not detailed. For ℓ = 1, the rates
corresponding to this case, are implicit solutions of optimization equations (see Butucea and
Tsybakov (2008)) and recursive formula are given in Lacour (2006). Explicit polynomial rates
can be obtained, and also rates faster than logarithmic but slower than polynomial. We do not
investigate them here for sake of conciseness. We can emphasize that the function f being
unknown, its regularity is also unknown, and the asymptotic optimal choice of m can not
be done in practice. This is what makes an automatic choice of m mandatory to obtain a
complete estimation procedure. The automatic resulting trade-off avoids tedious computations
of asymptotic rates and perform at best for all sample sizes.

2.5. Risk bound on the adaptive estimator ĝℓ,m̂. Theorem 2.1 determines risk bound for
the MISE of the estimator ĝℓ,m̂.

Theorem 2.1. Consider Model (1) under Assumption (A1). Let ĝℓ,m̂ be defined by (3)-(4) and
define

(8) Vℓ(m) :=
2ℓ − 1

π

ℓ∑

k=1

(
ℓ

k

)
Ck

1

nk

∫ πm

−πm

|f∗(u)|2(ℓ−k)

|f∗ε (u)|2k
du.

Then, there exists ϑ0 such that for any ϑ ≥ ϑ0, we have

E(‖ĝℓ,m̂ − gℓ‖2) ≤ 22ℓ min
m∈{1,...,n}

(
‖g − gℓ‖2 + Vℓ(m) + penℓ(m)

)
+
cℓ
nℓ

where cℓ is a constant independent of n. Note that ϑ0 = 1 suits.

The result in Theorem 2.1 shows that the adaptive estimator ĝℓ,m̂ performs an automatic
trade-off between the bias and variance terms described in Proposition 2.1. Moreover, the
bound on the risk given in Theorem 2.1 is non asymptotic, and holds for all sample size.

As a consequence, we can derive asymptotic results. Table 1 exhibits the sharpest rate of
convergence ϕn satisfying “there exists a constant C∗∗

ℓ > 0 such that E(‖ĝℓ,m̂− gℓ‖2) ≤ C∗∗
ℓ ϕn”,

depending on smoothness assumptions on f and fε.

f ∈ A(β,L), fε OS(a) f ∈ S(α,L), fε SS(b) f ∈ S(α,L), fε OS(a)

ϕn log(n)/n (log(n))−4ℓα/b (n/ log(n))−2αℓ/(2a+2α+1) ∨ (log(n)/n)

Table 1. Examples of rates of convergence ϕn of the estimator ĝℓ,m̂

Theorem 2.1 implies thus that gℓ,m̂ attains similar rates of convergence to gℓ,m with automatic
“optimal” choices for m. The only difference is possibly a logarithmic term.
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3. Estimation with unknown noise density

We consider now that fε is unknown, but still satisfying (A1). For the problem to be
identifiable, we assume that we have at hand a sample ε′1, . . . , ε

′
M of i.i.d. replications of ε1,

independent of the first sample.

3.1. Risk bound for fixed m. We have to replace in (3) the noise characteristic function f∗ε
by an estimator, and to prevent it from getting too small in the denominator. Thus, we propose
the estimator, ∀m ∈ N,

g̃ℓ,m(x) =
1

2π

∫ πm

−πm

(
f̂∗Y (u)

f̃∗ε (u)

)ℓ

eiuxdu,(9)

where still f̂∗Y (u) = n−1
∑n

j=1 e
−iuYj and now

(10) f̃ε(u) =

{
f̂∗ε (u) if f̂∗ε (u) ≥ kM (u)
kM (u) otherwise

where f̂∗ε (u) =
1

M

M∑

j=1

e−iuε′j ,

and

(11) kM (u) = κsM (u)M−1/2.

The definition of sM is simply 1 when considering one estimator in the collection, and more
elaborated to deal with the adaptive case. To study the risk bound of the estimator, we recall
the following key Lemma (see Neumann (1997), Comte and Lacour (2011) and Kappus (2014)).

Lemma 3.1. Assume that (A1) holds. Let sM(u) ≡ 1 in (11) for f̃ε defined by (10), then for
all p ≥ 1, there exists a constant τp such that, ∀u ∈ R,

E

(∣∣∣∣
1

f̃∗ε (u)
− 1

f∗ε (u)

∣∣∣∣
2p
)

≤ τp

(
1

|f∗ε (u)|2p
∧ (kM (u))2p

|f∗ε (u)|4p
)
.

To study the MISE of the g̃ℓ,m, we write ‖g̃ℓ,m − gℓ‖2 = ‖gℓ − gℓ,m‖2 + ‖g̃ℓ,m − gℓ,m‖2, which
starts the bias-variance decomposition. Then we can split the integrated variance term of g̃ℓ,m
into three terms

‖g̃ℓ,m − gℓ,m‖2 =
1

2π

∫ πm

−πm

∣∣∣∣∣∣

(
f̂∗Y (u)

f̃∗ε (u)
− f∗Y (u)

f∗ε (u)
+
f∗Y (u)

f∗ε (u)

)ℓ

−
(
f∗Y (u)

f∗ε (u)

)ℓ
∣∣∣∣∣∣

2

du

=
1

2π

∫ πm

−πm

∣∣∣∣∣∣

ℓ∑

k=1

(
ℓ

k

)(
f∗Y (u)

f∗ε (u)

)ℓ−k
(
f̂∗Y (u)

f̃∗ε (u)
− f∗Y (u)

f∗ε (u)

)k
∣∣∣∣∣∣

2

du

≤ 2ℓ − 1

2π

∫ πm

−πm

ℓ∑

k=1

(
ℓ

k

) ∣∣∣∣
f∗Y (u)
f∗ε (u)

∣∣∣∣
2(ℓ−k)

∣∣∣∣∣
f̂∗Y (u)

f̃∗ε (u)
− f∗Y (u)
f∗ε (u)

∣∣∣∣∣

2k

du ≤ 2ℓ

2π
(T1 + T2 + T3)
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with

T1 =

∫ πm

−πm

ℓ∑

k=1

(
ℓ

k

)
32k−1

∣∣∣∣
f∗Y (u)

f∗ε (u)

∣∣∣∣
2(ℓ−k)

∣∣∣∣∣
f̂∗Y (u)− f∗Y (u)

f∗ε (u)

∣∣∣∣∣

2k

du

T2 =

∫ πm

−πm

ℓ∑

k=1

(
ℓ

k

)
32k−1

∣∣∣∣
f∗Y (u)

f∗ε (u)

∣∣∣∣
2(ℓ−k) ∣∣∣∣(f̂∗Y (u)− f∗Y (u))

(
1

f̃∗ε (u)
− 1

f∗ε (u)

)∣∣∣∣
2k

du

T3 =

∫ πm

−πm

ℓ∑

k=1

(
ℓ

k

)
32k−1

∣∣∣∣
f∗Y (u)

f∗ε (u)

∣∣∣∣
2(ℓ−k) ∣∣∣∣f∗Y (u)

(
1

f̃∗ε (u)
− 1

f∗ε (u)

)∣∣∣∣
2k

du.

Clearly, T1 is the term corresponding to known f∗ε and we have E(T1) ≤ 32ℓ−1Vℓ. Using the first
bound in Lemma 3.1 and the independence of the samples, we have also E(T2) ≤ 32ℓ−1Vℓ. The
novelty comes from T3, where we use the second bound given in Lemma 3.1:

E(T3) ≤
ℓ∑

k=1

(
ℓ

k

)
32k−1

∫ πm

−πm

|f∗Y (u)|2ℓ
|f∗ε (u)|2(ℓ−k)

τk
M−k

|f∗ε (u)|4k
du

≤
ℓ∑

k=1

(
ℓ

k

)
32k−1τk

1

Mk

∫ πm

−πm

|f∗Y (u)|2ℓ
|f∗ε (u)|2(ℓ+k)

du

=

ℓ∑

k=1

(
ℓ

k

)
32k−1τk

1

Mk

∫ πm

−πm

|f∗(u)|2ℓ
|f∗ε (u)|2k

du := Wℓ.(12)

Therefore, the following result holds.

Proposition 3.1. Consider model (1) under (A1). Let g̃ℓ,m be defined by (9)-(11) with sM (u) ≡
1. Then there exists constants C∗∗

ℓ , C
∗∗∗
ℓ > 0 (independent of n) such that

E(‖g̃ℓ,m − gℓ‖2) ≤ 1

π

∫

|u|≥πm
|f∗(u)|2ℓdu+ C∗∗

ℓ Vℓ + C∗∗∗
ℓ Wℓ,

where Vℓ is defined by (8) and Wℓ by (12).

We can see that if M ≥ n, we have

1

Mk

∫ πm

−πm

|f∗(u)|2ℓ
|f∗ε (u)|2k

du ≤ 1

nk

∫ πm

−πm

|f∗(u)|2(ℓ−k)

|f∗ε (u)|2k
du

and thus Wℓ ≤ C
(4)
ℓ Vℓ. Thus, for M ≥ n, the risk of g̃ℓ,m has the same order as the risk of

ĝℓ,m and the estimation of the noise characteristic function does not modify the rate of the
estimator. The results given in Corollary 2.1 are thus still valid. Obviously, if the noise sample
size M is smaller than n, it may imply deteriorations of the rates. Moreover, the above result is
a generalization of Neumann (1997) and Comte and Lacour (2011), which both correspond to
the case ℓ = 1.

3.2. Adaptive procedure. Adaptation estimation here is a difficult task. We apply the
methodology recently proposed by Kappus and Mabon (2013) in the context ℓ = 1, improv-

ing the results of Comte and Lacour (2011). In particular the estimator f̃∗ε is now taken with
sM in (11) defined as follows. Let for a given δ > 0,

∀u ∈ R, w(u) = (log(e+ |u|))− 1
2
−δ,
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originally introduced in Neumann and Reiss (2009), and f̃∗ε given by (10)-(11) and by

(13) sM(u) = (logM)1/2w−1(u).

With this threshold, the bound given in Proposition 3.1 becomes

E(‖g̃ℓ,m − gℓ‖2) ≤
1

π

∫

|u|≥πm
|f∗(u)|2ℓdu+ Vℓ

with

(14) Vℓ = C∗∗
ℓ Vℓ + C∗∗∗∗

ℓ

ℓ∑

k=1

(
ℓ

k

)
32k−1τk

logk(M)

Mk

∫ πm

−πm

w−2k(u)|f∗(u)|2ℓ
|f∗ε (u)|2k

du.

Clearly, the definition of sM here implies logarithmic loss if we compare the last term above
with Wℓ given by (12). Then using kM defined by (11) and (13) and considering g̃ℓ,m defined
by (9)-(10), we propose the following adaptive strategy. We set first

∆̂ℓ(m) =
1

2π

∫ πm

−πm

w(u)−2ℓ

∣∣∣f̃∗ε (u)
∣∣∣
2ℓ
du and ∆̂f

ℓ (m) =
1

2π

∫ πm

−πm

w(u)−2ℓ|f̂∗Y (u)|2ℓ∣∣∣f̃∗ε (u)
∣∣∣
4ℓ

du,

as estimators of ∆ℓ(m) given by (5) and of

∆f
ℓ (m) =

1

2π

∫ πm

−πm

|f∗(u)|2ℓ
|f∗ε (u)|2ℓ

du.

We can now define the stochastic penalty associated with the adaptive procedure

q̂enℓ(m) = q̂enℓ,1(m) + q̂enℓ,2(m)

= 22ℓ+1λ2ℓℓ (m, ∆̂ℓ(m))
∆̂ℓ(m)

nℓ
+ 22ℓ+1κ2ℓ logℓ(Mm)

∆̂f
ℓ (m)

M ℓ

which estimates the deterministic quantities

qenℓ(m) = qenℓ,1(m) + qenℓ,2(m)

= 22ℓ+1λ2ℓℓ (m,∆ℓ(m))
∆ℓ(m)

nℓ
+ 22ℓ+1κ2 logℓ(Mm)

∆f
ℓ (m)

M ℓ

where the weights λℓ(m,D) are defined by (6). Then, we select the cutoff parameter m̃ as a
minimizer of the following penalized criterion

(15) m̃ = arg min
m∈{1,...,n}

{
−‖g̃ℓ,m‖2 + q̂enℓ(m)

}
.

Theorem 3.1. Consider Model (1) under (A1), associated with an independent noise sample
ε′1, . . . , ε

′
M . Let the estimator g̃ℓ,m̃ be defined by (9) and (15). Then there are positive constants

Cad and C such that

(16) E ‖gℓ − g̃ℓ,m̃‖2 ≤ Cad inf
m∈Mn

{
‖gℓ − gℓ,m‖2 + Vℓ(m) + qenℓ(m)

}
+
C

nℓ
+

C

M ℓ
,

where Vℓ is defined by (14).

This result is a generalization of Kappus and Mabon (2013), which corresponds to the case
ℓ = 1. As in the known density case, we do not use the whole variance for penalization,
but only the last terms. Moreover, the final estimator automatically reaches the bias-variance
compromise, up to logarithmic terms.
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Figure 1. Test densities f (solid) and g2 (dashed).

4. Illustration

We now illustrate the theoretical results by a simulation study within the context described
in Section 2 and Section 3. That is, we consider the problem of estimating the density gℓ,
emphasizing the case ℓ = 2, for both known and unknown types of noises. All simulations have
been implemented under Matlab.

The performance of the proposed method is studied for four sets of test distributions for Xj

representing different degrees of smoothness (see Figure 1),

(1) Kurtotic distribution: 2
3N (0, 1) + 1

3N (0, (1/10)2),
(2) Standard normal distribution: N (0, 1),
(3) Uniform distribution: U(−1, 1),

(4) Claw distribution: 1
2N (0, 1) +

∑4
l=0N

(
l/2− 1, (1/2)2

)
.

Note that the two Gaussian mixture densities are taken from Marron and Wand (1992).
We consider two types of error density fε, with the same variance σ2ε = 0.25. The first one

is Laplace distribution, with f∗ε OS(2), and the second one is the Gaussian distribution with f∗ε
SS(2).

(a) Laplace error: fε(x) =
1

2σε
exp

(
− |x|

σε

)
, f∗ε (x) =

1
1+σ2

εx
2 .

(b) Gaussian error: fε(x) =
1

σε

√
2π

exp
(
− x2

2σ2
ε

)
, f∗ε (x) = exp

(
−σ2

εx
2

2

)
,

In the case of an entirely known noise distribution, the constant ϑ in (5) is set to 1.8 for
all the tests and in the unknown case the penalties are chosen according to Theorem 3.1. We
propose the following penalty:

q̂enℓ(m) = κ1λ
2ℓ
ℓ (m, ∆̂ℓ(m))

∆̂ℓ(m)

nℓ
+ κ2κ

2ℓ logℓ(Mm)
∆̂f

ℓ (m)

M ℓ

with the associated constants penalties κ1 = κ2 = 1 and κ = 1.8. In both cases, the normalized
sinc kernel was used throughout all experiments. As in Chesneau et al. (2013), the estimators
proposed in this paper are well suited for FFT-based method. Thus, the resulting estimators
ĝℓ,m̂ and g̃ℓ,m̃ are simple to implement and fast which allows us to perform the penalized criterion
in a reasonable time. For numerical implementation, we consider an interval [a, b] that covers
the range of the data and the density estimates were evaluated at M = 2r equally spaced points
ti = a + (b − a)/M , i = 0, 1, . . . ,M − 1, between a and b, with r = 8, b = −a = 5 and M is
the number of discretization points. In each case, the grid of m values that we have considered
consisted of 50 values from 0.5m̂0 to 1.1m̂0 where m̂0 = n−ℓ/5 denotes a pilot bandwidth (see
e.g. Silverman (1986)).
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Figure 2. Laplace noise. True density (dotted), density estimates (gray) and
sample of 20 estimates (thin gray) out of 50 proposed to the selection algorithm
obtained with a sample of n = 1000 data.

In order to illustrate Theorem 2.1, we study the influence of the noise type on the numerical
performances of the proposed estimator. For each density, samples of size n = 1000 were gener-
ated, with aim to estimate gℓ from X1, . . . ,Xn drawn from any of the test densities. The results
are depicted in Figure 2 and Figure 3 for Laplace and Gaussian noise respectively. Figures 2-3
show the results of the numerical simulation of our adaptive estimator ĝℓ,m. Figure 4(a) contains
a plot of the penalized criterion function versus the kernel bandwidth m and Figure 4(b) the
estimated MISE as a function of m. We give this plot for kurtotic distribution and Laplace noise
only, but the behaviour is the same in all the other cases. It is clear from Figure 4(a), that the
value of m̂ is the unambiguous minimizer of −‖ĝℓ,m‖2 + penℓ(m). We also see that m̂ provides
a result close to mMISE: in the Laplace case, for the Kurtotic density, the bandwidth which
minimizes MISE(m) in this case is mMISE = 0.1306 and m̂ = 0.1257. This holds true for all
test densities. In practice, the minimum of the MISE is close to the minimum of the penalized
loss function, thus supporting the choice dictated by our theoretical procedure. Therefore, the
proposed estimator provides effective results for the four test densities.

We also compare the performance of ĝℓ,m̂ with that of g̃ℓ,m̃. For each density, samples with
size n = 1000 were generated and the MISE was approximated as an average of the Integrated
Squared Error over 100 replications. Table 2 presents the MISE from 100 repetitions for the two
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Figure 3. Gaussian noise. True density (dotted), density estimates (gray) and
sample of 20 estimates (thin gray) out of 50 proposed to the selection algorithm
obtained with a sample of n = 1000 data.

Table 2. 1000×MISE values from 100 replications of sample sizes n = 1000

Noise
Gaussian Laplace

known unknown known unknown
Kurtotic 0.9200 0.4842 0.6678 0.4919
Gaussian 0.0285 0.0397 0.0350 0.0389
Uniform 1.4902 1.0301 1.1795 1.0300
Claw 0.1130 0.0494 0.0556 0.0485

types of errors. As noted in Comte and Lacour (2011), estimating the characteristic function of
the noise reduces the risk compared to knowing it. Indeed, for virtually all cases, g̃ℓ,m̃ consistently
showed lower risk than ĝℓ,m̂, with the exception of the Gaussian density for which ĝℓ,m̂ performs
slightly better.
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Figure 4. Laplace noise, Kurtotic density. (a): Graph of the function
−‖ĝℓ,m‖2 + penℓ(m) against the smoothing parameter m. (b): MISE(m). The
gray diamond represents the global minimizer of MISE(m) and the gray circle
represents the global minimizer of −‖ĝℓ,m ‖2 + penℓ(m).

5. Proofs

5.1. Proof of Proposition 2.1. Upper bound on the MISE of ĝℓ,m.
Let us introduce the function gℓ,m defined by

g∗ℓ,m(u) = g∗ℓ (u)1[−πm,πm](u) = (f∗(u))ℓ1[−πm,πm](u) =

(
f∗Y (u)

fε(u)

)ℓ

1[−πm,πm](u).

The support of (gℓ − gℓ,m)∗ being [−πm, πm]c, disjoint from the support of (gℓ,m − ĝℓ,m)∗, we
get

E(‖ĝℓ,m − gℓ‖2) = ‖gℓ − gℓ,m‖2 + E(‖gℓ,m − ĝℓ,m‖2).(17)

The Parseval identity yields

‖gℓ − gℓ,m‖2 = 1

2π

∫

|u|≥πm
|g∗ℓ (u)|2du =

1

2π

∫

|u|≥πm
|f∗(u)|2ℓdu.(18)

The same argument gives

E(‖gℓ,m − ĝℓ,m‖2) = 1

2π

∫ πm

−πm

E

(
|(f̂∗Y (u))ℓ − (f∗Y (u))

ℓ|2
)

|f∗ε (u)|2ℓ
du.

Using the binomial theorem and the inequality |∑m
i=1 biai|

2 ≤ (
∑m

i=1 |bi|)
∑m

i=1 |bi||ai|2, we get

E

(
|(f̂∗Y (u))ℓ − (f∗Y (u))

ℓ|2
)

= E

(
|(f̂∗Y (u)− f∗Y (u) + f∗Y (u))

ℓ − (f∗Y (u))
ℓ|2
)

= E



∣∣∣∣∣

ℓ∑

k=1

(
ℓ

k

)
(f̂∗Y (u)− f∗Y (u))

k(f∗Y (u))
ℓ−k

∣∣∣∣∣

2



≤ (2ℓ − 1)
ℓ∑

k=1

(
ℓ

k

)
E

(
|f̂∗Y (u)− f∗Y (u)|2k

)
|f∗Y (u)|2(ℓ−k).

The Marcinkiewicz & Zygmund Inequality inequality applied to the n i.i.d. random variables
U1, . . . , Un with Uj = e−iuYj − E(e−iuY1), |Uj | ≤ 2 and the exponent p = 2k (see Appendix)
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yields

E

(
|f̂∗Y (u)− f∗Y (u)|2k

)
≤ Ck

1

nk
,

with Ck = (72k)2k(2k/(2k − 1))k. Therefore

E

(
|(f̂∗Y (u))ℓ − (f∗Y (u))

ℓ|2
)
≤ (2ℓ − 1)

ℓ∑

k=1

(
ℓ

k

)
Ck

1

nk
|f∗Y (u)|2(ℓ−k).

Since f∗Y (u) = f∗(u)f∗ε (u), we obtain

E(‖gℓ,m − ĝℓ,m‖2) ≤ 2ℓ − 1

2π

ℓ∑

k=1

(
ℓ

k

)
Ck

1

nk

∫ πm

−πm

|f∗(u)|2(ℓ−k)

|f∗ε (u)|2k
du.(19)

Putting (17), (18) and (19) together, we get the desired result:

E(‖ĝℓ,m − gℓ‖2) ≤
1

2π

∫

|u|≥πm
|f∗(u)|2ℓdu+

2ℓ − 1

2π

ℓ∑

k=1

(
ℓ

k

)
Ck

1

nk

∫ πm

−πm

|f∗(u)|2(ℓ−k)

|f∗ε (u)|2k
du. �

5.2. Proof of Corollary 2.1.

Case f ∈ A(β,L) and fε OS(a). The bias term is bounded by Lℓe−2ℓ(πm)β since
∫

|u|≥πm
|f∗(u)|2ℓdu =

∫

|u|≥πm
|f∗(u)|2e−2|u|β |f∗(u)|2(ℓ−1)e2(ℓ−1)|u|βe−2ℓ|u|βdu

≤ Lℓe−2ℓ(πm)β

All the terms containing powers of |f∗| in the numerator are integrable as fε is ordinary smooth.
Therefore they are of order less than 1/n. Then we have the general bound

E(‖ĝℓ,m − gℓ‖2) ≤ Lℓe−2ℓ(πm)β +
1

nℓ

∫ πm

−πm

du

|fε(u)|2ℓ
+
C

n

where
∫ πm
−πm du/|fε(u)|2ℓ = O(m2ℓa+1). Choosing m = π−1(log(n)/(2ℓ))1/β gives the rate 1/n.

Case f ∈ S(α,L) and fε SS(b). Applying Lemma 6.2, we obtain

E(‖ĝℓ,m − gℓ‖2) ≤ Lℓ(πm)−2ℓα +

ℓ∑

k=1

(
ℓ

k

)
Ck
Lℓ−k

cεnk

∫ πm

−πm
(1 + u2)−(ℓ−k)e2k|u|

b

du

≤ Lℓ(πm)−2ℓα +
ℓ−1∑

k=1

(
ℓ

k

)
Ck
Lℓ−k

cεnk
e2k(πm)b

∫
(1 + u2)−1du+ C

1

cεnk
m−be2ℓ(πm)b .

The choice m = π−1(log(n)/(4ℓ))1/b makes all variance terms of order at most O(1/
√
n), so that

it implies a rate (log(n))−4ℓα/b, which is logarithmic, but faster when ℓ increases.

Case f ∈ S(α,L), fε OS(a).
In this case, there exists a constant Kℓ > 0 such that

E(‖ĝℓ,m − gℓ‖2) ≤ Kℓ

(
m−2αℓ +

ℓ−1∑

k=1

m(2ak−2α(ℓ−k)+1)+ log(m)1I2ak−2α(ℓ−k)+1=0

nk
+
m2aℓ+1

nℓ

)
.

Then α must be compared to the increasing sequence ak = (2ak + 1)/(ℓ − k).
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First case: 2α < a1. Then the trade-off between m−2αℓ and m2a−2α(ℓ−1)+1/n implies the choice

mopt = n1/(2a+2α+1) and the rate n−2αℓ/(2a+2α+1), where 2αℓ/(2a + 2α + 1) ∈ (0, 1). In this
situation, the terms following have orders

ℓ−1∑

k=2

m
2ak−2α(ℓ−k)+1
opt

nk
+
m2aℓ+1

opt

nℓ

and we notice that

m
2ak−2α(ℓ−k)+1
opt

nk
= n

2ak−2α(ℓ−k)+1
2a+2α+1

−k = n
−2αℓ−k+1
2a+2α+1 ≤ n

−2αℓ
2a+2α+1

since k ≥ 2. Therefore the rate is of order n−2αℓ/(2a+2α+1). Notice that making compromise
using another variance term can be checked to give larger choice of m and thus worse rate,
when inserted in the first variance term. Note also that the resulting rate is the usual rate of
deconvolution to the power ℓ.
Second case: 2α > a1. The term corresponding to k = 1 is of order O(1/n). Let k0 ≥ 2 be such
that ak0−1 < 2α < ak0 . Then the risk bound is

E(‖ĝℓ,m − gℓ‖2) ≤ C


m−2αℓ +

1

n
+ · · ·+ 1

nk0−1
+

ℓ−1∑

k=k0

m(2ak−2α(ℓ−k)+1)

nk
+
m2aℓ+1

nℓ


 .

Then the compromise is made between −2αℓ and m2ak0−2α(ℓ−k0)+1/nk0 and implies the choice

mopt = nk0/(2ak0+2αk0+1) and the rate n−2αℓk0/(2ak0+2αk0+1). But clearly

− 2αℓk0
2ak0 + 2αk0 + 1

≤ −1 ⇔ 2α ≥ 2a

ℓ− 1
+
k0 − ℓ+ 1

k0(ℓ− 1)
=

2a

ℓ− 1
+

1

ℓ− 1
− ℓ− 1

k0(ℓ− 1)

and this last condition is fulfilled in our present case so that the rate is smaller than 1/n.
In the same way, we can check that plugging the above mopt in the other terms let them less

than 1/n. Namely

m2aℓ+1
opt

nℓ
= n

− 2αℓk0+ℓ−k0
2ak0+2αk0+1 ≤ n−1,

m
2ak−2α(ℓ−k)+1
opt

nk
= n

− 2αk0ℓ+k−k0
2ak0+2αk0+1 ≤ n−1, for k = k0 + j, j ≥ 1.

Consequently, we have

if 2α >
2a

ℓ− 1
+

1

ℓ− 1
, then E(‖ĝℓ,m − gℓ‖2) ≤ Cn−1.

Gathering both cases, we get that the rate for f ∈ S(α,L), fε OS(a) is n−2αℓ/(2a+2α+1) ∨ n−1.�

5.3. Proof of Theorem 2.1. The result of Proposition 2.1 can be written

(20) E(‖ĝℓ,m − gℓ‖2) ≤ ‖gℓ − gℓ,m‖2 + Vℓ(m),

where Vℓ(m) is defined by (8). Let us define the oracle

m⋆ = arg min
m∈Mn

{
−‖gℓ,m‖2 + Vℓ(m) + pen(m)

}

and note that, since ‖gℓ − gℓ,m‖2 = ‖gℓ‖2 − ‖gℓ,m‖2, we also have

m⋆ = arg min
m∈Mn

{
‖gℓ − gℓ,m‖2 + Vℓ(m) + pen(m)

}
.

Now, we start by writing that

(21) ‖gℓ − ĝℓ,m̂‖2 ≤ 2‖gℓ − ĝℓ,m⋆‖2 + 2‖ĝℓ,m⋆ − ĝℓ,m̂‖2.
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i) We consider the random set Ω = {m̂ ≤ m⋆}, on which it holds that

(22) ‖ĝℓ,m⋆ − ĝℓ,m̂‖21IΩ = (‖ĝℓ,m⋆‖2 − ‖ĝℓ,m̂‖2)1IΩ.

Now, the definition of m̂ implies that

(23) −‖ĝℓ,m̂‖2 + penℓ(m̂) ≤ −‖ĝℓ,m⋆‖2 + penℓ(m
⋆),

and thus

‖ĝℓ,m⋆‖2 − ‖ĝℓ,m̂‖2 ≤ penℓ(m
⋆)− penℓ(m̂)

≤ penℓ(m
⋆).(24)

Then, (22) and (24) imply ‖ĝℓ,m⋆ − ĝℓ,m̂‖21IΩ ≤ penℓ(m
⋆). Plugging this in (21) yields

E
(
‖gℓ − ĝℓ,m̂‖21IΩ

)
≤ 2E(‖gℓ − ĝℓ,m⋆‖2) + 2penℓ(m

⋆)

≤ 2(‖gℓ − gℓ,m⋆‖2 + Vℓ(m
⋆)) + 2penℓ(m

⋆) with (20),

= 2 min
m∈Mn

{
‖gℓ − gℓ,m‖2 + Vℓ(m) + penℓ(m)

}
by definition of m⋆.

Thus we have

(25) E
(
‖gℓ − ĝℓ,m̂‖21IΩ

)
≤ 4 min

m∈Mn

{
‖gℓ − gℓ,m‖2 + Vℓ(m) + penℓ(m)

}
,

which ends step i).
ii) Now, we study the bound on Ωc. Let us define, for k > m

penℓ(m,k) = 22ℓλℓ(m,k) (∆ℓ(k)−∆ℓ(m)),

λℓ(m,k) = max
{
22ℓ−1

(
log(1 + (k −m)2(∆ℓ(k)−∆ℓ(m))

)ℓ
,

24ℓ−1

nℓ
(
log(1 + (k −m)2(∆ℓ(k)−∆ℓ(m))

)2ℓ
}
.

First we write

‖ĝℓ,m⋆ − ĝℓ,m̂‖21IΩc =
(
‖ĝℓ,m⋆ − ĝℓ,m̂‖2 − 22ℓ−1‖gℓ,m̂ − gℓ,m⋆‖2 − penℓ(m

⋆, m̂)
)
1IΩc

+
(
22ℓ−1‖gℓ,m̂ − gℓ,m⋆‖2 + penℓ(m

⋆, m̂)
)
1IΩc

≤ sup
k≥m⋆

{
‖ĝℓ,m⋆ − ĝℓ,k‖2 − 22ℓ−1‖gℓ,k − gℓ,m⋆‖2 − penℓ(m

⋆, k)
}
+
1IΩc

+22ℓ−1‖gℓ − gℓ,m⋆‖2 +
∑

k≥m⋆

penℓ(m
⋆, k)1Ik=m̂.(26)

Now, Inequality (23) writes

1

2
penℓ(m̂) ≤ ‖ĝℓ,m̂‖2 − ‖ĝℓ,m⋆‖2 + penℓ(m

⋆)− 1

2
penℓ(m̂)
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and we notice that, if k = m̂ > m⋆, then ‖ĝℓ,m̂‖2−‖ĝℓ,m⋆‖2 = ‖ĝℓ,m̂− ĝℓ,m⋆‖2 and penℓ(m
⋆, k) ≤

2penℓ(k), so that

1

4
penℓ(m

⋆, k) ≤ ‖ĝℓ,k − ĝℓ,m⋆‖2 − 1

4
penℓ(m,k) + penℓ(m

⋆) +
1

4
penℓ(m,k)−

1

2
penℓ(k)

≤
(
‖ĝℓ,k − ĝℓ,m⋆‖2 − 1

4
penℓ(m,k)− 22ℓ−1‖gℓ,m⋆ − gℓ,k‖2

)

+penℓ(m
⋆) + 22ℓ−1‖gℓ,m⋆ − gℓ,k‖2

≤ sup
k≥m⋆

(
‖ĝℓ,k − ĝℓ,m⋆‖2 − 1

4
penℓ(m,k) − 22ℓ−1‖gℓ,m⋆ − gℓ,k‖2

)

+penℓ(m
⋆) + 22ℓ−1‖gℓ,m⋆ − gℓ‖2.

It follows that, on Ωc,

1

4

∑

k>m⋆

penℓ(m
⋆, k)1Im̂=k ≤ sup

k>m⋆

(
‖ĝℓ,k − ĝℓ,m⋆‖2 − 1

4
penℓ(m,k) − 22ℓ−1‖gℓ,m⋆ − gℓ,k‖2

)

+penℓ(m
⋆) + 22ℓ−1‖gℓ,m⋆ − gℓ‖2.

Inserting this in (26) implies

‖ĝℓ,m⋆ − ĝℓ,m̂‖21IΩc ≤ 3 sup
k≥m⋆

{
‖ĝℓ,m⋆ − ĝℓ,k‖2 − 22ℓ−1‖gℓ,k − gℓ,m⋆‖2 − penℓ(m

⋆, k)
}
+
1IΩc

+3 22ℓ−1‖gℓ − gℓ,m⋆‖2 + 2penℓ(m
⋆).(27)

We can prove the following proposition, see Section 5.4.

Proposition 5.1. Under the assumptions of Theorem 2.1, there exists a constant Kℓ such that

E

(
sup
k>m⋆

{
‖ĝℓ,m⋆ − ĝℓ,k‖2 − 22ℓ−1‖gℓ,k − gℓ,m⋆‖2 − penℓ(m

⋆, k)
}
+

)
≤ Kℓ

nℓ
.

Then Inequality (27) and Proposition 5.1 imply

E(‖ĝℓ,m⋆ − ĝℓ,m̂‖21IΩc) ≤ 3 22ℓ−1‖gℓ − gℓ,m⋆‖2 + 2penℓ(m
⋆) +

3Kℓ

nℓ

≤ 4[‖gℓ − gℓ,m⋆‖2 + Vℓ(m
⋆) + penℓ(m

⋆)] +
3Kℓ

nℓ

which gives the result on Ωc, by using again the definition of m⋆ and plugging this in (21).
Gathering the two steps i) and ii) gives the result of Theorem 2.1. �

The rates of convergence follow from those of Theorem 2.1 and Corollary 2.1.

5.4. Proof of Proposition 5.1. The proof of Proposition 5.1 relies on the following Lemma:

Lemma 5.1. Let X1, . . . ,Xn be centered independent and identically distributed random vari-
ables, with |Xi| ≤ b, ∀i a.s. and Var(Xi) ≤ v2. Then, for Sn = X1 + · · ·+Xn, and H > 0,

E

(∣∣∣∣
Sn
n

∣∣∣∣
p

−Hp

)

+

≤ 2pΓ(p/2 + 1)

np/2
exp(−n22/p−2H2/v2) +

2pΓ(p+ 1)

np
exp(−n21/p−2H/b).

Proof of Lemma 5.1. The proof of Lemma 5.1 relies on Bernstein Inequality, which gives

P

(∣∣∣∣
Sn
n

∣∣∣∣ ≥ x

)
≤ 2 exp

(
− nx2/2

v2 + bx

)
≤ 2

{
exp

(
−nx

2

2v2

)
+ exp

(
−nx

2b

)}
.
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Thus

E

(∣∣∣∣
Sn
n

∣∣∣∣
p

−Hp

)

+

≤
∫ +∞

0
P

(∣∣∣∣
Sn
n

∣∣∣∣
p

−Hp ≥ z

)
dz

≤
∫ +∞

0
P

(∣∣∣∣
Sn
n

∣∣∣∣ ≥ [Hp + z]1/p
)
dz

≤ 2

∫ +∞

0

{
exp

(
−n [H

p + z]2/p

2v2

)
+ exp

(
−n [H

p + z]1/p

2b

)}
dz

Now we use that by concavity inequality, we have that, for q ≥ 1 and x, y ≥ 0, (x + y)1/q ≥
21/q−1(x1/q + y1/q), which implies for p ≥ 2,

E

(∣∣∣∣
Sn
n

∣∣∣∣
p

−Hp

)

+

≤ 2 exp(−n22/p−2H2/v2)

∫ +∞

0
exp

(
−n2

2/p−1z2/p

2v2

)
dz

+2exp(−n21/p−2H/c)

∫ +∞

0
exp

(
−n2

1/p−1z1/p

2b

)
dz

=
2pΓ(p/2 + 1)

np/2
exp(−n22/p−2H2/v2) +

2pΓ(p+ 1)

np
exp(−n21/p−2H/b),

which is the announced result. �.

Proof of Proposition 5.1. For k > m⋆, we have

‖ĝℓ,k − ĝℓ,m⋆‖2 =

∫

πm⋆≤|u|≤πk

∣∣∣∣∣
f̂∗Y (u)

f∗ε (u)

∣∣∣∣∣

2ℓ

du

≤
∫

πm⋆≤|u|≤πk

22ℓ−1|f̂∗Y (u)− f∗Y (u)|2ℓ
|f∗ε (u)|2ℓ

du+

∫

πm⋆≤|u|≤πk

22ℓ−1|f∗Y (u)|2ℓ
|f∗ε (u)|2ℓ

du

=

∫

πm⋆≤|u|≤πk

22ℓ−1|f̂∗Y (u)− f∗Y (u)|2ℓ
|f∗ε (u)|2ℓ

du+ 22ℓ−1‖gℓ,k − gℓ,m⋆‖2.

Therefore

E

(
sup
k>m⋆

{
‖ĝℓ,m⋆ − ĝℓ,k‖2 − 22ℓ−1‖gℓ,k − gℓ,m⋆‖2 − penℓ(m

⋆, k)
}
+

)

≤ E

(
sup
k>m⋆

{∫

πm⋆≤|u|≤πk

22ℓ−1|f̂∗Y (u)− f∗Y (u)|2ℓ
|f∗ε (u)|2ℓ

du− penℓ(m
⋆, k)

}

+

)

≤
∑

k>m⋆

E

(∫

πm⋆≤|u|≤πk

22ℓ−1|f̂∗Y (u)− f∗Y (u)|2ℓ
|f∗ε (u)|2ℓ

du− penℓ(m
⋆, k)

)

+

=
∑

k>m⋆

E

(∫

πm⋆≤|u|≤πk

22ℓ−1

|f∗ε (u)|2ℓ
(
|f̂∗Y (u)− f∗Y (u)|2ℓ −

λℓ(m
⋆, k)

nℓ

)

+

du

)
.(28)

We apply now Lemma 5.1 with b = v = 1 and

H2ℓ ≥ 22ℓ−1

nℓ
(
log(1 + (k −m⋆)2(∆ℓ(k)−∆ℓ(m

⋆))
)ℓ
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in the first exponential term of the bound, and

H2ℓ ≥ 24ℓ−1

n2ℓ
(
log(1 + (k −m⋆)2(∆ℓ(k)−∆ℓ(m

⋆))
)2ℓ

in the second term. We obtain

E

(
|f̂∗Y (u)− f∗Y (u)|2ℓ −

λℓ(m
⋆, k)

nℓ

)

+

≤ 22ℓℓ!

nℓ
1

(k −m⋆)2(∆ℓ(k)−∆ℓ(m⋆))

+
22ℓ(2ℓ)!

n2ℓ
1

(k −m⋆)2(∆ℓ(k)−∆ℓ(m⋆))
.

Plugging this into (28) yields

E

(
sup
k>m⋆

{
‖ĝℓ,m⋆ − ĝℓ,k‖2 − 22ℓ−1‖gℓ,k − gℓ,m⋆‖2 − penℓ(m

⋆, k)
}
+

)

≤ 22ℓ−1

(
22ℓℓ!

nℓ
+

22ℓ(2ℓ)!

n2ℓ

) ∑

k>m⋆

1

(k −m⋆)2
≤ π2

6

24ℓ(2ℓ)!

nℓ
.

This ends the proof Proposition 5.1. �

5.5. Proof of Theorem 3.1. Let us first introduce some notations. For k > m, set

∆̂(m,k) = ∆̂(k)− ∆̂(m) and ∆̂f (m,k) = ∆̂f (k)− ∆̂f (m),

q̂en(m,k) := 22ℓ+1λ̂21(m,k)
∆̂(m,k)

nℓ
+ 22ℓ+1κ2ℓ logℓ(M(k −m))

∆̂f (m,k)

M ℓ

with

λ̂1(m,k) = max

{√
2−1/ℓ+2 log

(
1 + ∆̂(m,k)(k −m)2

)
,
2−1/2ℓ+2

√
n

log
(
1 + ∆̂(m,k)(k −m)2

)}
.

Now we can start the proof of Theorem 3.1. We denote by m⋆ the oracle cutoff defined by

m⋆ = arg min
m∈Mn

{
−‖gℓ,m‖2 + Vℓ(m) + qenℓ(m)

}
,

where Vℓ(m) is defined by (14). We have

(29) ‖gℓ − g̃ℓ,m̃‖2 ≤ 2 ‖gℓ − g̃ℓ,m⋆‖2 + 2 ‖g̃ℓ,m⋆ − g̃ℓ,m̃‖2

• Let us notice on the set G = {m̃ ≤ m⋆} :

‖g̃ℓ,m⋆ − g̃ℓ,m̃‖2 1G =
(
‖g̃ℓ,m⋆‖2 − ‖g̃ℓ,m̃‖2

)
1G.

Besides according to the definition of m̃, one has the following inequality:

(30) −‖g̃ℓ,m̃‖2 + q̂enℓ(m̃) ≤ −‖g̃ℓ,m⋆‖2 + q̂enℓ(m
⋆),

which implies −‖g̃ℓ,m̃‖2 ≤ −‖g̃ℓ,m⋆‖2 + q̂enℓ(m
⋆). Thus

‖g̃ℓ,m⋆ − g̃ℓ,m̃‖2 1G =
(
‖g̃ℓ,m⋆‖2 − ‖g̃ℓ,m̃‖2

)
1G ≤ q̂enℓ(m

⋆).

Taking expectation, we apply the following Lemma

Lemma 5.2. There exists a positive constant C such that for any arbitrary m ∈ Mn

(31) E [q̂enℓ(m)] ≤ Cqenℓ(m).
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It yields for some positive constant C

E

[
‖gℓ − g̃ℓ,m̃‖2 1G

]
≤ 2E

[
‖gℓ − g̃ℓ,m⋆‖2

]
+ 2E [q̂enℓ(m

⋆)]

≤ 2 ‖gℓ − gℓ,m⋆‖2 + 2Vℓ(m
⋆) + 2Cqenℓ(m

⋆).

We just proved the result on G

(32) E
[
‖gℓ − g̃ℓ,m̃‖21G

]
≤ C inf

m∈Mn

{
‖gℓ − gℓ,m‖2 + Vℓ(m) + qenℓ(m)

}
.

• We now consider the set Gc = {m̃ > m⋆}.

‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 1Gc =

(
‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 − 4 ‖gℓ,m̃ − gℓ,m⋆‖2 − 1

2
q̂en(m⋆, m̃)

)
1Gc

+

(
4 ‖gℓ,m̃ − gℓ,m⋆‖2 + 1

2
q̂en(m⋆, m̃)

)
1Gc

≤ sup
k≥m⋆

k∈Mn

{
‖g̃ℓ,k − g̃ℓ,m⋆‖2 − 4 ‖gℓ,k − gℓ,m⋆‖2 − 1

2
q̂en(m⋆, k)

}

+

+ 4‖gℓ − gℓ,m⋆‖2 + 1

2

∑

k≥m⋆

k∈Mn

q̂en(m⋆, k)1 {m̃ = k} .(33)

Let us first notice the following inequality

∀k > m, q̂en(m,k) ≤ q̂enℓ(k).(34)

Besides by definition of m̃ (see (15)), on the set {m̃ = k} ∩Gc and applying (30), we have

1

2
(q̂enℓ(k) − q̂enℓ(m

⋆)) ≤ ‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 − 1

2
(q̂enℓ(k)− q̂enℓ(m

⋆))

so that
1

2
q̂enℓ(k) ≤ ‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 − 1

2
q̂enℓ(m

⋆, k) +
1

2
q̂en(m⋆)

≤
(
‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 − 4 ‖gℓ,m̃ − gℓ,m⋆‖2 − 1

2
q̂en(m⋆, k)

)
+ 4 ‖gℓ,m̃ − gℓ,m⋆‖2 + 1

2
q̂enℓ(m

⋆)

≤
(
‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 − 4 ‖gℓ,m̃ − gℓ,m⋆‖2 − 1

2
q̂en(m⋆, k)

)
+ 4 ‖gℓ − gℓ,m⋆‖2 + 1

2
q̂enℓ(m

⋆)(35)

Now using Inequalities (34) and (35)

1

2

∑

k≥m⋆

k∈Mn

q̂en(m⋆, k) ≤ sup
k≥m⋆

k∈Mn

{
‖g̃ℓ,k − g̃ℓ,m⋆‖2 − 4 ‖gℓ,m̃ − gℓ,m⋆‖2 − 1

2
q̂en(m⋆, k)

}

+

+ 4 ‖gℓ − gℓ,m⋆‖2 + 1

2
q̂enℓ(m

⋆).

From Inequality (33), we now have

‖g̃ℓ,m̃ − g̃ℓ,m⋆‖2 1Gc ≤ 2 sup
k≥m⋆

k∈Mn

{
‖g̃ℓ,k − g̃ℓ,m⋆‖2 − 4 ‖gℓ,k − gℓ,m⋆‖2 − 1

2
q̂en(m⋆, k)

}

+

+8‖gℓ − gℓ,m⋆‖2 + 1

2
q̂enℓ(m

⋆).

Taking expectation the first summand is negligible by applying the following Proposition.
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Proposition 5.2. Under (A1) and (A2), there is a positive constant C such that for any
arbitrary m ∈ Mn

(36) E


 sup

k≥m
k∈Mn

{
‖g̃ℓ,k − g̃ℓ,m‖2 − 22ℓ ‖gℓ,k − gℓ,m‖2 − 1

2
q̂en(m,k)

}

+


 ≤ C

nℓ
+

C

M ℓ
.

Finally gathering the last result with (29), we have

E

[
‖gℓ − g̃ℓ,m̃‖2 1Gc

]
≤ C

(
‖gℓ − gℓ,m⋆‖2 + Vℓ(m

⋆) + qen(m⋆)
)
+ C ′

(
1

nℓ
+

1

M ℓ

)
(37)

This combining with (32) complete the proof. �

5.6. Proof of Lemma 5.2. Before proving Lemma 5.2, we first need to prove two auxiliary
lemmas. In the sequel, C will always denote some universal positive constant, but the value
may vary from line to line.

Lemma 5.3. For an estimator of f∗ε defined by (10), assume κ >
√
c1p. Let τ ≥ 2κ and x ≥ 1.

Then for some positive constant C

P

[
∃u ∈ R : |f̃∗ε (u)− f∗ε (u)| > τ (log(Mx))1/2 w(u)−1M−1/2

]
≤ Cx−pM−p

Proof of Lemma 5.3. We write the decomposition
∣∣∣f̃∗ε (u)− f∗ε (u)

∣∣∣ ≤
∣∣∣f̃∗ε (u)− f̂∗ε (u)

∣∣∣ +
∣∣∣f̂∗ε (u)− f∗ε (u)

∣∣∣ ≤ 2kM (u) +
∣∣∣f̂∗ε (u)− f∗ε (u)

∣∣∣ .

Using the previous inequality and applying Lemma 5.5 in Kappus (2014), we have

P

[
∃u ∈ R : |f̃∗ε (u)− f∗ε (u)| > τ (log(Mx))1/2 w(u)−1M−1/2

]

≤ P

[
∃u ∈ R : |f̂∗ε (u)− f∗ε (u)|+ 2kM (u) > τ (log(Mx))1/2 w(u)−1M−1/2

]

≤ P

[
∃u ∈ R : |f̂∗ε (u)− f∗ε (u)| > (τ − 2κ) (log(Mx))1/2 w(u)−1M−1/2

]

≤ Cx−pM−p. �

Proof of Lemma 5.2. For q = 1/2 or 1, using Cauchy-Schwarz’s inequality, we have

E

[
logq

(
1 + ∆̂(m)m2

)
∆̂(m)

]
≤
√

E

[
log2q

(
1 + ∆̂(m)m2

)]
E

[
∆̂2(m)

]

Let Ap(x) =

∣∣∣∣
1

f̃∗ε (x)
− 1

f∗ε (x)

∣∣∣∣
2p
/(

1

|f∗ε (x)|2p
∧ k2pM (x)

|f∗ε (x)|4p

)

∆̂(m) =
1

2π

∫ πm

−πm

w(u)−2

|f̃∗ε (u)|2ℓ
du =

1

2π

∫ πm

−πm
w(u)−2ℓ

∣∣∣∣
1

f̃∗ε (u)
− 1

f∗ε (u)
+

1

f∗ε (u)

∣∣∣∣
2ℓ

du

≤ 2∆(m) +
1

π

∫ πm

−πm
w(u)−2ℓ

∣∣∣∣
1

f̃∗ε (u)
− 1

f∗ε (u)

∣∣∣∣
2ℓ

du

≤ 2∆(m) + 2∆(m) sup
u∈R

Aℓ(u) ≤ 2∆(m)(1 + sup
u∈R

Aℓ(u))
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and applying Lemma 4.1 in Kappus and Mabon (2013), we get E

[
∆̂2(m)

]
≤ 4C∆2(m). By

Jensen inequality (since log is concave)

E

[
log2q

(
1 + ∆̂(m)m2

)]
≤ log2q

(
E

[
1 + ∆̂(m)m2

])
≤ log2q

(
1 + E

[
∆̂(m)

]
m2
)

≤ log2q
(
1 + 2∆(m)

(
1 + E

[
sup
u∈R

Aℓ(u)

])
m2

)

≤ log2q
(
1 + 2∆(m) (1 + C)m2

)
≤ C log2q

(
1 + ∆(m)m2

)

So

E

[
logq

(
1 + ∆̂(m)m2

)
∆̂(m)

]
≤ C logq

(
1 + ∆(m)m2

)
∆(m)

which means E[q̂en1(m)] ≤ Cqen1(m). Consider now q̂en2(m). Another application of Lemma
4.1 in Kappus and Mabon (2013) yields

1

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f̂∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

du

]

≤ 2

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

du

]
+

2

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

du

]

≤ 4

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f∗(u)|2ℓ
|f∗ε (u)|2ℓ

du

]
E

[
1 + sup

u∈R
A2ℓ(u)

]

+
2

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

du

]

≤ 4

M ℓ
∆f (m)E

[
1 + sup

u∈R
A2ℓ(u)

]
+

2

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

du

]

We use the fact that f̃∗ε (u) ≥M−1/2(logM)1/2w(u)−1, w(u) ≤ 1 as well as the independence of

f̂∗Y and f̃∗ε to find

1

M ℓ
E

[
1

2π

∫ πm

−πm

w(u)−2ℓ|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

du

]

=
1

M ℓ

1

2π

∫ πm

−πm
E

[
|f̂∗Y (u)− f∗Y (u)|2ℓ

]
E

[
w(u)−2ℓ

|f̃∗ε (u)|4ℓ
du

]
≤ cℓ
nℓ

E

[
1

2π

∫ πm

−πm

w(u)−2ℓ

|f̃∗ε (u)|2ℓ
du

]

where cℓ is the constant of the Rosenthal inequality. Applying the same arguments as for the

bounding of E [q̂en1(m)], we get E

[
1

2π

∫ πm
−πm

w(u)−2ℓ

|f̃∗ε (u)|2ℓ
du

]
≤ C∆(m). This completes the proof.

�

5.7. Proof of Proposition 5.2. For k > m, let us introduce the following notation : A(m,k) :=
{u ∈ R, |u| ∈ [πm, πk]}. We need to prove auxiliary lemmas before proving Proposition 5.2.

Lemma 5.4. There is a positive constant C such that for any arbitrary m ∈ Mn

(38) E

[
sup
k≥m

{
1

2π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du− 1

22ℓ+1
q̂en1(m,k)

}

+

]
≤ C

nℓ
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Proof of Lemma 5.4.

E


 sup

k≥m
k∈Mn

{
1

2π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du− 1

22ℓ+1
q̂en1(m,k)

}

+




≤ E



∑

k≥m
k∈Mn

E

[{
1

2π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du− 1

22ℓ+1
q̂en1(m,k)

}

+

∣∣∣f̃∗ε

]



≤ E



∑

k≥m
k∈Mn

1

2π

∫

A(m,k)
E

[{
|f̂∗Y (u)− f∗Y (u)|2ℓ

|f̃∗ε (u)|2ℓ
− 1

22ℓ+1

λ̂2(m,k)

nℓ|f̃∗ε (u)|2ℓ

}

+

∣∣∣f̃∗ε

]
du




Now f̂∗Y (u)/f̃
∗
ε (u) (conditional on f̃∗ε (u)) is the sum of n i.i.d. random variables with variance

v2 ≤ 1/|f̃∗ε (u)|2 which are bounded by 2/f̃∗ε (u). Thus Lemma 5.1 gives

E

[{
|f̂∗Y (u)− f∗Y (u)|2ℓ

|f̃∗ε (u)|2ℓ
− 1

22ℓ+1

λ̂2(m,k)

nℓ|f̃∗ε (u)|2ℓ

}

+

∣∣∣f̃∗ε

]

≤ 2ℓΓ(2ℓ−1 + 1)
n−ℓ

|f̃∗ε (u)|2ℓ
exp

(
−λ̂2(m,k)

)
+ 2ℓΓ(2ℓ + 1)

n−2ℓ

|f̃∗ε (u)|2ℓ
exp

(
−n1/2λ̂(m,k)

)

≤ 2ℓΓ(2ℓ−1 + 1)
n−ℓ

|f̃∗ε (u)|2ℓ
(k −m)−2∆̂(m,k)−1 + 2ℓΓ(2ℓ + 1)

n−2ℓ

|f̃∗ε (u)|2ℓ
(k −m)−2∆̂(m,k)−1

where we used the fact that

λ̂(m,k) ≤ max

{√
2−1/ℓ+2 log

(
1 + ∆̂(m,k)(k −m)2

)
,
2−1/2ℓ+2

√
n

log
(
1 + ∆̂(m,k)(k −m)2

)}
.

We have thus shown for a universal positive constant C that, for any m,k ∈ Mn

∫

A(m,k)
E

[{
|f̂∗Y (u)− f∗Y (u)|2ℓ

|f̃∗ε (u)|2ℓ
− 1

2ℓ+1

λ̂2(m,k)

nℓ|f̃∗ε (u)|2ℓ

}

+

∣∣∣f̃∗ε

]
du

≤ C

nℓ
(k −m)−2∆̂(m,k)−1

∫

A(m,k)

du

|f̃∗ε (u)|2ℓ
≤ C

nℓ
(k −m)−2.

Finally E

[
supk≥m{(2π)−1

∫
A(m,k)(|f̂∗Y (u)− f∗Y (u)|2ℓ)/|f̃∗ε (u)|2ℓdu− 2−2ℓ+1q̂en1(m,k)}+

]
≤ C/nℓ,

which ends the proof. �



ESTIMATION OF CONVOLUTION IN THE MODEL WITH NOISE 23

Proof of Proposition 5.2. Applying Plancherel’s formula we get

‖g̃ℓ,k − g̃ℓ,m‖2 = 1

2π

∫

A(m,k)

|f̂∗Y (u))|2ℓ
|f̃∗ε (u)|2ℓ

du

=
1

2π

∫

A(m,k)

|f̂∗Y (u))|2ℓ
|f̃∗ε (u)|2ℓ

1{|f̃∗

ε (u)|>|f∗

ε (u)|}du+
1

2π

∫

A(m,k)

|f̂∗Y (u))|2ℓ
|f̃∗ε (u)|2ℓ

1{|f̃∗

ε (u)|≤|f∗

ε (u)|}du

:= S1 + S2

Let us consider S1.

S1 ≤ 22ℓ−1

π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du+
22ℓ−1

π

∫

A(m,k)

|f∗Y (u)|2ℓ
|f∗ε (u)|2ℓ

du

︸ ︷︷ ︸
22ℓ‖gℓ,k−gℓ,m‖2

,(39)

now S2,

S2 =
1

2π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

∣∣∣∣
1

f̃∗ε (u)
− 1

f∗ε (u)
+

1

f∗ε (u)

∣∣∣∣
2ℓ

1{|f̃∗

ε (u)|>|f∗

ε (u)|}du

≤ 22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

∣∣∣∣
1

f̃∗ε (u)
− 1

f∗ε (u)

∣∣∣∣
2ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du

+
22ℓ−1

π

∫

A(m,k)

∣∣∣∣∣
f̂∗Y (u))

f∗ε (u)

∣∣∣∣∣

2ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du := S2,1 + S2,2.(40)

Yet for the second term of (40), we can notice

(41) S2,2 ≤
24ℓ−2

π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du+ 24ℓ−1 ‖gℓ,k − gℓ,m‖2 .

For the first term of (40) we can write

S2,1 =
22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|2ℓ|f∗ε (u)|2ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du

≤ 22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du.(42)

Let us introduce the set following set

(43) C(m,k) =
{
∀u ∈ R : |f̃∗ε (u)− f∗ε (u)|2 ≤ 4κ2 log (M(k −m))w(u)−2M−1

}

On C(m,k), the following inequalities can be deduced

1

2π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du

≤ 4ℓκ2ℓ logℓ (M(k −m))M−ℓ 1

2π

∫

A(m,k)

w(u)−2ℓ|f̂∗Y (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)|≤|f∗

ε (u)|}du

≤ 4ℓκ2ℓ logℓ (M(k −m))M−ℓ∆̂f (m,k) ≤ 1

22ℓ+1
q̂en2(m,k).
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Gathering Equations (39), (41) and (42), we have

‖g̃ℓ,k − g̃ℓ,m‖2 = 24ℓ−2

π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du+ 24ℓ−1 ‖gℓ,k − gℓ,m‖2

+
22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du [1C(m,k) + 1C(m,k)c ]

≤ 24ℓ−2

π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du+ 24ℓ−1 ‖gℓ,k − gℓ,m‖2 + 1

2
q̂en2(m,k)

+
22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du1C(m,k)c .(44)

Starting from (44), we can now write the following inequalities

‖g̃ℓ,k − g̃ℓ,m‖2 − 24ℓ−1 ‖gℓ,k − gℓ,m‖2 − 1

2
q̂en(m,k) ≤ 24ℓ−2

π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du

−1

2
q̂en1(m,k) +

22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du1C(m,k)c

≤ 22ℓ

{
1

2π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du− 1

22ℓ+1
q̂en1(m,k)

}

+

+
22ℓ−1

π

∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du1C(m,k)c .

Taking expectation we get

E


 sup

k≥m
k∈Mn

{
‖g̃ℓ,k − g̃ℓ,m‖2 − 24ℓ−1 ‖gℓ,k − gℓ,m‖2 − 1

2
q̂en(m,k)

}

+




≤
∑

k≥m
k∈Mn

E

[
22ℓ

{
1

2π

∫

A(m,k)

|f̂∗Y (u)− f∗Y (u)|2ℓ
|f̃∗ε (u)|2ℓ

du− 1

22ℓ+1
q̂en1(m,k)

}

+

]

+
22ℓ

2π

∑

k≥m
k∈Mn

E

[∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du1C(m,k)c

]
.

We can notice that on C(m,k)c defined by (43) following Lemma 5.3 for x = k−m and p = 3ℓ,
we have P [C(m,k)c] ≤M−3ℓ(k −m)−3ℓ and we get

∑

k≥m
k∈Mn

E

[∫

A(m,k)
|f̂∗Y (u)|2ℓ

|f̃∗ε (u)− f∗ε (u)|2ℓ
|f̃∗ε (u)|4ℓ

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du1C(m,k)c

]

≤
∑

k≥m
k∈Mn

E

[∫

A(m,k)
|f̂∗Y (u)|2ℓ

22ℓ|f∗ε (u)|2ℓ
k4ℓM (u)

1{|f̃∗

ε (u)≤|f∗

ε (u)|}du1C(m,k)c

]
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≤
∑

k≥m
k∈Mn

E

[∫

A(m,k)
22ℓκ−4ℓ(logM)−2ℓw(u)4ℓM2ℓdu1C(m,k)c

]

≤
∑

k≥m
k∈Mn

22ℓκ−4ℓ(logM)−2ℓM2ℓ(k −m)P [C(m,k)c] ≤ C

M ℓ
,

and applying Lemma 5.4, we have

E


 sup

k≥m
k∈Mn

{
‖g̃ℓ,k − g̃ℓ,m‖2 − 24ℓ−1 ‖gℓ,k − gℓ,m‖2 − 1

2
q̂en(m,k)

}

+


 ≤ C

nℓ
+

C

M ℓ

This completes the proof.�

6. Appendix

We recall the following result, which can be found in Shiryaev (1996) (inequality (26) p.498).

Lemma 6.1 (Marcinkiewicz & Zygmund Inequality). Let n be a positive integer, p > 1 and
U1, . . . , Un be n zero mean independent random variables such that supj∈{1,...,n} E(|Uj |p) < ∞.

Then, for Bp = (18p)p(p/(p − 1))p/2,

E(|
n∑

j=1

Uj |p) ≤ BpE(|
n∑

j=1

|Uj |2|p/2),

We also give the following useful lemma, see Lemma 2 p. 35 in Butucea and Tsybakov (2008).
For two functions u, v, we denote u(x) . v(x) if there exists a positive constant C not depending
on x such that u(x) ≤ Cv(x) and u(x) ≈ v(x) if u(x) . v(x) and v(x) . u(x).

Lemma 6.2. Consider c, s nonnegative real numbers, and γ a real such that 2γ > −1 if c = 0
or s = 0. Then, for all m > 0,

•
∫m
−m(x2 + 1)γ exp(c|x|s)dx ≈ m2γ+1−secm

s

,

and if in addition 2γ > 1 if c = 0 or s = 0,

•
∫∞
m (x2 + 1)−γ exp(−c|x|s)dx ≈ m−2γ+1−se−cms

.
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