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ABSTRACT

We consider the audio declipping problem by using iterative thresh-

olding algorithms and the principle of social sparsity. This re-

cently introduced approach features thresholding/shrinkage oper-

ators which allow to model dependencies between neighboring

coefficients in expansions with time-frequency dictionaries. A new

unconstrained convex formulation of the audio declipping problem

is introduced. The chosen structured thresholding operators are

the so called windowed group-Lasso and the persistent empirical

Wiener. The usage of these operators significantly improves the

quality of the reconstruction, compared to simple soft-thresholding.

The resulting algorithm is fast, simple to implement, and it outper-

forms the state of the art in terms of signal to noise ratio.

Index Terms— Structured sparsity, Audio declipping, Iterative

Shrinkage/Thresholding Algorithm

1. INTRODUCTION

1.1. Problem Statement

An important task in digital audio restoration is the recovery of miss-

ing or corrupted samples of a signal. Two important cases of this

problem concern a) missing samples (or even full intervals of sam-

ples) and b) clipped audio. While the former mostly arises through

errors of signal transmission, clipping denotes a situation in which a

signal’s amplitude exceeds a certain threshold and is truncated. For

clipped signals, as opposed to the data loss case, at least the lost sam-

ples’ correct sign values are known. Clipping is a common problem

in digital audio systems whose maximum gain can be exceeded for

many reasons. The resulting signal truncation leads to very unpleas-

ant digital distortion.

Based on the assumption of sparse synthesis coefficients of the

original signal, the declipping problem can be modeled by

α̂ = argmin
α

‖α‖0 s.t. ‖yr −M
r
Φα‖22 ≤ ǫ (1)

Here, α ∈ C
N denotes the synthesis coefficients and Φ ∈

C
T×N the synthesis operator corresponding to the employed time-

frequency dictionary. The vector yr = Mry ∈ R
M denotes the

reliable samples of the observed signal y ∈ R
T , that is, the un-

clipped samples in the clipping case or just the available samples in

the case of data packet loss. Then, Mr ∈ R
M×T is a matrix com-

prised of those rows of the identity matrix that choose the entries
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of the reliable samples. Regarding the synthesis operator, Gabor

frames (a.k.a. Short-Time Fourier-Transform, cf. [1,2]) have proven

to be well suited for the representation of audio signals, especially

in the context of sparse decomposition. Therefore, Φ will denote

the matrix associated to a Gabor dictionary in the following.

In this paper, we specifically address the important problem of

audio declipping. Here, an additional constraint can be added to (1):

reconstructed samples must be greater (in absolute value) than the

clipping threshold. In analogy to the definition of Mr , let Mc ∈
R

(T−M)×T denote the matrix picking the clipped samples. Also,

let θclip ∈ R
(T−M) be the vector of clipped samples, taking only

the values ±θclip, in dependence on the sign of the true values in y.

Then, for declipping, the problem becomes

α̂ = argmin
α

‖α‖0 (2)

s.t. ‖yr −M
r
Φα‖22 ≤ ǫ and |Mc

Φα| ≥ |θclip|

1.2. Previous Work

Classical approaches to audio interpolation and declipping include

autoregressive (AR) modeling [3], signal matching with bandwidth

constraints [4], and Bayesian estimation [5]. A sparsity based formu-

lation has been provided in [6], with (1) serving as the basic problem

which was solved using orthogonal matching pursuit (OMP). The

authors dubbed the method audio inpainting in reference to sparsity

constrained image inpainting [7].

It is well known that the convex relaxation of (1) leads to the

Lasso [8] or Basis Pursuit Denoising problem [9], yielding the fol-

lowing minimization problem:

argmin
α

1

2
‖yr −M

r
Φα‖22 + λ‖α‖1 . (3)

This convex non-smooth functional can be minimized by the pop-

ular iterative shrinkage/thresholding algorithm (ISTA) [10], also

called forward-backward algorithm [11], or its accelerated version

FISTA [12]. The most straight-forward approach for obtaining a

convex relaxation of (2) with linear constraints is to consider (3)

with the additional constraint to choose α, such that

|Mc
Φα| ≥ |θclip| (4)

However, non-smooth convex problems with such constraints cannot

be minimized directly by a forward-backward strategy. Indeed, the

proximity operator of the ℓ1 penalty with the linear constraint cannot

be computed in closed-form, and one has to use an inner iteration

inside the forward-backward algorithm to approximate it. Thus, a

common approach is to use a Douglas-Rachford algorithm as inner

loop, see e.g. [13], but this is usually accompanied by a very high

computational burden.



In the OMP based approach [6], the clipping constraint in (2),

as well as an additional maximum constraint forcing the declipped

signal below a maximum value, are satisfied by using a two-step

strategy. First, OMP recovers the time-frequency support of the so-

lution. Second, standard convex optimization solvers are applied on

the obtained support. In comparison to traditional approaches, this

approach leads to improvements in terms of signal to noise ratio, but

has the shortcoming of being computationally very expensive, as it

eventually employs high dimensional convex optimization.

An alternative iterative hard-thresholding formulation for de-

clipping was recently described in [14]. Here, the iteration con-

sists of a gradient descent step followed by hard-thresholding and

thus bears similarity to iterative approaches as (F)ISTA. The authors

reported improvements over the constrained OMP method [6], al-

though their evaluation was based on a rather small set of audio ex-

amples. While the algorithm to be presented in the following also

makes use of an ISTA-type iteration and shares some of the prop-

erties of the hard-thresholding approach, it was developed indepen-

dently, cf. [15].

Besides the sparsity principle used in (1), many authors have

investigated various structured sparsity approaches. This includes

perceptually-informed compressed sensing [16] and Group-Lasso

techniques [17] which allow to define grouping of coefficients to

be jointly processed. Various extension to groups including over-

laps have been proposed, such as the Latent-Group-Lasso [18, 19].

More specifically in the context of audio processing, Group-Lasso

with overlap has been studied in [20]. The main drawback of these

approaches is the high computational load required to solve the suit-

able functionals. The methods of social sparsity proposed in the

current contribution avoid this practical drawback, cf. [21] for more

detailed theoretical background.

This article features two main contributions. First, we propose

an unconstrained convex relaxation of (2) which yields a solution

with desired declipping behavior: the reconstructed samples’ abso-

lute values are above the clipping threshold. This unconstrained for-

mulation allows to employ ISTA-type algorithms. Second, we ex-

plore the benefits of the recently introduced concept of social spar-

sity [21], in order to take into account temporal dependencies be-

tween Gabor synthesis coefficients. The remainder of the paper is

organized as follows. Section 2 introduces the unconstrained convex

formulation for the declipping problem and derives the associated

ISTA algorithm. Section 3 is a brief recap of social sparsity and as-

sociated structured shrinkage operators to be embedded in ISTA in

practice. Section 4 presents numerical experiments on the declipping

problem and compares the approach with the algorithms presented

in [6] and [14].

2. AN UNCONSTRAINED CONVEX FORMULATION

In this contribution we propose to relax the constraints (4) by means

of a squared hinge function. This is a well-known function in clas-

sification, see e.g. [22], defined as follows:

h2 : R −→ R+ z 7→ h2(z) =

{

z2 if z < 0

0 if z ≥ 0

By application to z = x−θclip, for known clipping values θclip > 0,

the squared hinge sets x “free” if |x| ≥ θclip, and penalizes other-

wise. Using the notation

[θclip −x]2+ =
∑

k:θ
clip
k

>0

h2(xk − θclipk )+
∑

k:θ
clip
k

<0

h2(θclipk −xk)

we thus introduce the following unconstrained convex optimization

problem

argmin
α

1

2
‖yr −M

r
Φα‖22 +

1

2
[θclip −M

c
Φα]2+ + λ‖α‖1 (5)

Since the squared hinge is differentiable with Lipschitz-continuous

gradient, cf. [22], so is

α 7→
1

2
‖yr −M

r
Φα‖22 +

1

2
[θclip −M

c
Φα]2+ (6)

and any algorithm from the ISTA family can be applied to solve (5),

cf. [11, 12].

3. SOCIAL SPARSITY AND THE PROPOSED

ALGORITHM

For approximating a solution to the relaxed problem (5), our work

explores the application of social sparsity operators [21]. Social

sparsity allows to incorporate a priori knowledge about signal classes

and artifacts. Given the structure of the declipping problem it is nat-

ural to take temporal correlation into account: signal components

such as harmonics which extend over time induce temporally per-

sistent coefficients. On the other hand, isolated high-energy coeffi-

cients or temporally localized spread of energy over frequency may

be attributed to the corruption of the signal and should therefore be

discarded in the reconstruction process. By extending the usual soft

thresholding, corresponding to the ℓ1 constraint as used in (5), it be-

comes possible to exploit the persistence-properties of signal com-

ponents through time-frequency neighborhood systems [21]. Note

that these generalized operators do not directly correspond to the

minimization of a convex functional any more.

Denote by N (t) the set of indices forming the neighborhood

of the index t for time-frequency coefficients α = {αtf} and set

(x)+ = max(x, 0). We can then restate the classic Lasso and its

persistent variation, the so-called Windowed Group-Lasso (WGL)

[23]:

• Lasso : α̃tf = S
L
λ (αtf ) = αtf

(

1− λ
|αtf |

)+

• WGL : α̃tf = S
WGL
λ (αtf ) = αtf

(

1− λ
√

∑

t′∈N(t) |αt′f |2

)+

The application of the shrinkage operators associated to Lasso

and WGL, respectively, typically leads to a loss of energy in the

estimated signal. Thus, in practice, it is common to first use the

Lasso in order to select the relevant time-frequency atoms, and to

perform a least-square estimation of the signal w.r.t. the selected

atoms [24] of the employed dictionary in a second step. Another

strategy, not requiring the least-squares step, is to design threshold-

ing operators which preserve the energy in the big coefficients, and

which can also be used inside ISTA [25]. The most well known is

the Empirical Wiener (EW) operator [26], also known as nonnega-

tive garrote shrinkage [25]. The EW operator features an altered ex-

ponentiation of the coefficient energy while having the same support

as the Lasso. Such an exponentiation can also be used on the WGL

operator, yielding the persistent EW (PEW) [27]. These operators

read

• EW : α̃tf = S
EW
λ (αtf ) = αtf

(

1− λ2

|αtf |2

)+

• PEW : α̃tf = S
PEW
λ (αtf ) = αtf

(

1− λ2
∑

t′∈N(t) |αt′f |2

)+



These generalized thresholding operators, denoted by Sλ for a

threshold λ, are subsequently used in the ISTA-framework. Algo-

rithm 1 lays out the details and is called relaxed forward backward.

Here, γ denotes the coefficient of relaxation. For the Lasso, the

convergence of the iterates α(k) towards a minimizer of (5) can be

proven for −1 < γ < 1/2 and the convergence of the value of the

minimization functional towards its minimum for 1/2 ≤ γ < 1, see

[11].

Algorithm 1: relaxed version of ISTA

Initialization: α(0) ∈ C
N , z0 = α

(0), k = 1, δ = ‖ΦΦ∗‖
repeat

g1 = −Φ∗MrT (yr −MrΦz(k−1));

g2 = −Φ∗McT [θclip −McΦz(k−1)]+;

α
(k) = Sλ/δ

(

z(k−1) − 1
δ
(g1 + g2)

)

;

z(k) = α
(k) + γ(α(k) −α

(k−1));
k = k + 1;

until convergence;

4. EXPERIMENTS

4.1. Setup

We choose a tight Gabor frame1 as time-frequency dictionary Φ in

Algorithm 1. The frame is based on a Hann window of 1024 sam-

ples length (about 64 ms at 16 kHz audio sampling frequency) and a

time-shift of 256 samples. Note that the corresponding analysis op-

erator Φ∗ is also known as the Sliding Window or Short-Time Fourier

Transform. Concerning the relaxation coefficient γ in Algorithm 1,

we observed empirically that the choice of γ = 0.9 leads to an al-

gorithm which is faster than FISTA and less prone to numerical er-

rors. The parameter γ will thus be held constant in the following.

We evaluate declipping performance using the measure of SNRm

which measures estimation quality on the clipped, i.e. missing val-

ues only. For a clipped signal y and its estimation ŷ, it is computed

as SNRm(y, ŷ) = 20 log ‖Mcy‖
‖Mc(y−ŷ)‖

.

For the subsequently described experiments, we used audio data

provided by http://small-project.eu/ and employed for the

evaluation of the respective audio inpainting toolbox [6]. Specifi-

cally, our evaluations are based on the toolbox’s speech and music

data sets, sampled at 16kHz, containing 10 different signals, each of

5 seconds duration. All signals were range-normalized, in order to

have sample values lower than 1, and consecutively clipped at levels

0.1, 0.2, . . . , 0.9.

The operator abbreviated by OMP in the following refers to the

min-max-constrained orthogonal matching pursuit, the best perform-

ing operator in [6]. We also include results from [14]; however, in

order to avoid the introduction of bias due to a different transform, in

our evaluation we use a Gabor transform with the above mentioned

settings instead of the discrete Cosine transform employed within

the consistent iterative hard-thresholding algorithm (HT) proposed

in [14]. Here, the corresponding algorithm is run on the entire sig-

nal instead of a windowed version, and we use the strategy exposed

in section 4.2 to decrease the thresholds λ. This allows for the same

basic setup for all the algorithms. Sound examples featuring all men-

tioned algorithms can be found under http://homepage.univie.

ac.at/monika.doerfler/StrucAudio.html.

1A frame is tight, if ΦΦ
∗
= c · I , for some positive constant c and I the

identity operator [1].

4.2. Basic Properties

Regarding the choice of hyperparameter λ, we here use the clas-

sical “warm start” strategy [28], starting with a relatively large λ
which decreases in every Kth step of the iteration (here K = 500).

This method essentially simulates the choice of a small λ but cir-

cumvents the slow convergence of ISTA that such a choice usually

implies. Note that since we do not have to deal with additive noise

in the declipping scenario, low levels of the hyperparameter λ are

fully appropriate. Fig. 1 exemplifies the corresponding evolution of

the algorithm’s SNR versus the hyperparameter λ, which assumes

10 values logarithmically spaced from λ = 10−1 to λ = 10−4.

This example is based on the first music signal of the evaluation

set, clipped at θclip = 0.2. The figure clearly shows the benefit of

the warm start strategy. Especially PEW gains SNR rapidly during

the first 500 seconds of runtime (executed on a standard consumer

laptop). During that time, each decrease of λ seems to boost conver-

gence significantly. Note that PEW achieves good performance in a

computation time far below that of OMP.
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Fig. 1. Improvement of SNR as a function of time for a music signal

at clip level θclip = 0.2. Algorithm 1 “warm-starts” with a large

value of λ which is decreased every 500 iterations. Black lines indi-

cates updates of λ. The horizontal red line indicates the SNR reached

by OMP. The vertical red line indicates the cpu time taken by OMP.

A qualitative example of the declipping results is displayed in

Fig. 2. Again, music signal no. 1 with clipping level θclip = 0.2
is shown, displaying estimations from all aforementioned operators.

Neighborhoods for WGL and PEW extend 7 coefficients in time.

On this time scale, it is obvious that (P)EW , HT and OMP operators

yield much better estimations than the (WG)L: they reliably respect

the clipping constraint (as do the (WG)L), and often resemble the

original signal profile beyond the clip level, although OMP seems

to yield too much high frequency oscillation, while HT sometimes

overshoots the original amplitude values. The main differences be-

tween unclipped original and (P)EW-declipped version seem to be

due to the shape of the largest amplitude values far beyond the clip-

ping level. The (WG)L family, on the contrary, far more resembles

the clipped signal than the original. In this case, the inclusion of

neighborhood persistence does not even seem to yield a different so-

lution, as both estimates behave almost identically.

4.3. Choice of the neighborhood

The choice of the neighborhoods used in the persistent thresholding

operators WGL and PEW is both significant and delicate. A good

choice of both size and, to a lesser extent, shape depends on the sig-

nal characteristics and the severity of corruption. Here, we evaluate

neighborhoods which symmetrically extend in time and encompass
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Fig. 2. Declipped music signal using different operators for clip

level θclip = 0.2 using the Lasso, WGL, EW, PEW, HT, and OMP

operators. Neighborhood size for WGL and PEW was 7.

3, 5, and 7 coefficients. Neighborhoods with 3 coefficients, for in-

stance, would encompass the centre-coefficient itself plus one coef-

ficient preceeding and one following in time. Note that the WGL

and PEW with unit-neighborhood (with only one coefficient) coin-

cide with the Lasso and EW operator, respectively. Fig. 3 depicts

the average gain (over all clipping levels) of SNRm obtained by us-

ing neighborhoods in conjunction with PEW and Algorithm 1, com-

pared to the EW operator as a baseline, i.e. graphing SNRm(PEW)

− SNRm(EW). Here, applying neighborhoods improves reconstruc-

tion in about 50% of the cases, detoriation occurs otherwise. It is

particularly visible that shorter temporal persistence of 3 coefficients

brings more benefits than larger neighborhoods. For music signals,

the usage of neighborhoods turns out to be favorable in almost all

cases with best results for neighborhoods of size 5 or 7. We thus use

neighborhoods of length 3 for speech signals and length 7 for music

signals in the following comparisons.
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Fig. 3. Influence of the neighborhood on declipping performance.

The 10 different speech (left) and music signals (right) are dis-

played on the x-axis. The average gain (over clipping levels

0.1, 0.2, . . . , 0.9) of SNRmiss with regard to the baseline set by the

EW operator is displayed on the y-axis.

4.4. Evaluation on Speech and Music Signals

Fig. 4 presents systematic declipping results, depicting improvement

of SNRm (with respect to the baseline of the clipped signal) as a

function of clipping level. Here, each point represents the mean over

the ten different signals of the evaluation set.

Obviously, all operators improve SNRm. However, Lasso and

WGL seem to be least successful overall. This confirms the qualita-

tive insights from Fig. 2: the better preservation of signal energy of

the family of empirical Wiener-based operators yields more reliable
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Fig. 4. Average SNRmiss for 10 speech (left) and music (right) sig-

nals over different clipping levels and operators. Neighborhoods ex-

tend 3 and 7 coefficients in time for speech and music signals, re-

spectively.

estimates than the Lasso/WGL operators. No matter whether we

consider WGL or PEW, however, the usage of neighborhoods still

seems to improve performance for most clipping levels. Iterative

hard-thresholding (HT) [14] has similar performance compared to L

and WGL for music signals, but yields consistently better results on

speech, where it is close to OMP [6]. Interestingly, for both speech

and music signals, EW and PEW lead to improvements of up to 5

dB SNRm compared to OMP. For low clipping values (i.e. massive

signal deterioration) of music signals, the inclusion of neighborhood

persistence seems to be particularly beneficial, yielding another 1 dB

SNRm improvement.

Except for the Lasso, the algorithms could in principle be sensi-

tive to their initialization. We observed in practice that all operators,

with HT being an exception, are very robust indeed and can be ini-

tialized by the clipped signal as a default value. However, HT is

known to be very sensitive to initialization [29], which might partly

explain the disappointing results obtained here.

Let us finally note that although no formal listening experiments

were conducted for the lack of resources, we noticed that PEW-

estimates feature remarkably few audible artifacts, even in cases of

massive signal deterioration by low clipping thresholds. The ap-

proach thus not only performs well for improvement of signal to

noise ratio, but seems to present a valuable tool for perceptual audio

enhancement.

5. CONCLUSION

This paper studied the audio declipping problem by equipping the

novel approach of social sparsity with a clipping constraint. We pre-

sented an algorithm which converges to a solution in the classical

Lasso case and demonstrated empirically that thresholding opera-

tions beyond simple soft-thresholding lead to significant gain in de-

clipping quality. Relevant improvements were achieved by taking

into account alternative coefficient exponentiation (leading from L

to EW) and neighborhood persistence (leading from Lasso to WGL

and EW to PEW). In particular, the PEW operator yields significant

improvements of SNRm compared to two state-of-the-art methods,

while the corresponding algorithm is still less time-consuming.

Future theoretical work will focus on the characterization of

PEW operators in conjunctions with ISTA-type algorithms. Further-

more, we will apply the approach to the general audio interpolation

(inpainting) problem, where exploiting neighborhood persistence in

the time-frequency domain might be a valuable strategy for dealing

with massive data loss such as time intervals of 10ms and more.
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