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We consider the problem of extracting the source signals from an under-determined convolutive mixture, assuming known filters. We start from its formulation as a minimization of a convex functional, combining a classical ℓ2 discrepancy term between the observed mixture and the one reconstructed from the estimated sources, and a sparse regularization term of source coefficients in a time-frequency domain. We then introduce a first kind of structure, using a hybrid model. Finally, we embed the previously introduced Windowed-Group-Lasso operator into the iterative thresholding/shrinkage algorithm, in order to take into account some structures inside each layers of time-frequency representations. Intensive numerical studies confirm the benefits of such an approach.

INTRODUCTION

In many situations, such as a concert for music or the so called cocktail party problem for speech, the recorded sound signals are issued from mixtures of several sound sources. In this article, we consider the reverberant under-determined setting. The difficulty is then twofold: the number of sources is larger than the number of mixture channels, and the reverberation is modeled as a convolution. We focus on the estimation of the source signals assuming that the mixing filters are known. The blind separation problem in that case is still a challenging open problem [START_REF] Benichoux | A fundamental pitfall in blind deconvolution with sparse and shiftinvariant priors[END_REF].

In the under-setting case, source separation problem can be adressed using time-frequency masking techniques (see [START_REF] Vincent | Oracle estimators for the benchmarking of source separation algorithms[END_REF] and references therein for example). Moreover, in order to deal with the convolution, the short time frequency transform (STFT), or Gabor transform, allows to approximate the convolution by several instantaneous mixture, depending on the frequency band. In [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for underdetermined reverberant audio source separation[END_REF], the considered inverse problem is formulated as a convex optimization problem, where a wideband ℓ2 mixture fitting cost is used directly in the time domain, in addition of a ℓ1 source sparsity cost in the time-frequency domain. Such an idea has been exploited using a analsys prior in [START_REF] Arberet | Sparse reverberant audio source separation via reweighted analysis[END_REF], which confirms the benefit of such an approach on various type of audio mixture, over the classical time-frequency masking.

This article provides three contributions. Firstly, motivated by the research about hybrid model for signal [START_REF] Daudet | Hybrid representations for audiophonic signal encoding[END_REF], also known as Morphological Component Analysis [START_REF] Elad | Simultaneous cartoon and texture image inpainting using morphological component analysis (mca)[END_REF], we investigate the use This work benefited from the support of the "FMJH Program Gaspard Monge in optimization and operation research", and from the support to this program from EDF.

of the union of two Gabor frames, each adapted to the "morphological layer", for the signal time-frequency representation in the problem of source separation. Secondly, we link the Windowed-Group-Lasso [START_REF] Kowalski | Social sparsity! neighborhood systems enrich structured shrinkage operators[END_REF] to the problem of source separation to obtain a more reliable sparse representation. Windowed group-Lasso is a convenient way to take into account some neighborhood information for a structured sparse approximation. It is the first time, to our knowledge, that the structured sparsity is used in the problem of convolutive source separation. Finally, we compare the proposed methods with the state-of-the-art method and we thereby conclude the favorable conditions for speech and music sources.

The rest of the article is organized as follows. Next section 2 introduces the notation, the mathematical models and proposed algorithms. Section 3 presents all the experiments done on various speech and music mixtures, in order to show the benefit of both hybrid model and structured sparsity. The last section 4 concludes the paper.

MATHEMATICAL MODEL AND ALGORITHMS

After the introduction of the general mixture model, this section presents the wideband convex problem under consideration with the hybrid model. Then, the structured shrinkage operators are presented, as well as the practical algorithms for source separation.

We consider the source separation problem for convolutive mixtures of the form

xm(t) = N n=1 Amn ⋆ sn(t) + em(t) , (1) 
with N source signals sn of duration T and M (M < N ) microphones, yielding M mixture channels xm, ⋆ denotes the convolution. The effect of acoustic propagation between the sources and the microphones is modeled by a set of mixing filters Amn(t) of length P . Denoting by x ∈ R M ×T and s ∈ R N ×T the matrices of mixture channels and source signals and by A ∈ R M ×N ×P the three-way array of mixing filters, the mixing process (1) can be rewritten more concisely in matrix form as

x = A ⋆ s + e , (2) 
where e ∈ R M ×T models the background noise. Since M < N , A is not invertible, hence the need for suitable approaches to estimate s given x and A.

Let us denote by Φ ∈ C T ×B the matrix representing an energypreserving STFT operator (or Parseval Gabor frame), the sources s can be resynthesized from their estimated STFT coefficients α ∈

C N ×B by s = αΦ * (3) 
where Φ * ∈ C B×T is the adjoint operator of Φ, that is its Hermitian transpose.

Wideband Hybrid Lasso

One possible assumption is that the signals are sparse in the timefrequency domain [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF][START_REF] Bofill | Underdetermined blind source separation using sparse representations[END_REF]. Under this assumption, we can recast the source separation problem into a convex optimization framework.

This assumption relies on the following functional [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for underdetermined reverberant audio source separation[END_REF] min

α∈C N ×B 1 2 x -A ⋆ αΦ * 2 2 + λ α 1 (4) 
In [START_REF] Daudet | Hybrid representations for audiophonic signal encoding[END_REF] for audio, and in [START_REF] Elad | Simultaneous cartoon and texture image inpainting using morphological component analysis (mca)[END_REF] for images, hybrid model or morphological component analysis suppose that a signal can be expressed as the sum of two layers: a tonal one and a transient. The underlying assumption can be expressed as the expectation that each class of components has a sparse decomposition within one, of the frames in the union. Then, a complementary approach to the model described in ( 4) is to consider a union of two frames or bases, each adapted to the "morphological layer". The hybrid model is given as follow:

s = ston + strans = αtonΦton + αtransΦtrans
where Φton ∈ C T ×B ton is a Gabor frame adapted for the tonal layer, and Φtrans ∈ C T ×B trans adapted for the transient. The reader can refer to [START_REF] Gribonval | Sparse representations in unions of bases[END_REF] for a more theoretical study of hybrid decompositions.

Given the model above, a natural way of circumventing the wideband Lasso (4) is to replace the decomposition using one Gabor frame by a decomposition using two Gabor frames

min (α ton ,α trans ) 1 2 x -A ⋆ (αtonΦ * ton + αtransΦ * trans ) 2 2 +λ (µ αton 1 + (1 -µ) αtrans 1) (5) 
where λ > 0 is an hyperparameter balancing the data term and the regularizer, and 0 ≤ µ ≤ 1 is a hyperparameter balancing between the tonal and the transient layers.

Minimization of convex functions like (5) relies on the so-called proximity operator of convex penalties. The proximity operators typically lead to shrinkage/thresholding operator known as the softthresholding for the ℓ1 norm.

Denoting α tf the coefficient in each time-frequency bin, the soft-thresholding operator reads

αtf = S λ (α tf ) = α tf 1 - λ |α tf | + (6)
Then, one can minimize (5) thanks to Iterative Shrinkage/Thresholding Algorithm (ISTA). We provide the general form of its accelerated version (FISTA) [START_REF] Beck | A fast iterative shrinkagethresholding algorithm for linear inverse problems[END_REF] in Algorithm 1, where the data term

L(α) = 1 2 x -A ⋆ (αtonΦ * ton + αtransΦ * trans ) 2 2 is L-Lipschitz differentiable with gradient ∇Lton(α) = [A * ⋆ (x -A ⋆ (αtonΦ * ton + αtransΦ * trans ))]Φton (7) 
∇Ltrans(α) = [A * ⋆(x-A⋆(αtonΦ * ton +αtransΦ * trans ))]Φtrans (8) 
Algorithm 1: FISTA for solving [START_REF] Daudet | Hybrid representations for audiophonic signal encoding[END_REF] Initialization:

α (0) ton ∈ C N ×B ton , α (0) trans ∈ C N ×B trans , z (0) ton = α (0) ton , z (0) trans = α (0) trans , τ (0) = 1, k = 1. repeat α (k) ton = S λ/L z (k-1) ton - ∇L ton (z (k-1) ton ,z (k-1) trans ) L ; α (k) trans = S λ/L z (k-1) trans - ∇L trans (z (k-1) ton ,z (k-1) trans ) L ; τ (k) = 1+ √ 1+4τ (k-1) 2 2 ; z (k) ton = α (k) ton + τ (k-1) -1 τ (k) (α (k) ton -α (k-1) ton ); z (k) trans = α (k) trans + τ (k-1) -1 τ (k) (α (k) trans -α (k-1) trans ); k = k + 1 until convergence;
where the adjoint A * of A is obtained by transposition of source and channel indexed and time reversal of the filters.

Introducing the linear operator T :

C N ×(B ton +B trans ) → R M ×T defined by T (α) = T (αton, αtrans) = A ⋆ (αtonΦ * ton + αtransΦ * trans ) (9) 
and T * its adjoint, the Lipschitz constant L is given by

L = ||T * T ||2op (10) 
with ||.||2op denoting the operator norm. It can be well approximated thanks to a classical power iteration algorithm.

Structured shrinkage operator

When one looks at the time-frequency analysis coefficients of an audio signal, one can notice that there is a grouping effect of the coefficients in both time and frequency-direction. Then, one of the main limitations of the Lasso estimate is that all the coefficients are treated independently. However, the use of a group-Lasso penalty [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] is not directly possible on the time-frequency coefficients. Indeed, one cannot define independent groups as a prior. To avoid this, some authors have studied various kinds of Group-Lasso with overlap, such as in [START_REF] Jacob | Group lasso with overlap and graph lasso[END_REF][START_REF] Bayram | Mixed norms with overlapping groups as signal priors[END_REF]. However, the main practical limitations of such approaches is the computational cost. The strategy chosen here in order to obtain a more reliable sparse representation, is the use of new thresholding operators as the Windowed-Group-Lasso (WG-Lasso). Windowed-Group-Lasso was first defined in [START_REF] Kowalski | Structured sparsity: from mixed norms to structured shrinkage[END_REF] and was deeper studied in [START_REF] Kowalski | Social sparsity! neighborhood systems enrich structured shrinkage operators[END_REF]. The idea is to use the neighborhood information of a given coefficient inside the shrinkage operators, in order to exploit the time-frequency persistence properties. Using this neighborhood structure, WG-Lasso is defined by the following operator, for each time-frequency index (t, f ):

αtf = S W GL λ (α tf ) = α tf   1 - λ t ′ ,f ′ ∈N (t,f ) |α t ′ f ′ | 2   + (11 
) where N (t, f ) denotes the time-frequency neighborhood of the time-frequency index (t, f ). The idea of this shrinkage operator is to select a coefficient if the energy of its neighborhood is sufficiently large. Consequently, an isolated "big" coefficient can be discarded, but a "small" coefficient in the middle of big ones can be kept.

In the case of two Gabor frames, as the transform adapted for the tonal part is well localized in frequency and the transform adapted for the transient part is well localized in time, the structures in the time-frequency plan for the tonal part and the transient part seem different. Empirically, we choose the neighborhood extending in time for the tonal layer and the neighborhood extending in frequency for the transient layer.

EXPERIMENTS

After the presentation of the experimental setup, we describe in this section the influences of various choices for the parameters, as the size of the Gabor windows, the size of the neighborhood, and the benefit of the hybrid model.

Experimental setup

For all the experiments, the signals were sampled at 11 kHz, and the mixing filters were room impulse responses simulated via the image technique [START_REF] Svensson | Computational modelling and simulation of acoustic spaces[END_REF] using the Roomsim software [START_REF]Roomsim[END_REF]. The number of microphones and the number of sources were respectively set to 2 and 4. We provide results for the following configuration: the microphone spacing was set to d = 1m and the reveberation time was RT60 = 250ms for ten different sets of male and/or female speech sources from various nationalities and ten different sets of music sources (including singing voice and various instruments).

In all the experiments, the STFT was computed with halfoverlapping tight windows using the ltfat toolbox [START_REF] Søndergaard | The linear time frequency analysis toolbox[END_REF]. The center of neighborhoods is always the considered sample for the windowed group-Lasso. In order to only evaluate the different methods in the light of the source separation efficiency, we did not add any simulated noise. In order to avoid complex evaluation of the hyperparameters λ and µ in (5), we choose the most "natural" setting, i.e. λ → 01 in order to obtain a perfect reconstruction of the mixture (and then, do not performing any denoising) and µ = 0.5 in order to not favor a specific layer. One can surely improve the results by playing with these hyperparameters, but the price is a very expensive computational cost.

The separation performance was assessed using the now popular Signal to Distorsion Ratio (SDR) and Signal to Interference Ratio (SIR) [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF]. The SDR indicates the overall quality of each estimated source compared to the target, while the SIR reveals the amount of residual crosstalk from the other sources. A larger value of SDR/SIR means a better quality of the separation. These measures were subsequently averages over all sources for each mixing condition. The wideband Lasso method was performed as a baseline.

One can listen some sound examples, for both speech and music demixing, on the webpage http://webpages.lss.supelec.fr/ perso/matthieu.kowalski/FK_icassp14/FK_icassp.html.

Mono layer model

We first illustrate the benefit of structured sparsity over the simple wideband Lasso, i.e. in the case where only one Gabor dictionary is used. Then, it remains mainly two parameters to influence the quality of the separation: the size of the Gabor window and the size of the neighborhood.

The results are summarized in Figures 1 and2, where the variations of the SDR and SIR are plotted as a function of the size of the neighborhood, for various size for the window. We recall that if the size of the neighborhood is 1, then WG-Lasso becomes Lasso. Notice that the SDR of the Lasso for the speech sources is maximum (7.9dB) when the Gabor window is 512 samples and the maximum (8.6dB) of the WG-Lasso is achieved with the same window length when the size of the neighborhood is 3. For the music sources, the maximum SDR (6.1dB) of Lasso method is achieved when the window is 1024 samples and the maximum (6.7dB) of WG-Lasso is reached with a window of 512 samples. However, the difference between the performance (SDR and SIR) of WG-Lasso with the window of 512 samples and 1024 samples is not significant. It is noticed that the algorithm is relatively robust with respect to the choice of the neighborhood: there is a significant increase in performance from the Lasso to WG-Lasso with the neighborhood of 3, but further enlarging the neighborhood does not improve the performance which suggests a quite robust choice. One of the most interesting thing, is that the same remarks apply for the SIR which is also improved. In conlusion, in the case of one Gabor frame, the best performance is realised when the Gabor window is 512 and the size of neighborhood is 3 for both speech and music mixtures.

Hybrid model

We present here the results for the hybrid model. In this case, the choices for the parameters are more tricky: one can play on the size of the windows for the two layers, as well as for the size of the neighborhood.

Size of Gabor windows for Lasso with two Gabor frames

We first evaluate the performances without structured sparsity. In that case, the size of the Gabor window varies from 2 8 to 2 11 for the tonal part and 2 5 to 2 8 for the transient layer. Table 1 and 2 illustrate the variation of the SDR and SIR. As shown in the tables, the best condition for the speech sources is a window of length 512 for tonal and 32 for transients; and for the music sources a window of length 2048 for tonal and 256 for transient. Besides, it is noticed that it is relatively robust with respect to the choice of the window for the transient part for both types of source. For the speech source, the trends observed when considering the choice of the window for tonal part is similar to the trends when one Gabor frame is used, but similar trends do not appear for the music source.

However, the use of hybrid model with the chosen specific choice for the hyperparameters, does not improve the quality of the separation compared to the single layer model: if the SDR is slightly improved by 0.1 to 0.2 dB, the SIR is degraded about 0.5 dB. 

Size of neighborhoods for WG-Lasso in the case of two Gabor frames

In the case of two Gabor frames, we first set the size of the Gabor window for the tonal layer to 512 samples and 32 for the transient layer for the speech sources. The size of the neighborhoods for both layers varies from 1 to 9. The performance is shown in the upper tabular of Table 3. The best performance is reached when the neighborhood is 3 for the tonal layer and 5 for the transient. Moreover, it can be seen that, besides improving the SDR and SIR, the algorithm is also robust with respect to the choice of the neighborhoods when the neighborhoods are between 3 and 5. The performances were also evaluated for a window of length 256 sample for the tonal layer, still with a window of 32 samples for the transient layer. As shown in the second tabular of Table 3, althought the maximum is achieved when the neighborhoods are [START_REF] Daudet | Hybrid representations for audiophonic signal encoding[END_REF][START_REF] Bofill | Underdetermined blind source separation using sparse representations[END_REF], similar trends as in the previous setting can be observed. For the music sources, we set the sizes of the Gabor windows to (2048,256) and (512,32) respectively. The performances are illustrated in Table 4.

In conlusion, the best performance for speech source in the case of two Gabor frames is achieved when the Gabor windows are (512,32), and (2048,256) for the music source. The neighborhoods between 3 and 5 seem to be favorable for both.

We can summarized all these results in Table 5, which shows the variation of SDR/SIR for both Lasso and WG-Lasso in the case of two Gabor frames and one Gabor frame. One can remark that the two Gabor frames outperforms the method of one Gabor for both Lasso and WG-Lasso. It is interesting that the performances are improved by more than 1 dB on SDR without degrading the SIR for both speech and music, thanks to the structured hybrid model for speech sources.

Table 5. SDR/SIR: Two Gabors vs One Gabor Lasso Lasso WG-Lasso WG-Lasso +1Gabor +2Gabors +1Gabor +2Gabors Speech 7.9/14.3 8.0/13.9 8.6/14.6 9.1/14.5 Music 6.0/9.9 6.2/9.3 6.7/10.0 7.2/10.0

CONCLUSION

In this paper we developed several iterative algorithms to separate convolutive mixtures using sparse source models in a time-frequency dictionary, when the mixing filter system is supposed to be known. We showed that these approaches give interesting results compared to wideband Lasso by improving SDR, with a stable SIR. We only displayed the results for the specific setting RT60 = 250ms for a distance between the two micro of 1 m, as it is the most favorable case for the wideband Lasso [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for underdetermined reverberant audio source separation[END_REF]. However, we also run experiments on the setting RT60 = 50ms, and we have observed very similar behavior, for the same magnitude of improvement on SDR, but also a similar improvement on the SIR. The next step should be to consider the problem of blind source separation for underdetermined convolutive mixture, but the study performed in [START_REF] Benichoux | A fundamental pitfall in blind deconvolution with sparse and shiftinvariant priors[END_REF] suggests a very difficult and challenging problem.
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 12 Fig. 1. Different size of neighborhood for WG-Lasso with speech source

Table 1 .

 1 SDR/SIR OF DIFFERENT SIZE OF WINDOWS FOR

	THE SPEECH SOURCES		
			Size of window for tonal part
		256	512	1024	2048
	Size of window for transient part	32 64 128 6.0/11.4 7.7/13.6 7.4/12.3 6.2/12.0 6.5/11.9 8.0/13.9 7.7/13.5 6.3/12.0 6.2/11.7 7.8/13.7 7.5/13.3 6.2/11.8 256 6.3/12.2 7.7/13.7 7.8/13.9 7.1/13.1

Table 2 .

 2 SDR/SIR OF DIFFERENT SIZE OF WINDOWS FOR

	THE MUSIC SOURCES			
		Size of window for tonal part
		256	512	1024	2048
	Size of window for transient part	32 64 128 4.9/8.2 4.6/8.0 4.6/8.0 256 5.1/9.0	5.3/8.5 5.4/8.6 5.4/8.7 5.4/8.7	5.8/8.9 5.9/9.1 6.0/9.2 6.0/9.3	5.9/8.9 6.0/9.1 6.2/9.3 6.2/9.3

Table 3 .

 3 SDR/SIR OF DIFFERENT SIZE OF NEIGHBORHOOD

	FOR THE SPEECH SOURCE			
	Speech, windows 512-32	Size of neighborhood for tonal part
			1	3	5	9
	Size of neighborhood for transient part	1 3 5 9	8.0/13.9 8.4/14.0 7.7/13.1 6.7/11.9 8.2/14.2 9.0/14.7 8.4/13.9 7.7/12.8 8.2/14.2 9.0/14.8 8.5/14.0 7.8/12.9 8.1/14.2 9.0/14.8 8.4/13.9 7.7/12.8
	Speech, windows 256-32	Size of neighborhood for tonal part
			1	3	5	9
	Size of neighborhood for transient part	1 3 5 9	6.5/11.9 7.9/13.2 7.7/13.0 7.0/12.2 6.7/12.2 8.6/14.0 8.6/13.9 7.8/12.8 6.6/12.2 8.8/14.2 8.8/14.0 8.3/13.3 6.6/12.2 8.7/14.1 9.1/14.5 8.4/13.4
	Table 4. SDR/SIR OF DIFFERENT SIZE OF NEIGHBORHOOD
	FOR THE MUSIC SOURCE				
	Music, window 2048-256	Size of neighborhood for tonal part
			1	3	5	9
	Size of neighborhood for transient part	1 3 5 9	6.2/9.3 6.4/9.5 6.3/9.4 6.1/9.3	6.7/9.6 7.1/9.9 7.0/9.9 6.8/9.7	6.7/9.5 7.2/10.0 7.1/9.8 6.5/9.3 7.1/9.9 7.1/9.7 7.0/9.7 7.0/9.6
	Music, window 512-32	Size of neighborhood for tonal part
			1	3	5	9
	Size of neighborhood for transient part	1 3 5 9	5.3/8.5 5.4/8.7 5.5/8.8 5.4/8.7	5.9/8.9 6.3/9.3 6.4/9.4 6.4/9.4	6.0/8.8 6.4/9.3 6.6/9.4 6.6/9.3	5.9/8.6 6.4/9.1 6.6/9.2 6.6/9.1

λ → 0 is not equivalent to set λ = 0, as one cannot invert the limit and the maximum operator.