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ABSTRACT

We consider the problem of extracting the source signals from an

under-determined convolutive mixture, assuming known filters. We

start from its formulation as a minimization of a convex functional,

combining a classical ℓ2 discrepancy term between the observed

mixture and the one reconstructed from the estimated sources, and a

sparse regularization term of source coefficients in a time-frequency

domain. We then introduce a first kind of structure, using a hybrid

model. Finally, we embed the previously introduced Windowed-

Group-Lasso operator into the iterative thresholding/shrinkage al-

gorithm, in order to take into account some structures inside each

layers of time-frequency representations. Intensive numerical stud-

ies confirm the benefits of such an approach.

Index Terms— structured sparsity; audio source separation;

convolutive mixture

1. INTRODUCTION

In many situations, such as a concert for music or the so called

cocktail party problem for speech, the recorded sound signals are

issued from mixtures of several sound sources. In this article, we

consider the reverberant under-determined setting. The difficulty is

then twofold: the number of sources is larger than the number of

mixture channels, and the reverberation is modeled as a convolution.

We focus on the estimation of the source signals assuming that the

mixing filters are known. The blind separation problem in that case

is still a challenging open problem [1].

In the under-setting case, source separation problem can be

adressed using time-frequency masking techniques (see [2] and ref-

erences therein for example). Moreover, in order to deal with the

convolution, the short time frequency transform (STFT), or Gabor

transform, allows to approximate the convolution by several in-

stantaneous mixture, depending on the frequency band. In [3], the

considered inverse problem is formulated as a convex optimization

problem, where a wideband ℓ2 mixture fitting cost is used directly

in the time domain, in addition of a ℓ1 source sparsity cost in the

time-frequency domain. Such an idea has been exploited using a

analsys prior in [4], which confirms the benefit of such an approach

on various type of audio mixture, over the classical time-frequency

masking.

This article provides three contributions. Firstly, motivated

by the research about hybrid model for signal [5], also known as

Morphological Component Analysis [6], we investigate the use
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of the union of two Gabor frames, each adapted to the “morpho-

logical layer”, for the signal time-frequency representation in the

problem of source separation. Secondly, we link the Windowed-

Group-Lasso [7] to the problem of source separation to obtain a

more reliable sparse representation. Windowed group-Lasso is a

convenient way to take into account some neighborhood informa-

tion for a structured sparse approximation. It is the first time, to

our knowledge, that the structured sparsity is used in the problem

of convolutive source separation. Finally, we compare the proposed

methods with the state-of-the-art method and we thereby conclude

the favorable conditions for speech and music sources.

The rest of the article is organized as follows. Next section 2

introduces the notation, the mathematical models and proposed al-

gorithms. Section 3 presents all the experiments done on various

speech and music mixtures, in order to show the benefit of both hy-

brid model and structured sparsity. The last section 4 concludes the

paper.

2. MATHEMATICAL MODEL AND ALGORITHMS

After the introduction of the general mixture model, this section

presents the wideband convex problem under consideration with the

hybrid model. Then, the structured shrinkage operators are pre-

sented, as well as the practical algorithms for source separation.

We consider the source separation problem for convolutive mix-

tures of the form

xm(t) =

N
∑

n=1

Amn ⋆ sn(t) + em(t) , (1)

with N source signals sn of duration T and M (M < N ) micro-

phones, yielding M mixture channels xm, ⋆ denotes the convolu-

tion. The effect of acoustic propagation between the sources and the

microphones is modeled by a set of mixing filters Amn(t) of length

P . Denoting by x ∈ R
M×T and s ∈ R

N×T the matrices of mixture

channels and source signals and by A ∈ R
M×N×P the three-way

array of mixing filters, the mixing process (1) can be rewritten more

concisely in matrix form as

x = A ⋆ s+ e , (2)

where e ∈ R
M×T models the background noise. Since M < N , A

is not invertible, hence the need for suitable approaches to estimate

s given x and A.

Let us denote by Φ ∈ C
T×B the matrix representing an energy-

preserving STFT operator (or Parseval Gabor frame), the sources s

can be resynthesized from their estimated STFT coefficients α ∈



C
N×B by

s = αΦ
∗

(3)

where Φ∗ ∈ C
B×T is the adjoint operator of Φ, that is its Hermitian

transpose.

2.1. Wideband Hybrid Lasso

One possible assumption is that the signals are sparse in the time-

frequency domain [8, 9]. Under this assumption, we can recast the

source separation problem into a convex optimization framework.

This assumption relies on the following functional [3]

min
α∈CN×B

1

2
‖x−A ⋆αΦ∗‖22 + λ‖α‖1 (4)

In [5] for audio, and in [6] for images, hybrid model or morpho-

logical component analysis suppose that a signal can be expressed

as the sum of two layers: a tonal one and a transient. The underlying

assumption can be expressed as the expectation that each class of

components has a sparse decomposition within one, of the frames in

the union. Then, a complementary approach to the model described

in (4) is to consider a union of two frames or bases, each adapted to

the “morphological layer”. The hybrid model is given as follow:

s = ston + strans = αtonΦton +αtransΦtrans

where Φton ∈ C
T×Bton is a Gabor frame adapted for the tonal

layer, and Φtrans ∈ C
T×Btrans adapted for the transient. The

reader can refer to [10] for a more theoretical study of hybrid de-

compositions.

Given the model above, a natural way of circumventing the

wideband Lasso (4) is to replace the decomposition using one Gabor

frame by a decomposition using two Gabor frames

min
(αton,αtrans)

1

2
‖x−A ⋆ (αtonΦ

∗
ton +αtransΦ

∗
trans)‖22

+λ (µ‖αton‖1 + (1− µ)‖αtrans‖1)
(5)

where λ > 0 is an hyperparameter balancing the data term and the

regularizer, and 0 ≤ µ ≤ 1 is a hyperparameter balancing between

the tonal and the transient layers.

Minimization of convex functions like (5) relies on the so-called

proximity operator of convex penalties. The proximity operators

typically lead to shrinkage/thresholding operator known as the soft-

thresholding for the ℓ1 norm.

Denoting αtf the coefficient in each time-frequency bin, the

soft-thresholding operator reads

α̃tf = Sλ(αtf ) = αtf

(

1− λ

|αtf |

)+

(6)

Then, one can minimize (5) thanks to Iterative Shrinkage/Thresholding

Algorithm (ISTA). We provide the general form of its acceler-

ated version (FISTA) [11] in Algorithm 1, where the data term

L(α) = 1
2
‖x−A ⋆ (αtonΦ

∗
ton +αtransΦ

∗
trans)‖22 is L-Lipschitz

differentiable with gradient

∇Lton(α) = [A∗
⋆ (x−A ⋆ (αtonΦ

∗
ton +αtransΦ

∗
trans))]Φton

(7)

∇Ltrans(α) = [A∗
⋆(x−A⋆(αtonΦ

∗
ton+αtransΦ

∗
trans))]Φtrans

(8)

Algorithm 1: FISTA for solving (5)

Initialization: α
(0)
ton ∈ C

N×Bton , α
(0)
trans ∈ C

N×Btrans ,

z
(0)
ton = α

(0)
ton, z

(0)
trans = α

(0)
trans, τ (0) = 1, k = 1.

repeat

α
(k)
ton = Sλ/L

(

z
(k−1)
ton − ∇Lton(z

(k−1)
ton

,z
(k−1)
trans

)

L

)

;

α
(k)
trans = Sλ/L

(

z
(k−1)
trans − ∇Ltrans(z

(k−1)
ton

,z
(k−1)
trans

)

L

)

;

τ (k) = 1+
√

1+4τ(k−1)2

2
;

z
(k)
ton = α

(k)
ton + τ(k−1)−1

τ(k) (α
(k)
ton −α

(k−1)
ton );

z
(k)
trans = α

(k)
trans +

τ(k−1)−1

τ(k) (α
(k)
trans −α

(k−1)
trans );

k = k + 1
until convergence;

where the adjoint A∗ of A is obtained by transposition of source

and channel indexed and time reversal of the filters.

Introducing the linear operator T : C
N×(Bton+Btrans) →

R
M×T defined by

T (α) = T (αton,αtrans) = A ⋆ (αtonΦ
∗
ton +αtransΦ

∗
trans)

(9)

and T ∗ its adjoint, the Lipschitz constant L is given by

L = ||T ∗T ||2op (10)

with ||.||2op denoting the operator norm. It can be well approximated

thanks to a classical power iteration algorithm.

2.2. Structured shrinkage operator

When one looks at the time-frequency analysis coefficients of an au-

dio signal, one can notice that there is a grouping effect of the coef-

ficients in both time and frequency-direction. Then, one of the main

limitations of the Lasso estimate is that all the coefficients are treated

independently. However, the use of a group-Lasso penalty [12] is

not directly possible on the time-frequency coefficients. Indeed, one

cannot define independent groups as a prior. To avoid this, some au-

thors have studied various kinds of Group-Lasso with overlap, such

as in [13, 14]. However, the main practical limitations of such ap-

proaches is the computational cost. The strategy chosen here in or-

der to obtain a more reliable sparse representation, is the use of new

thresholding operators as the Windowed-Group-Lasso (WG-Lasso).

Windowed-Group-Lasso was first defined in [15] and was deeper

studied in [7]. The idea is to use the neighborhood information of a

given coefficient inside the shrinkage operators, in order to exploit

the time-frequency persistence properties. Using this neighborhood

structure, WG-Lasso is defined by the following operator, for each

time-frequency index (t, f):

α̃tf = S
WGL
λ (αtf ) = αtf



1− λ
√

∑

t′,f ′∈N (t,f) |αt′f ′ |2





+

(11)

where N (t, f) denotes the time-frequency neighborhood of the

time-frequency index (t, f). The idea of this shrinkage operator is

to select a coefficient if the energy of its neighborhood is sufficiently

large. Consequently, an isolated ”big” coefficient can be discarded,

but a ”small” coefficient in the middle of big ones can be kept.



In the case of two Gabor frames, as the transform adapted for the

tonal part is well localized in frequency and the transform adapted

for the transient part is well localized in time, the structures in the

time-frequency plan for the tonal part and the transient part seem

different. Empirically, we choose the neighborhood extending in

time for the tonal layer and the neighborhood extending in frequency

for the transient layer.

3. EXPERIMENTS

After the presentation of the experimental setup, we describe in this

section the influences of various choices for the parameters, as the

size of the Gabor windows, the size of the neighborhood, and the

benefit of the hybrid model.

3.1. Experimental setup

For all the experiments, the signals were sampled at 11 kHz, and

the mixing filters were room impulse responses simulated via the

image technique [16] using the Roomsim software [17]. The number

of microphones and the number of sources were respectively set to

2 and 4. We provide results for the following configuration: the

microphone spacing was set to d = 1m and the reveberation time

was RT60 = 250ms for ten different sets of male and/or female

speech sources from various nationalities and ten different sets of

music sources (including singing voice and various instruments).

In all the experiments, the STFT was computed with half-

overlapping tight windows using the ltfat toolbox[18]. The center of

neighborhoods is always the considered sample for the windowed

group-Lasso. In order to only evaluate the different methods in

the light of the source separation efficiency, we did not add any

simulated noise. In order to avoid complex evaluation of the hyper-

parameters λ and µ in (5), we choose the most “natural” setting, i.e.

λ → 01 in order to obtain a perfect reconstruction of the mixture

(and then, do not performing any denoising) and µ = 0.5 in order

to not favor a specific layer. One can surely improve the results by

playing with these hyperparameters, but the price is a very expensive

computational cost.

The separation performance was assessed using the now popu-

lar Signal to Distorsion Ratio (SDR) and Signal to Interference Ratio

(SIR) [19]. The SDR indicates the overall quality of each estimated

source compared to the target, while the SIR reveals the amount of

residual crosstalk from the other sources. A larger value of SDR/SIR

means a better quality of the separation. These measures were sub-

sequently averages over all sources for each mixing condition. The

wideband Lasso method was performed as a baseline.

One can listen some sound examples, for both speech and music

demixing, on the webpage http://webpages.lss.supelec.fr/

perso/matthieu.kowalski/FK_icassp14/FK_icassp.html.

3.2. Mono layer model

We first illustrate the benefit of structured sparsity over the simple

wideband Lasso, i.e. in the case where only one Gabor dictionary

is used. Then, it remains mainly two parameters to influence the

quality of the separation: the size of the Gabor window and the size

of the neighborhood.

The results are summarized in Figures 1 and 2, where the vari-

ations of the SDR and SIR are plotted as a function of the size of

the neighborhood, for various size for the window. We recall that if

1λ → 0 is not equivalent to set λ = 0, as one cannot invert the limit and
the maximum operator.

the size of the neighborhood is 1, then WG-Lasso becomes Lasso.

Notice that the SDR of the Lasso for the speech sources is maximum

(7.9dB) when the Gabor window is 512 samples and the maximum

(8.6dB) of the WG-Lasso is achieved with the same window length

when the size of the neighborhood is 3. For the music sources, the

maximum SDR (6.1dB) of Lasso method is achieved when the win-

dow is 1024 samples and the maximum (6.7dB) of WG-Lasso is

reached with a window of 512 samples. However, the difference be-

tween the performance (SDR and SIR) of WG-Lasso with the win-

dow of 512 samples and 1024 samples is not significant. It is noticed

that the algorithm is relatively robust with respect to the choice of the

neighborhood: there is a significant increase in performance from

the Lasso to WG-Lasso with the neighborhood of 3, but further en-

larging the neighborhood does not improve the performance which

suggests a quite robust choice. One of the most interesting thing, is

that the same remarks apply for the SIR which is also improved.
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Fig. 1. Different size of neighborhood for WG-Lasso with speech
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Fig. 2. Different size of neighborhood for WG-Lasso with music

source

In conlusion, in the case of one Gabor frame, the best perfor-

mance is realised when the Gabor window is 512 and the size of

neighborhood is 3 for both speech and music mixtures.

3.3. Hybrid model

We present here the results for the hybrid model. In this case, the

choices for the parameters are more tricky: one can play on the size

of the windows for the two layers, as well as for the size of the neigh-

borhood.



3.3.1. Size of Gabor windows for Lasso with two Gabor frames

We first evaluate the performances without structured sparsity. In

that case, the size of the Gabor window varies from 28 to 211 for

the tonal part and 25 to 28 for the transient layer. Table 1 and 2

illustrate the variation of the SDR and SIR. As shown in the tables,

the best condition for the speech sources is a window of length 512

for tonal and 32 for transients; and for the music sources a window

of length 2048 for tonal and 256 for transient. Besides, it is noticed

that it is relatively robust with respect to the choice of the window

for the transient part for both types of source. For the speech source,

the trends observed when considering the choice of the window for

tonal part is similar to the trends when one Gabor frame is used, but

similar trends do not appear for the music source.

However, the use of hybrid model with the chosen specific

choice for the hyperparameters, does not improve the quality of the

separation compared to the single layer model: if the SDR is slightly

improved by 0.1 to 0.2 dB, the SIR is degraded about 0.5 dB.

Table 1. SDR/SIR OF DIFFERENT SIZE OF WINDOWS FOR

THE SPEECH SOURCES
Size of window for tonal part

256 512 1024 2048

Size of

window for

transient part

32 6.5/11.9 8.0/13.9 7.7/13.5 6.3/12.0

64 6.2/11.7 7.8/13.7 7.5/13.3 6.2/11.8

128 6.0/11.4 7.7/13.6 7.4/12.3 6.2/12.0

256 6.3/12.2 7.7/13.7 7.8/13.9 7.1/13.1

Table 2. SDR/SIR OF DIFFERENT SIZE OF WINDOWS FOR

THE MUSIC SOURCES
Size of window for tonal part

256 512 1024 2048

Size of

window for

transient part

32 4.6/8.0 5.3/8.5 5.8/8.9 5.9/8.9

64 4.6/8.0 5.4/8.6 5.9/9.1 6.0/9.1

128 4.9/8.2 5.4/8.7 6.0/9.2 6.2/9.3

256 5.1/9.0 5.4/8.7 6.0/9.3 6.2/9.3

3.3.2. Size of neighborhoods for WG-Lasso in the case of two Gabor

frames

In the case of two Gabor frames, we first set the size of the Gabor

window for the tonal layer to 512 samples and 32 for the transient

layer for the speech sources. The size of the neighborhoods for both

layers varies from 1 to 9. The performance is shown in the upper

tabular of Table 3. The best performance is reached when the neigh-

borhood is 3 for the tonal layer and 5 for the transient. Moreover, it

can be seen that, besides improving the SDR and SIR, the algorithm

is also robust with respect to the choice of the neighborhoods when

the neighborhoods are between 3 and 5.

The performances were also evaluated for a window of length

256 sample for the tonal layer, still with a window of 32 samples

for the transient layer. As shown in the second tabular of Table 3, al-

thought the maximum is achieved when the neighborhoods are (5,9),

similar trends as in the previous setting can be observed. For the mu-

sic sources, we set the sizes of the Gabor windows to (2048,256) and

(512,32) respectively. The performances are illustrated in Table 4.

In conlusion, the best performance for speech source in the

case of two Gabor frames is achieved when the Gabor windows are

(512,32), and (2048,256) for the music source. The neighborhoods

between 3 and 5 seem to be favorable for both.

We can summarized all these results in Table 5, which shows the

variation of SDR/SIR for both Lasso and WG-Lasso in the case of

Table 3. SDR/SIR OF DIFFERENT SIZE OF NEIGHBORHOOD

FOR THE SPEECH SOURCE
Speech, windows 512-32 Size of neighborhood for tonal part

1 3 5 9

Size of

neighborhood for

transient part

1 8.0/13.9 8.4/14.0 7.7/13.1 6.7/11.9

3 8.2/14.2 9.0/14.7 8.4/13.9 7.7/12.8

5 8.2/14.2 9.0/14.8 8.5/14.0 7.8/12.9

9 8.1/14.2 9.0/14.8 8.4/13.9 7.7/12.8

Speech, windows 256-32 Size of neighborhood for tonal part

1 3 5 9

Size of

neighborhood for

transient part

1 6.5/11.9 7.9/13.2 7.7/13.0 7.0/12.2

3 6.7/12.2 8.6/14.0 8.6/13.9 7.8/12.8

5 6.6/12.2 8.8/14.2 8.8/14.0 8.3/13.3

9 6.6/12.2 8.7/14.1 9.1/14.5 8.4/13.4

Table 4. SDR/SIR OF DIFFERENT SIZE OF NEIGHBORHOOD

FOR THE MUSIC SOURCE
Music, window 2048-256 Size of neighborhood for tonal part

1 3 5 9

Size of

neighborhood for

transient part

1 6.2/9.3 6.7/9.6 6.7/9.5 6.5/9.3

3 6.4/9.5 7.1/9.9 7.2/10.0 7.1/9.8

5 6.3/9.4 7.0/9.9 7.1/9.9 7.1/9.7

9 6.1/9.3 6.8/9.7 7.0/9.7 7.0/9.6

Music, window 512-32 Size of neighborhood for tonal part

1 3 5 9

Size of

neighborhood for

transient part

1 5.3/8.5 5.9/8.9 6.0/8.8 5.9/8.6

3 5.4/8.7 6.3/9.3 6.4/9.3 6.4/9.1

5 5.5/8.8 6.4/9.4 6.6/9.4 6.6/9.2

9 5.4/8.7 6.4/9.4 6.6/9.3 6.6/9.1

two Gabor frames and one Gabor frame. One can remark that the

two Gabor frames outperforms the method of one Gabor for both

Lasso and WG-Lasso. It is interesting that the performances are

improved by more than 1 dB on SDR without degrading the SIR for

both speech and music, thanks to the structured hybrid model for

speech sources.

Table 5. SDR/SIR: Two Gabors vs One Gabor
Lasso Lasso WG-Lasso WG-Lasso

+1Gabor +2Gabors +1Gabor +2Gabors

Speech 7.9/14.3 8.0/13.9 8.6/14.6 9.1/14.5

Music 6.0/9.9 6.2/9.3 6.7/10.0 7.2/10.0

4. CONCLUSION

In this paper we developed several iterative algorithms to separate

convolutive mixtures using sparse source models in a time-frequency

dictionary, when the mixing filter system is supposed to be known.

We showed that these approaches give interesting results compared

to wideband Lasso by improving SDR, with a stable SIR. We only

displayed the results for the specific setting RT60 = 250ms for a

distance between the two micro of 1 m, as it is the most favorable

case for the wideband Lasso [3]. However, we also run experiments

on the setting RT60 = 50ms, and we have observed very similar

behavior, for the same magnitude of improvement on SDR, but also

a similar improvement on the SIR.

The next step should be to consider the problem of blind source

separation for underdetermined convolutive mixture, but the study

performed in [1] suggests a very difficult and challenging problem.
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