Finitary Flexion Algebras

Jean Ecalle

To cite this version:

Jean Ecalle. Finitary Flexion Algebras. 2014. hal-01002959

HAL Id: hal-01002959

https://hal.science/hal-01002959

Submitted on 7 Jun 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Finitary flexion algebras.

Jean Ecalle

June 7, 2014
N.B. This is only the last chapter of a long, still incomplete paper titled "Finitary Flexion Algebras". We are posting it ahead of the rest because of its actualness.

Contents

8 Addendum: singulators and bisingulators.
 1

8.1 A simple but useful lemma about push-invariants 2
8.2 (Bi)singulators, (bi)singulands, (bi)singulates. 3
8.3 Mutual convertibilty of singulates and bisingulates. The alge- bra $A L A L_{\text {sing }}$ 5
8.4 Reminder about the elements of $A L I L_{\text {ent }}$ and their represen- tation. 9
8.5 All carma bialternals can be expressed as sums of singulates or bisingulates, at one's choice. 10
8.6 The messy structure of $A L A L_{\text {sing. }}$. "Wandering" bialternals at all polar heights. 11
8.7 The tidy structure of $A L A L_{\text {eumero }}$. Uniqueness of decomposition. 12
8.8 The perinomal conversion formula. 16
8.9 Singulates vs bisingulates. Merits and demerits. 20

8 Addendum: singulators and bisingulators.

Unlike the seven preceding sections, which merely re-hash old unpublished material, the present Addendum was written quite recently and in some haste, following a series of exchanges with Leila Schneps, who apprised us of an - apparently quite brilliant - thesis, yet to be defended, by Samuel Baumard, a PhD student of hers. Though we are not, by any stretch, cognizant
of the full substance of the thesis ${ }^{1}$, what little we learnt of it caught our attention and prompted us to write down a series of remarks - partly to put the student's investigation (about bisingulators) into perspective by relating it to earlier work of ours (on singulators); partly to prove a conjecture by L. Schneps who, on the strength of numerical evidence, correctly surmised that the carma bialternals could be expressed as sums of some special aribrackets; and partly, in fact chiefly, to suggest further and to our mind quite promising lines of investigation. ${ }^{2}$

8.1 A simple but useful lemma about push-invariants.

We have it from L.Schneps that her student proved the following lemma:
Lemma 8.1.1 Bialternal bimoulds of the form

$$
\begin{equation*}
M^{w_{1}, \ldots, w_{r}}=N^{w_{1}, \ldots, w_{r}} P\left(u_{0}\right) P\left(u_{1}\right) \ldots P\left(u_{r}\right) \quad\left(u_{0}:=-\left(u_{1}+\ldots+u_{r}\right)\right) \tag{1}
\end{equation*}
$$

with $N^{\bullet} \boldsymbol{u}$-entire and \boldsymbol{v}-constant, are stable under ari.
In other words, for such bimoulds the ari-bracketing, contrary to expectations, produces no "bad" poles of type $P\left(u_{i}+\ldots u_{j}\right)$ with $1<j-i<r-1$.

We have not seen the proof in question ${ }^{3}$ but we wish to point out that the lemma actually results from another statement which, though stronger, is actually simpler to establish:

Lemma 8.1.2 Push-invariant bimoulds of the form

$$
\begin{equation*}
M^{w_{1}, \ldots, w_{r}}=N^{w_{1}, \ldots, w_{r}} P\left(u_{0}\right) P\left(u_{1}\right) \ldots P\left(u_{r}\right) \quad\left(u_{0}:=-\left(u_{1}+\ldots+u_{r}\right)\right) \tag{2}
\end{equation*}
$$

with $N^{\bullet} \boldsymbol{u}$-entire and \boldsymbol{v}-constant, are stable under ari.
Since bialternality classically implies push-invariance, the latter Lemma implies the former. Moreover, since in (2) the push-invariance of M^{\bullet} is equivalent to that of N^{\bullet}, it suffices to check that for any pair $S_{1}^{\bullet}, S_{2}^{\bullet}$ of arbitrary bimoulds of lengths r_{1}, r_{2}, the ari-product

$$
\begin{equation*}
M^{\bullet}:=\operatorname{ari}\left(M_{1}^{\bullet}, M_{2}^{\bullet}\right) \quad \text { with } \quad N_{i}^{\bullet}:=\text { pushinvar. } S_{i}^{\bullet} \quad(\forall i \in\{1,2\}) \tag{3}
\end{equation*}
$$

[^0]has no "bad" poles. The verification is staightforward:
(i) one first deals with the case when the length- 1 components of $M_{1}^{\bullet}, M_{2}^{\mathbf{+}}$ have no poles at $u_{1}=0$.
(ii) one calculates M^{w} while keeping P as P
(iii) for any (i, j) with $1 \leq i<j \leq r:=r_{1}+r_{2}$ (due to the push-invariance of M^{\bullet} one may in fact assume i to be 1) one calculates the coefficients $H_{i, j}^{+}$ and $H_{i, j}^{-}$respectively of $P\left(u_{i}+\ldots+u_{j}\right)$ and $P\left(-\left(u_{i}+\ldots+u_{j}\right)\right)$ in $M^{\boldsymbol{w}}$
(iv) one sets $u_{j}:=-\left(u_{1}+\ldots+u_{j-1}\right)$ in $H_{i, j}^{+}$and $H_{i, j}^{-}$, which thus become $h_{i, j}^{+}$ and $h_{i, j}^{-}$
(v) one then checks (preferably using the "long notation", i.e. with u_{0}) that due to pairwise cancellations $h_{i, j}^{+}$and $h_{i, j}^{-}$, and not just the difference $h_{i, j}^{+}-h_{i, j}^{-}$, separately vanish.
(vi) lastly, one easily removes the restriction (i). To do this, it is in fact enough to deal with the case when $M_{1}^{w_{1}}=P\left(u_{1}\right) \cdot P\left(u_{0}\right)=-P\left(u_{1}\right)^{2}$ and $M_{2}^{w_{1}}$ is regular at $u_{1}=0$.

Casual remark: As just mentioned, the proof makes no use of the actual form of P, not even its imparity: it would work just as well with P changed to an arbitrary meromorphic function with a simple pole at the origin. ${ }^{4}$

Important remark: Lemma 8.1.2 no longer holds if we remove the assumption of \boldsymbol{v}-constancy. Or rather, it still holds, but only if we impose special constraints on the \boldsymbol{v}-dependency. Now, it so happens that in the case of n-coloured multizetas, we are led to consider bimoulds that do depend on the v_{i}-variables ${ }^{5}$ but which automatically verify these additional constraints.

8.2 (Bi)singulators, (bi)singulands, (bi)singulates.

The (bi)singulators are bimould operators that turn regular inputs of the right parity - the (bi)singulands - into singular and bialternal outputs - the (bi)singulates. All three come in two forms: simple or composite.

Let us start with the simple (bi)singulators (bi)slank ${ }_{r}$. These operators turn (bi)singulands $(b i) s \emptyset n d_{r}$ from $B I M U_{1}$ into (bi)singulates ($b i$) $s \varnothing t_{r}$ in

[^1]$B I M U ~_{r}$:
\[

$$
\begin{align*}
& \operatorname{slank}_{r} \cdot \text { sønd }_{r}^{\bullet}:=\operatorname{senk}_{r}\left(\mathrm{pal}^{\bullet}\right) . \mathrm{sqnd}_{r}^{\bullet} \quad(c f .[E 3], \S 5) \tag{4}\\
& \text { bislank }_{r} \cdot \operatorname{bis}_{\mathrm{b}} \mathrm{nd}_{r}^{\bullet}:=\overrightarrow{\operatorname{ari}}(\operatorname{bis}_{\mathrm{r}} \mathrm{nd}_{r}^{\bullet}, \overbrace{\kappa \alpha_{-2}^{\bullet}, \ldots, \kappa \alpha_{-2}^{\bullet}}^{(r-1)} \text {) } \tag{5}
\end{align*}
$$
\]

Throughout, the length- 1 bimoulds $\kappa \alpha_{d}^{\bullet}$ are defined by $\kappa \alpha_{d}^{w_{1}}:=u_{1}^{d}$.
The operator slank r_{r} produces a bialternal singulate if and only if the singuland $s ø n d_{r}^{w_{1}}$ has the right parity in w_{1}, namely odd when r is even, and even when r is odd. The operator bislank $_{r}$, on the other hand, produces bialternal bisingulates if and only if the bisinguland bisønd ${ }_{r}^{w_{1}}$ is an even function of w_{1}, whatever the value of r.

Under slank ${ }_{r}$ (resp. bislank r_{r}), the homogeneous degree drops by $r-1$ (resp. $2 r-2$) units.

Lastly, it was stated in [E3] (§5.7, p 107) that the singulates $s ø t_{r}^{\bullet}:=$ slank $_{r} . s ø n d_{r}^{\bullet}$ have only "good" poles, that is to say poles of the form $P\left(u_{i}\right)$ or $P\left(u_{0}\right):=P\left(-u_{1} \ldots-u_{r}\right)$, to the exclusion of "bad" poles of type $P\left(u_{i}+\cdots+u_{j}\right)$ with $1<|i-j|<r-1$, which the flexion operations might have been expected to produce, and which they do indeed produce when the singuland does not possess the right parity. Moreover, we are told by L.Schneps that her student has proved an analogous statement for the bisingulates, assuming of course the bisinguland to be even. As we shall see, due to the equivalence of singulates and bisingulates and on the strength of the above Lemmas in §8.1, both statements corroborate each other. The remarkable thing, however, which we may note in passing, is that in both cases the parity condition guaranteeing bialternality coincides with the one that keeps "bad" poles at bay!

Let us now define the composite (bi)singulators (bi) slank ${ }_{r_{1}, \ldots, r_{n}}$. These operators turn (bi)singulands ($b i$) $s \emptyset n d_{r_{1}, \ldots, r_{n}}^{\bullet}$ from $B I M U_{n}$ into (bi)singulates (bi)søt $t_{r_{1}, \ldots, r_{n}}^{\bullet}$ in $B I M U_{r_{1}+\ldots r_{n}}$. They are characterised by the following straightforward multilinearity property, valid for all degrees d_{i} :

$$
\begin{align*}
\operatorname{slank}_{r_{1}, \ldots, r_{n}} \cdot \operatorname{mu}\left(\kappa \alpha_{d_{1}}^{\bullet}, \ldots, \kappa \alpha_{\dot{d}_{n}}^{\bullet}\right) & =\overrightarrow{\operatorname{ari}}\left(\operatorname{slank}_{r_{1}} \cdot \kappa \alpha_{d_{1}}^{\bullet}, \ldots, \operatorname{slank}_{r_{n}} \cdot \kappa \alpha_{\dot{d}_{n}}^{\bullet}\right) \tag{6}\\
\operatorname{bislank}_{r_{1}, \ldots, r_{n}} \cdot \operatorname{mu}\left(\kappa \alpha_{\dot{d}_{1}}^{\bullet}, \ldots, \kappa \alpha_{d_{n}}^{\bullet}\right) & =\overrightarrow{\operatorname{ari}\left(\operatorname{bislank}_{r_{1}} \kappa \alpha_{d_{1}}^{\bullet}, \ldots, \operatorname{bislank}_{r_{n}} \kappa \alpha_{d_{n}}^{\bullet}\right)} \tag{7}
\end{align*}
$$

The notation $\overrightarrow{a r i}$ signals that the bracketing goes from left to right. ${ }^{6}$
Although the simple (bi)singulators (bi) slank ${ }_{r}$ make direct sense only for $r>1$, it is convenient to set:

$$
\begin{equation*}
\text { slank }_{1}=\text { bislank }_{1}:=\text { id }: \quad \text { BIMU }_{1} \rightarrow \text { BIMU }_{1} \tag{8}
\end{equation*}
$$

[^2]so as to be able to handle composite (bi)singulators (bi)slank $k_{r_{1}, \ldots, r_{n}}$ with partial indices $r_{i} \geq 1$.

Another convenient tool has to be mentioned in this context: namely the operators preslank ${ }_{r_{1}, \ldots, r_{n}}$ and prebislank $k_{r_{1}, \ldots, r_{n}}$, which are defined exactly as in (6) and (7) but with ari changed to preari. Taken in isolation, they fail to produce bialternals (they do so only collectively, in the right combinations ${ }^{7}$) but they have one great merit: they relieve us of the necessity of choosing (necessarily arbitrary) bases in the spaces spanned by all (bi)slank $r_{r_{1}, \ldots, r_{n}}$ of a given length $r=\sum r_{i}$.

8.3 Mutual convertibilty of singulates and bisingulates. The algebra $A L A L_{\text {sing }}$.

The monomial pilot formula behind convertibility.
For any even d, consider the simple "atomic" (bi)singulates:

$$
\begin{align*}
\operatorname{sat}_{r, d}^{\bullet} & :=\operatorname{slank}_{r} \cdot \kappa \alpha_{d+r-1}^{\bullet} \tag{9}\\
\text { bisat }_{r, d}^{\bullet} & :=\operatorname{bislank}_{r} \cdot \kappa \alpha_{d+2 r-2}^{\bullet}=\overrightarrow{\operatorname{ar} i}(\kappa \alpha_{d+2 r-2}^{\bullet}, \overbrace{\kappa \alpha_{-2}^{\bullet}, \ldots, \kappa \alpha_{-2}^{\bullet}}^{(r-1)}) \tag{10}
\end{align*}
$$

Both have the same length r; the same homogeneous degree d; and the same effective polarity ${ }^{8}$ of order $r-1$. Now, a careful calculation shows that:

$$
\begin{equation*}
\text { bisat }_{r, d}^{\boldsymbol{w}} \equiv \frac{(r-1)!(d+2 r-2)!}{(d+r-1)!} \text { sat }_{r, d}^{\boldsymbol{w}} \quad \bmod \text { Polar }_{r-2} \tag{11}
\end{equation*}
$$

Incidentally, if we introduce the "weight" $s:=r+d$, the conversion factor $\frac{(r-1)!(d+2 r-2)!}{(d+r-1)!}$ assumes the slightly more pleasant shape $\frac{(r-1)!(s+r-2)!}{(s-1)!}$

The general pilot formula, and what it tells us.
Consider now general (bi)singulands subject to no other restriction than regularity at $u_{1}=0$:

$$
\begin{align*}
& \mathrm{s} \varnothing \mathrm{t}_{r}^{\bullet}:=\operatorname{slank}_{r} \cdot \mathrm{~s} ø \mathrm{nd}_{r}^{\bullet} \quad \text { with } \quad \operatorname{sønd}_{r}^{w_{1}}:=A\left(u_{1}\right) \tag{12}\\
& \text { bisøt }{ }_{r}^{\bullet}:=\text { bislank }_{r} . \text { bisønd }_{r}^{\bullet} \quad \text { with } \quad \operatorname{bis}^{\bullet} ø \mathrm{nd}_{r}^{w_{1}}:=B\left(u_{1}\right) \tag{13}
\end{align*}
$$

[^3]The corresponding (bi)singulates verify the following identities, which neatly isolate the terms of highest polar order (in the present instance, of order $r-1)$:

$$
\begin{align*}
{\mathrm{s} \varnothing \mathrm{t}_{r}^{w}}_{\boldsymbol{w}} & =\sum_{0 \leq i<j \leq r} \frac{(-1)^{j-i-1}(r-1)!}{(j-i-1)!(r-j+i)!} \cdot \frac{A\left(u_{i}\right)}{(r-1)!} \prod_{0 \leq k \leq r}^{k \notin\{i, j\}} P\left(u_{k}\right) \bmod \operatorname{Polar}_{r-2} \tag{14}\\
& =\sum_{0 \leq i<j \leq r} \frac{(-1)^{j-i+r}(r-1)!}{(j-i-1)!(r-j+i)!} \cdot \frac{A\left(u_{j}\right)}{(r-1)!} \prod_{0 \leq k \leq r}^{k \notin\{i, j\}} P\left(u_{k}\right) \bmod \operatorname{Polar}_{r-2} \tag{15}\\
\text { bisøt } t_{r}^{\boldsymbol{w}} & =\sum_{0 \leq i<j \leq r} \frac{(-1)^{j-i-1}(r-1)!}{(j-i-1)!(r-j+i)!} \cdot B^{(r-1)}\left(u_{i}\right) \prod_{0 \leq k \leq r}^{k \notin\{i, j\}} P\left(u_{k}\right) \bmod \operatorname{Polar}_{r-2}(\tag{16}\\
& =\sum_{0 \leq i<j \leq r} \frac{(-1)^{j-i+r}(r-1)!}{(j-i-1)!(r-j+i)!} \cdot B^{(r-1)}\left(u_{j}\right) \prod_{0 \leq k \leq r}^{k \notin\{i, j\}} P\left(u_{k}\right) \bmod \operatorname{Polar}_{r-2}(\tag{17}
\end{align*}
$$

Remark 8.3.1. Non-trivialness of desingularisation.

Due to the parity conditions laid upon the singuland A (resp. bisinguland B), the right-hand sides of (12) and (13) (resp. (14) and (15)) clearly coincide modulo Polar $_{r-2}$ and define a bimould $S \phi t_{r}^{\bullet}$ (resp. Bis $\varnothing t_{r}^{\bullet}$) that is automatically bisymmetral, but again only modulo Polar $_{r-2}$. By suitably modifying these right-hand sides, one could easily ensure the exact alternality of $S \varnothing t_{r}^{\bullet}$ and $B i s ø t_{r}^{\bullet}$ and even their exact alternality in combination with their exact push-invariance. ${ }^{9}$ What no elementary trick can achieve, though, is exact bialternality. Were that possible, we would be spared many a headache: we could simply subtract from $s \varnothing t_{r}^{\bullet}-b i s \phi t_{r}^{\bullet}$ the exactly bialternal part $S \varnothing t_{r}^{\bullet}-B i s ø t_{r}^{\bullet}$ that carries all the polarity of order $r-1$, and by so doing kick-start a simple and effective conversion algorithm. Unfortunately, no such short-cut can work: the only way to remove polar parts of a given order while respecting the double symmetries is the arduous process, essentially perinomal in nature, that is explained in [E1], [E2], [E3] and that shall be applied here, in $\S 8.8$ to the special task of converting singulates and bisingulates into one another.

Remark 8.3.2. The apparent differentiation of bisingulands: a strange phenomenon halfway between fact and artefact.

A striking difference between the pilot formula for singulates and binsingulates is this: the highest polar part as given by (12) or (13) involves the

[^4]singuland A in unadulterated form, whereas (14) and (15) involve the derivative $B^{(r-1)}$ of the bisinguland. This is not to say, of course, that bisingulators, which as linear operators resolve into a sequence of purely algebraic manipulations, actually differentiate the singulands they act upon. They do no such thing: if $b i s ø n d_{r}^{w_{1}}:=B\left(u_{1}\right)$ has only simple poles away from zero ${ }^{10}$, the bisinguland $b i s ø t_{r}^{w_{1}, \ldots, w_{r}}$ also will exhibit only simple poles ${ }^{11}$ away from zero. There is no danger of poles of order r popping out of thin air - as would be the case if actual differentiation had taken place. Still, we should not dismiss this apparent "differentiation" as a mere optical illusion, for it has two momentous consequences.

First consequence: When converting bisingulates into singulates (see $\S 8.8$ infra) we shall have to subtract from the bisingulate bisøt (produced from B) a singulate $s \varnothing t^{\bullet}$ (produced from $A:=(r-1)!B^{(r-1)}$). This subtraction, to which there is no alternative, shall lead to actual differentiation and to a very tangible proliferation of multiple poles.

Second consequence: If we were to use bisingulates instead of singulates in the perinomal construction of luma ${ }^{\bullet} /$ lumi $\boldsymbol{\bullet}^{\bullet}$ and ruma•/rumi•• (see [E2], [E3]), the difficulty would be exactly the reverse (integration rather than differentiation), only ten times worse. Indeed, to offset singulands $A\left(u_{1}\right)$ carrying simple poles $c .\left(u_{1}-n_{1}\right)^{-1}$ we would have no choice but to rope in bisingulands $B\left(u_{1}\right)$ carrying logarithmic terms of the form $c \cdot \frac{1}{(r-1)!} \partial_{u_{1}}^{-r+1} \cdot\left(u_{1}-n_{1}\right)^{-1}=$ c. $\frac{\left(u_{1}-n_{1}\right)^{r-2}}{(r-1)!(r-2)!} \log \left(u_{1}-n_{1}\right)+(\ldots)$, and this would at once land us into an almighty mess. This fact alone, from the very start, disqualifies bisingulates as a vehicle for perinomal calculus.

Conversion rules at length $r=2$.

This is actually the only conversion rule that we shall require for tackling the carma bialternals. So let us deal with it with some care. Let us first recall the three polynomials that go into the making of the doma bialternals: ${ }^{12}$

$$
\begin{align*}
\mathrm{fa}\left(u_{1}, u_{2}\right) & :=u_{1} u_{2}\left(u_{1}+u_{2}\right)\left(u_{1}-u_{2}\right)\left(u_{1}+2 u_{2}\right)\left(u_{2}+2 u_{1}\right) \tag{18}\\
\operatorname{ha}\left(u_{1}, u_{2}\right) & :=u_{1}^{2}+u_{1} u_{2}+u_{2}^{2} \tag{19}\\
\operatorname{ga}\left(u_{1}, u_{2}\right) & :=\left(u_{1}+u_{2}\right)^{2} u_{1}^{2} u_{2}^{2} \tag{20}
\end{align*}
$$

[^5]In the "long notation" (with $u_{0}:=-u_{1}-u_{2}$), they assume the simpler form:

$$
\begin{align*}
\operatorname{fa}\left(u_{1}, u_{2}\right) & :=u_{0} u_{1} u_{2}\left(u_{0}-u_{1}\right)\left(u_{1}-u_{2}\right)\left(u_{2}-u_{0}\right) \tag{21}\\
\operatorname{ha}\left(u_{1}, u_{2}\right) & :=-u_{0} u_{1}-u_{1} u_{2}-u_{2} u_{0} \tag{22}\\
\operatorname{ga}\left(u_{1}, u_{2}\right) & :=u_{0}^{2} u_{1}^{2} u_{2}^{2} \tag{23}
\end{align*}
$$

Let us now collect all our (bi)singulands inside generating power series of t :

$$
\begin{align*}
\operatorname{sund}_{2}^{w_{1}}(t) & :=\frac{2 u_{1}}{\left(1-u_{1}^{2} t^{2}\right)^{2}} \tag{24}\\
\operatorname{bisund}_{2}^{w_{1}}(t) & :=\frac{u_{1}^{2}}{\left(1-u_{1}^{2} t^{2}\right)} \tag{25}
\end{align*}
$$

In the long notation we get:

$$
\begin{gather*}
\left(\text { bislank }_{2} \cdot \text { bisund }_{2}\right)^{w_{1}, w_{2}}-\left(\text { slank }_{2} \cdot \text { sund }_{2}\right)^{w_{1}, w_{2}}= \\
\frac{u_{0} u_{1} u_{2}\left(u_{0}-u_{1}\right)\left(u_{1}-u_{2}\right)\left(u_{2}-u_{0}\right)\left(3+\left(u_{0} u_{1}+u_{1} u_{2}+u_{2} u_{0}\right) t^{2}\right) t^{6}}{\left(1-u_{0}^{2} t^{2}\right)^{2}\left(1-u_{1}^{2} t^{2}\right)^{2}\left(1-u_{2}^{2} t^{2}\right)^{2}} \tag{26}
\end{gather*}
$$

which readily translates into:

$$
\left(\text { bislank }_{2} \cdot \text { bisund }_{2}\right)^{w_{1}, w_{2}}-\left(\text { slank }_{2} \cdot \operatorname{sund}_{2}\right)^{w_{1}, w_{2}}=
$$

$$
\begin{equation*}
\frac{(\mathrm{fa}) \cdot\left(3-\mathrm{hat}^{2}\right) t^{6}}{1-4 \mathrm{ha}^{2}+6 \mathrm{ha}^{2} t^{4}-\left(2 \mathrm{ga}+4 \mathrm{ha}^{3}\right) t^{6}+\left(\mathrm{ha}^{4}+4 \text { ha ga) } t^{8}-2 \mathrm{ha}^{2} \mathrm{ga}^{10}+\mathrm{ga}^{2} t^{12}\right.} \tag{27}
\end{equation*}
$$

Expanding both sides of (27) as power series of t and equating the coefficients of t^{d} (d even), we immediately get the singulates and bisingulates of same degree translated into each other plus a string of doma bialternals.

Conversion rules at higher lengths ($r \geq 3$).
Proposition 8.3.1. The twin processes of singulation and bisingulation are globally equivalent: they generate exactly the same space of singular bisymmetrals with "good poles". The mutual convertibility of singulates and bisingulates is guaranteed by the existence, for all pairs $\left(\mathrm{s}_{\mathrm{nd}}^{r} \boldsymbol{\bullet},{\left.\operatorname{bis} ø \mathrm{nd}_{r}^{\bullet}\right)}^{*}\right.$ such that
of identities of the form:

$$
\begin{align*}
& \text { bislank }_{r} . \text { bisønd }_{\mathbf{r}}^{\bullet}=\operatorname{slank}_{r} . \operatorname{sønd}_{\mathbf{r}}^{\bullet}+\sum_{2 \leq s \leq r}^{\sum r_{i}=r} \operatorname{slank}_{r_{1}, \ldots, r_{s}} . \operatorname{sønd}_{r_{1}, \ldots, r_{s}}^{\bullet} \tag{29}
\end{align*}
$$

(i) with all singulands sønd ${\dot{r_{1}}, \ldots, r_{s}}_{\bullet} \boldsymbol{v}$-constant and in $B I M U_{s}^{\text {ent }}$
(ii) with all proper singulates s $\varnothing t_{r_{1}, \ldots, r_{s}}^{\bullet}=\operatorname{slank}_{r_{1}, \ldots, r_{s}} \cdot s \emptyset n d_{r_{1}, \ldots, r_{s}}^{\bullet}$ in $B I M U_{r}^{\text {sing }}$ (iii) with one last 'improper' singulate søt $t_{1, \ldots, 1}^{\bullet}$ in $B I M U_{r}^{\text {ent }}$.

Thus, at lengths 3 and 4 we have:

$$
\begin{align*}
& \text { bislank }_{3} \cdot{\text { bis } ø \mathrm{nd}_{3}}^{\bullet}=\text { slank }_{3} \cdot \text { sønd }_{3}^{\bullet}+\text { slank }_{1,2} \cdot \text { sønd }_{1,2}^{\bullet}+\text { slank }_{1,1,1} \cdot \text { sønd }_{1,1,1}^{\bullet} \tag{31}\\
& \text { bislank }_{4} \cdot{\text { bis } ø \text { nd }_{4}}^{\bullet}=\text { slank }_{4} \cdot \text { sønd }_{4}^{\bullet}+\text { slank }_{3,1} \cdot \text { sønd }_{3,1}^{\bullet}+\text { slank }_{2,2} \cdot \text { Sønd }_{2,2}^{\bullet} \\
& + \text { slank }_{2,1,1} \cdot \text { sønd }_{2,1,1}^{\bullet}+\operatorname{slank}_{1,1,1,1} \cdot \text { sønd }_{1,1,1,1}^{\bullet} \tag{32}
\end{align*}
$$

Important remark: By itself, our pilot formula (11) does not tell us that the difference bislank $_{r}$. bisø $^{\prime} d_{r}^{\bullet}-\operatorname{slank}_{r} . s \emptyset n d_{r}^{\bullet}$ can be expanded into pure sums of singulates or pure sums of bisingulates. It just tells us that, if such expansions exist, they can involve only strictly composite singulates or bisingulates, i.e. terms of lesser polarity. The existence itself of expansions of type (29) and (30) flows from other considerations - namely, from the formula (67) in $\S 8.8$ infra which is an exact analogue of (29) in the perinomal setting. ${ }^{13}$

8.4 Reminder about the elements of $A L I L_{\text {ent }}$ and their representation.

We recall that the systems $\left\{l \varnothing m a_{s}^{\bullet} ; s\right.$ odd $\}$ constructed in [E3], $\S 6$ through an inductive shuttle of singularisation-desingularisation are of the form:

$$
\begin{equation*}
\mathrm{l}_{\boldsymbol{m a}}^{s}{ }_{s}^{\bullet}=\operatorname{adari}\left(\operatorname{pal} \mathbf{l}^{\bullet}\right) \cdot\left(\mathrm{s} \emptyset \mathrm{t}_{s ; 1}^{\bullet}+\mathrm{s} \emptyset \mathrm{t}_{s ; 3}^{\bullet}+\mathrm{s} \varnothing \mathrm{t}_{s ; 5}^{\bullet}+\mathrm{s} \varnothing \mathrm{t}_{s ; 7}^{\bullet}+\ldots\right) \tag{33}
\end{equation*}
$$

with \boldsymbol{v}-constant singulates $s \emptyset t_{s ; r}^{\boldsymbol{\bullet}}$ in $A L A L_{s i n g}$
(i) of odd length r,
(ii) of homogeneous \boldsymbol{u}-degree $d=s-r$,
(iii) of formal \boldsymbol{u}-polarity ${ }^{14}$ ranging between 1 and $r-2$
(iv) with each $s \varnothing t_{s ; r}^{\bullet}$ (save of course the initial and trivial $s \varnothing t_{s ; 1}^{\bullet}$) given as a

[^6]sum of strictly composite elementary singulates $\operatorname{slank}_{r_{1}, \ldots, r_{n}} \operatorname{sønd} d_{r_{1}, \ldots, r_{n}}^{\bullet}$ with $0<n<r$. Thus:
\[

$$
\begin{align*}
& \stackrel{\phi_{s}, 1}{\boldsymbol{\bullet}}=\kappa \alpha_{s-1}^{\bullet} \\
& \left(\kappa \alpha_{d}^{w_{1}}:=u_{1}^{d}\right) \tag{34}\\
& \mathrm{s} ø \boldsymbol{t}_{s ; 3}^{\bullet}=\operatorname{slank}_{2,1} \cdot \mathrm{sqnd}_{2,1}^{\bullet} \tag{35}
\end{align*}
$$
\]

$$
\begin{align*}
& + \text { slank }_{2,1,2} \cdot \text { sønd }_{2,1,2}^{\bullet}+\text { slank }_{2,1,1,1} \cdot \text { sønd }_{2,1,1,1}^{\bullet} \tag{36}
\end{align*}
$$

For instance, the singuland $s ø n d_{2,1}^{w_{1}, w_{2}}$, which is the only one that we shall require in the next paragraph, is a homogeneous polynomial in $\left(u_{1}, u_{2}\right)$ of degree $s-2$. When acted upon by the singulator slank $k_{2,1}$, it produces a singulate $s \varnothing t_{2,1}^{w_{1}, w_{2}, w_{3}}$ that is a homogeneous rational fraction in $\left(u_{1}, u_{2}, u_{3}\right)$ of degree $s-3$.

8.5 All carma bialternals can be expressed as sums of singulates or bisingulates, at one's choice.

For any fixed system $\left\{l ø m a_{s}^{\bullet} ; s=1,3,5 \ldots\right\}$, the carma bialternals of degree d are constructed (see E1] §17, [E3] §7) from precarma polynomials of degree $d+2$, i.e. from alternal polynomials of the form:

$$
\begin{align*}
\text { precar }^{x_{1}, x_{2}} & =\sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} x_{1}^{d_{1}} x_{2}^{d_{2}} \tag{37}\\
\text { with } \quad 0^{\bullet} & \equiv \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\kappa \alpha_{d_{1}}^{\bullet}, \kappa \alpha_{d_{2}}^{\bullet}\right) \tag{38}
\end{align*}
$$

The corresponding carma bialternal cørma• $\in B I M U_{4}$ is then defined by the following identity, taken at length $r=4$:

$$
\begin{equation*}
\mathrm{c} ø \mathrm{rma} \cdot \frac{1}{2} \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{l} \not \mathrm{ma}_{1+d_{1}}^{\bullet}, \text { løma }{\underset{1+d_{2}}{ }}_{\boldsymbol{\bullet}}\right) \tag{39}
\end{equation*}
$$

In view of (33), (34), (35), this yields:

$$
\begin{align*}
& \text { cørma }{ }^{\bullet}=\frac{1}{2} \operatorname{adari}\left(\text { pal }^{\bullet}\right) \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{~s} ø \mathrm{t}_{1+d_{1} ; 1}^{\bullet}, \mathrm{s} \varnothing \mathrm{t}_{1+d_{2} ; 1}^{\bullet}\right) \tag{40}\\
& +\frac{1}{2} \text { adari }\left(\mathrm{pal} \mathbf{l}^{\bullet}\right) \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{~s} \varnothing \mathrm{t}_{1+d_{1} ; 1}^{\boldsymbol{1}}, \mathrm{s} \varnothing \mathrm{t}_{1+d_{2} ; 3}\right) \tag{41}\\
& +\frac{1}{2} \operatorname{adari}\left(\text { pal }^{\bullet}\right) \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{~s} \varnothing \mathrm{t}_{1+d_{1} ; 3}^{\bullet}, \mathrm{s} \varnothing \mathrm{t}_{1+d_{2} ; 1}^{\bullet}\right) \tag{42}
\end{align*}
$$

Due to (34) and (38), the right-hand side of (40) vanishes. So we are left with the contributions (41) and (42), from which the operator adari (pal ${ }^{\bullet}$) may be removed, since it acts on bimoulds which are already in $B I M U_{4}$. Thus:

$$
\begin{align*}
\mathrm{c} r \mathrm{rma} & =\frac{1}{2} \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{~s} \varnothing \mathrm{t}_{1+d_{1} ; 1}^{\bullet}, \mathrm{s} \varnothing \mathrm{t}_{1+d_{2} ; 3}^{\bullet}\right) \tag{43}\\
& +\frac{1}{2} \sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{~s} \emptyset \mathrm{t}_{1+d_{1} ; 3}^{\bullet}, \mathrm{s} \varnothing \mathrm{t}_{1+d_{2} ; 1}^{\bullet}\right) \tag{44}
\end{align*}
$$

Or again, due to the alternality of precar:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{mma}}{ }^{\bullet}=\sum_{d_{1}+d_{2}=d+2}^{d_{i} \text { even } \geq 2} c_{d_{1}, d_{2}} \operatorname{ari}\left(\mathrm{~s} \varnothing \mathrm{t}_{1+d_{1} ; 3}, \mathrm{~s} \varnothing \mathbf{t}_{1+d_{2} ; 1}\right) \tag{45}
\end{equation*}
$$

In view of (34) and (35), this means, quite simply, that cørma* is a composite singulate of type $s ø t_{2,1,1}^{0}$, which as such immediately converts into a composite bisingulate of type bisøt $t_{2,1,1}^{\bullet}$ (plus of course a harmless string of trivial terms of the form $s \not t_{1,1,1,1}^{\bullet}=$ bis $\left.\varnothing t_{1,1,1,1}^{\bullet}\right)$ under the simple rule of $\S 8.3$ that exchanges simple singulates of type $s \not \varnothing t_{2}^{\bullet}$ and simple bisingulates of type $b i s ø t_{2}^{\bullet}$. Resorting to formula (27) and choosing for example the canonical ("perinomal") realisation luma` of $l \varnothing m a{ }^{\bullet}$ with the corresponding singulands sut ${ }_{2,1}^{*}$ given by the formula (6.28) in [E3] (set $\left(r_{1}, r_{2}\right)=(1,2)$ rather than $(2,1)$ due to the change of ordering convention), we arrive at the perinomal realisation curma of our cørma bialternals, with a totally explicit expansion in terms of bisingulates - an expansion which, however, does not compare too favourably with the original expression in terms of singulates.

8.6 The messy structure of $A L A L_{\text {sing }}$. bialternals at all polar heights.

Polynomial (bi)singulands (bi)sønd $d_{r_{1}, \ldots, r_{s}}^{w_{1}, \ldots, w_{s}}$, that is to say (bi)singulands with values in $\mathbb{C}\left[\left[u_{1}, \ldots, u_{s}\right]\right]$, often produce (bi)singulates of effective polarity strictly less than their formal polarity $\sum\left(r_{i}-1\right)=r-s$. At the lowest end of the polarity chain, they produce singularity-free (i.e polynomial) bialternals - the proper "(bi)wandering bialternals" - which, while rather thin on the ground (they are incomparably less numerous than the general polynomial bialternals), are still responsible for the residual indeterminacy that mars the so-called semi-canonical realisations of $l ø m a^{\bullet}, r ø m a^{\bullet}$ etc.

This indeterminacy only disappears, at the cost of much hard work, in the fully canonical realisationss, of which three types are known:
(i) the perinomal type luma ${ }^{\bullet}$, ruma ${ }^{\bullet}$ etc, which maximises functional smoothness
(ii) the arithmetical type lama• ${ }^{\bullet}$ rama• etc, which maximises arithmetical smoothness
(iii) the mixed type loma ${ }^{\bullet}$, roma ${ }^{\bullet}$ etc, which makes the best of both worlds by taking advantage of the symmetries observed in the perinomal construction while retaining a measure of arithmetical smoothness.

The bottom-line is that these wandering bialternals are a very real nuisance. They make a whole mess of the structure of $A L A L_{\text {sing }}$ - a hard fact that cannot be papered over or done away with by a simple sleight of hand. ${ }^{15}$

One of the most glaring manifestations of the wandering bialternals with their nuisance value is this: the perinomal decompositions (see (50), (51) infra), which have the merit of uniqueness, sometimes express Taylor-rational singulates ${ }^{16}$ in terms of Taylor-irrational singulands. ${ }^{17}$ No contadiction here - this is just the wanderers at their tricks! For instance, it is still a moot question (which we haven't found the time to address) whether the perinomal conversion formula (67) expresses the Taylor-rational bisingulate on the lefthand side in terms of Taylor-rational or Taylor-irrational singulands on the right-hand side.

8.7 The tidy structure of $A L A L_{\text {eumero }}$. Uniqueness of decomposition.

Perinomal calculus. ${ }^{18}$

Consider the elementary singulands

$$
\operatorname{sund}_{\left[\begin{array}{l}
n_{1} \tag{46}\\
r_{1}
\end{array}\right]}:=P\left(u_{1}-n_{1}\right)+(-1)^{r_{1}} \cdot P\left(u_{1}+n_{1}\right)
$$

They are in BIMU ${ }_{1}^{\text {even }}$ if r_{1} is odd and in $B I M U_{1}^{\text {odd }}$ if r_{1} is even. They can therefore be subjected to the singulators slank ${r_{1}}$ to produce simple bialternal singulates

$$
\operatorname{sut}_{\left[\begin{array}{c}
\bullet \tag{47}\\
n_{1} \\
r_{1}
\end{array}\right]}:=\operatorname{slank}_{r_{1}} \cdot \operatorname{sund}_{\left[\begin{array}{c}
\bullet \\
n_{1} \\
r_{1}
\end{array}\right] \quad \text { for } \quad r_{1}>1}
$$

[^7]For $r_{1}=1$, we must set $\operatorname{sut}_{\left[\begin{array}{c}n_{1} \\ 1\end{array}\right]}:=\operatorname{sund}_{\left[\begin{array}{c}n_{1} \\ 1\end{array}\right]}$. Of course, the singulands sund $_{\left[\begin{array}{l}n_{1} \\ r_{1}\end{array}\right]}$ are in BIMU while $^{[}{ }^{[}$ $\operatorname{BIMU}_{r_{1}}$. This is one of those minor notational inconsistencies that cannot be helped and that we must learn to take in our stride.

We can then proceed to form the composite bialternal singulates

$$
\left.\left.\operatorname{sut}_{\left[\begin{array}{c}
n_{1}, \ldots, n_{s} \tag{48}\\
r_{1}, \ldots, r_{s}
\end{array}\right]}:=\overrightarrow{\operatorname{ari}}^{\left(\text {sut }_{[}^{n_{1}}\right.} \underset{n_{1}}{r_{1}}\right], \ldots, \text { sut }_{\left[\begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right]}\right)
$$

Each such length- r singulate, whether simple or composite, posssesses three outstanding properties:
$\mathbf{P}_{\mathbf{1}}$: it is bialternal (hence an even function of \boldsymbol{w}, which here reduces to \boldsymbol{u}) $\mathbf{P}_{\mathbf{2}}$: it is a meromorphic function of \boldsymbol{u}, with all its singularities located at multi-integers $\boldsymbol{n}:=\left(n_{1}, \ldots, n_{r}\right)$ and of eupolar type, i.e. of the form

$$
\begin{equation*}
\text { Const } \left.\left.\mathcal{P}^{\left(u_{1}-n_{1}, \ldots, u_{r}-u_{r}\right)} v_{v_{1}}, \ldots,{ }_{v_{r}}\right) \quad \text { with } \quad \mathcal{P}^{\left(u_{1}, \ldots, u_{r}\right)} v_{1}, \ldots, v_{r}\right), \operatorname{Flex}_{r}(\mathrm{~Pa}) \tag{49}
\end{equation*}
$$

$\mathbf{P}_{\mathbf{3}}$: it has only good poles at the origin, i.e. poles of the form $P\left(u_{i}\right)$ with $0 \leq i \leq r$ and the usual convention $P\left(u_{0}\right):=P\left(-\left(u_{1}+\ldots+u_{r}\right)\right)$.

It is therefore tempting to consider the space $A L A L_{\text {eumero }}^{\#}$ of all formal combinations A^{\bullet}, finite or infinite, of eupolar multipoles (49) that verify ${ }^{19}$ the conditions $\mathbf{P}_{\mathbf{1}}, \mathbf{P}_{\mathbf{2}}, \mathbf{P}_{\mathbf{3}}$.

Rather unsurprisingly, ALAL ${ }_{\text {eumero }}^{\#}$ turns out to be stable under ari ${ }^{20}$. But the real beauty is that each length-r element A_{r}^{\bullet} in the algebra $\mathrm{ALAL}_{\text {eumero }}^{\#}$ can be expressed, in a unique way, as a perinomal expansion of the form

$$
\begin{align*}
& \mathrm{A}_{r}^{\bullet}=\sum_{s \geq 1} \sum_{r_{i} \geq 1}^{\sum r_{i}=r} \sum_{n_{i} \geq 1} \theta\left(\begin{array}{c}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right) \tag{50}\\
&=\sum_{s \geq 1} \sum_{r_{i} \geq 1}^{\sum r_{i}=r} \sum_{n_{i} \geq 1} \theta\left(\begin{array}{c}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right) \tag{51}\\
& r_{s} \\
& \operatorname{sut}_{\left[\begin{array}{c}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{l}
n_{s} \\
r_{s}
\end{array}\right]}^{\bullet}\left[\begin{array}{l}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right]
\end{align*}
$$

with well-defined alternal coefficients θ^{\bullet}.
Remark 8.7.1. Of the two expansions (50) and (51), the former is the more important from a theoretical viewpoint, since it automatically ensures the

[^8]alternality of θ^{\bullet}. Its only drawback is the presence in it of preari-brackets
\[

\left.\operatorname{presut}_{\left[$$
\begin{array}{c}
n_{1}, \ldots, n_{s} \tag{52}\\
r_{1}, \ldots, r_{s}
\end{array}
$$\right]}:=\overrightarrow{\operatorname{preari}\left(\operatorname{sut}^{\bullet}\right.}\left[$$
\begin{array}{c}
n_{1} \\
r_{1}
\end{array}
$$\right], ···, sut_{\left[$$
\begin{array}{l}
n_{s} \\
r_{s}
\end{array}
$$\right]}\right)
\]

which, taken in isolation, do not belong to ALAL eumero. The expansion (51) is of course to be preferred in practical calculations, since it involves fewer individual summands ${ }^{21}$ and these, moreover, are all in $\mathrm{ALAL}_{\text {eumero }}^{\#}$. The drawback here is that (51), on its own, does not imply the alternality of θ^{\bullet}. However, that can be easily remedied: if from the start we impose alternality on θ^{\bullet} and choose a basis - any basis - in the space spanned by the $\operatorname{sut}\left[\begin{array}{ccc}\bullet \\ {\left[\begin{array}{l}n_{1} \\ r_{1}\end{array}|\ldots| \begin{array}{l}n_{s} \\ r_{s}\end{array}\right]}\end{array}\right]$ the corresponding coefficients θ^{\bullet} will be uniquely determined and will, by alternality, unambiguously determine the whole system.

Remark 8.7.2. A remarkable feature of the expansions (50) or (51) is that they often involve an infinite number of summands even when A^{\bullet} itself is only a finite combination of eupolar multipoles. We shall encounter too striking instances of this phenomenon - first in the conversion formulae (67), then in the Exercise at the end of the subsection §8.8. (see (74)).

Remark 8.7.3. In all natural instances, the so-called perinomal coefficients θ^{\bullet} featuring in (50) and (51) are calculable from definite induction rules (that crucially involve the action of $S l_{s}(\mathbb{Z})$) and, oftener than not, expressible in terms of the entries of continuous fractions (when $s=2$) or of higherdimensional analogues (when $s \geq 3$).

Remark 8.7.4. The decompositions (50) and (51) associate to each A^{\bullet} in $\mathrm{ALAL}_{\text {eumero }}^{\#}$ well-defined singulands

$$
\begin{align*}
& \operatorname{Poten}_{r_{1}, \ldots, r_{s}} . A^{\bullet}:=\sum_{n_{i} \geq 1} \theta\left(\begin{array}{l}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{l}
n_{s} \\
r_{s}
\end{array}\right) \operatorname{mu}\left(\operatorname{sund}_{\left[\begin{array}{c}
n_{1} \\
r_{1}
\end{array}\right]}, \ldots, \operatorname{sund}_{\left[\begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right]}^{\bullet}\right) \tag{53}\\
& \operatorname{Poten}_{\left[r_{1}, \ldots, r_{s}\right]} \cdot A^{\bullet}:=\sum_{n_{i} \geq 1} \theta\left(\begin{array}{l|l|l|}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{l}
n_{s} \\
r_{s}
\end{array}\right) \frac{1}{s} \overrightarrow{\mathrm{u}}_{\mathrm{u}}\left(\operatorname{sund} \mathbf{d}_{\left[\begin{array}{c}
n_{1} \\
r_{1}
\end{array}\right]}, \ldots, \operatorname{sund}_{\left[\begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right]}^{\bullet}\right) \tag{54}
\end{align*}
$$

which may collectively be viewed as some sort of "potential" from which A^{\bullet} is "derived".

Remark 8.7.5. Nearly all elements of $A L A L_{\text {eumero }}^{\#}$ encountered in actual life possess nice convergence properties, and so do their canonical expansions

[^9](50) and (51) - although the two statements are by no means equivalent (see Remark 8.7.2 supra). These properties amount
(i) either to the absolute convergence of all summands (though this is rarely the case)
(ii) or to the absolute convergence of the 'corrected summands', i.e. after subtraction from each summand of a suitable constant or of a simple polyomial of fixed degree
(iii) or again to blockwise convergence, for some natural choice of blocks.

We won't bother with these distinctions here, only state that there exists a nice subalgebra $A L A L_{\text {eumero }}$ of $A L A L_{\text {eumero }}^{\#}$ whose elements A^{\bullet} are not just formal combinations of eupolar multipoles but bona fide meromorphic functions - eumeromorphic functions, for short.

Remark 8.7.6. For any such A_{r}^{\bullet} of given length r, the question naturally arises of resumming their "potentials" (53), (54), i.e. the singulands implicit in the canonical expansions (50), (51). Since the basic mono-singulands possess these elementary Taylor expansions

$$
\operatorname{sund}_{\left[\begin{array}{c}
n_{1} \tag{55}\\
r_{1}
\end{array}\right]}^{w_{1}}:=-2 \sum_{\sigma_{1} \geq 1}^{\sigma_{1}+r_{1} \text { odd }} n_{1}^{-\sigma_{1}} u_{1}^{\sigma_{1}-1}
$$

our "potentials", if at all summable, ought to possess expansions of the form

$$
\left(\operatorname{Poten}_{r_{1}, \ldots, r_{s}} \cdot A\right)^{w_{1}, \ldots, w_{s}}:=\sum_{\sigma_{i} \geq 1}^{\sigma_{i}+r_{i} o d d} \rho\left(\begin{array}{l}
\left(\left.\sigma_{1}|\ldots| \begin{array}{l}
\sigma_{1} \\
r_{1}
\end{array} \right\rvert\,{ }_{r_{s}}\right) \tag{56}\\
u_{1}^{\sigma_{1}-1} \ldots u_{s}^{\sigma_{s}-1}
\end{array}\right.
$$

with Taylor coefficients given by

$$
\rho^{\left(\begin{array}{c}
\sigma_{1} \tag{57}\\
r_{1}
\end{array}|\ldots| \begin{array}{l}
\sigma_{s} \\
r_{s}
\end{array}\right)}:=(-2)^{s} \sum_{n_{i} \geq 1} \theta^{\left(\begin{array}{c}
n_{1} \\
r_{1}
\end{array}|\ldots| \begin{array}{c}
n_{s} \\
r_{s}
\end{array}\right)} n_{1}^{-\sigma_{1}} \ldots n_{s}^{-\sigma_{s}}
$$

Now, in all instances investigated so far, the series (57) converge absolutely for all large enough σ_{i} 's, and "semi-converge" for the remaining small values. In either case, summation or resummation is straightforward. It yields the so-called perinomal numbers ρ^{\bullet}, whose arithmetical nature (rational, algebraic, multizetaic, general-transcendental) is clearly of prime theoretical importance. It is closely tied up with the shape of the perinomal induction that defines the corresponding perinomal coefficient θ^{\bullet}.

These scanty indications should suffice to show how much we gain by changing from $A L A L_{\text {sing }}$ to $A L A L_{\text {eumero }}$. All the obnoxious irregularity, redundancy and indeterminacy inherent in the first structure dissipate at one
magic stroke, like the famed Mists of Avalon, when we move to $A L A L_{\text {eumero }}$. New problems inevitably arise, but exhilarating ones, and of a totally new order. They revolve around two main themes: the perinomal coefficients θ^{\bullet} with their defining inductions; and the perinomal numbers ρ^{\bullet} with their arithmetical properties. Perinomal equations and the group action of $S l_{r}(\mathbb{Z})$ dominate the whole field. Perinomal calculus is truly the beating heart of flexion theory. It opens such rich vistas that one could be forgiven for calling it a wonder within a wonder.

8.8 The perinomal conversion formula.

For the reasons laid down in Remark 8.3.2 ("First consequence"), if we are to succeed in our attempt at expressing bisingulates in terms of singulates in the perinomal context, we cannot avoid the introduction of higher-order poles. So we must introduce new parameters π_{i} to measure that "excess polarity". For the singulates, this leads to the following definitions:

$$
\begin{align*}
& \text { sund } \underset{\left[\begin{array}{c}
n_{1} \\
\pi_{1}^{1} \\
r_{1}
\end{array}\right]}{\bullet}:=\left(u_{1}-n_{1}\right)^{-1-\pi_{1}}+(-1)^{r_{1}+\pi_{1}} \cdot\left(u_{1}+n_{1}\right)^{-1-\pi_{1}} \tag{58}\\
& \text { sut }\left[\begin{array} { c }
{ \bullet } \\
{ \begin{array} { c }
{ n _ { 1 } } \\
{ \pi _ { 1 } ^ { 1 } } \\
{ r _ { 1 } }
\end{array}] }
\end{array} : = \text { slank } _ { r } \text { . Sund } \left[\begin{array}{c}
\bullet \\
\left.\begin{array}{c}
n_{1} \\
\pi_{1}^{1} \\
r_{1}
\end{array}\right]
\end{array} \in \mathrm{BIMU}_{r}\right.\right. \tag{59}
\end{align*}
$$

For the bisingulates, we have a parallel set of definitions

$$
\begin{align*}
& \text { bisut }_{\left[\begin{array}{c}
n_{1} \\
\pi_{1} \\
r_{1}
\end{array}\right]}^{\bullet} \quad:=\operatorname{slank}_{r} \text {. bisund } \underset{\substack{\boldsymbol{n}_{1} \\
r_{1} \\
r_{1}}}{\bullet} \quad \in \text { BIMU }_{r} \tag{62}
\end{align*}
$$

However, as we shall see, for bisingulates the only case of real relevance is $s=1$ and $\pi_{1}=0$, since perinomal conversion will prove feasible in one direction only - from bisingulates to singulates.

The general conversion formula in perinomal form.

Proposition 8.7.1: Canonical perinomal conversion of bisingulates into singulates. With the above notations there exists a unique, welldefined, three-tiered ${ }^{22}$, rational valued, alternal bimould θ^{\bullet} such that for any r the identity holds
with an elementary first sum that reduces to a single term

The existence and uniqueness of the above expansions, while far from trivial, result from an adaptation of the two central lemmas of perinomal calculus despite the presence, unusual in the perinomal context, of higher-order poles.

A word about convergence: to get absolute convergence in the expansions (74), (67), certain precautions have to be taken, such as subtracting suitable constants (or simple polynomials of fixed degree) from each individual summand or, alternatively, taking care of performing the summation block-wise, with suitable blocks. This is standard perinomal practice. In any case, when calculating the Taylor coefficients, absolute convergence is automatic for all but a finite number of them.

From perinomal to polynomial. Reverse conversion.

 involved in the singulates sut $\left[\begin{array}{c}n_{1} \\ \pi_{1} \\ r_{1}\end{array}|\ldots|: \left\lvert\, \begin{array}{l}n_{s} \\ n_{s}\end{array}\right.\right]$ (67) carry only multipoles of the form $\prod_{i=1}^{i=s} P\left(u_{i}-n_{i}\right)$ with $n_{i} \in \mathbb{Z}^{*}$. They can therefore be expanded into power series of the u_{i} 's. All these power series can be regrouped into one (about convergence issues, see the above remarks) and then subjected to the corresponding singulator slank $k_{r_{1}, \ldots, r_{s}}$. Fixing a degree d and collecting all terms of total homogeneous degree d on the right-hand side of (67) and

[^10]on the left-hand side of (74), we clearly arrive at a conversion formula of type (29), for any chosen monomial bisønd ${ }_{r}^{\bullet}$. This system of formulae (29), in turn, is easily invertible to the system of formulae (30). The remarkable thing, however, is that the original perinomal conversion formulae (38) or (39) cannot, try as we may, be inverted in perinomal form, for the reasons given in Remark 8.3.2 ("Second consequence"): any attempt to do so would immediately unleash an epidemic of logarithmic singularities.

The case $r=2$.
The general formula yields
with alternal coefficients $\theta\left(\begin{array}{cc}n_{1} \\ 1 & n_{2} \\ 1 & 1 \\ 1\end{array}\right) \equiv-\theta\left(\begin{array}{cc}n_{2} & \left(\begin{array}{c}n_{1} \\ 1 \\ 1 \\ 1\end{array}\right. \\ 1\end{array}\right)$ easily calculable by the following induction

$$
\begin{aligned}
& \theta^{\left(\begin{array}{cc}
n_{1} \\
0 & n_{2} \\
1 & 1 \\
1
\end{array}\right)}=0 \\
& =\frac{1}{2} \quad \text { if }\left(n_{1}, n_{2}\right)=(1,1) \\
& =\theta \theta^{\left(\left.\begin{array}{c}
n_{1}-n_{2} \\
1 \\
1
\end{array} \right\rvert\, \begin{array}{c}
n_{2} \\
1
\end{array}\right)} \\
& \text { if } n_{1}>n_{2} \\
& =\theta\left(\begin{array}{c}
\left(\begin{array}{c}
n_{1} \\
1 \\
1
\end{array}\right. \\
\left.\begin{array}{c}
n_{2}-n_{1} \\
1
\end{array}\right) \\
1
\end{array}\right)\left(\begin{array}{cc|c}
n_{2}-n_{1} \\
1 & n_{1} \\
1
\end{array}\right) \text { if } n_{2}>n_{1}
\end{aligned}
$$

The general case $r \geq 3$.
For $r=3$ when get ten non-trivial perinomal coefficients θ^{\bullet}, which due to alternality reduce to four, for example these four:

All are calculable under simple induction rules similar to the one we just encountered in the case $r=2$. All vanish when $\left(n_{1}, n_{2}\right)$ or $\left(n_{1}, n_{2}, n_{3}\right)$ are not co-prime. The first two coefficients θ^{\bullet} (of length 2) are still expressible in terms of the continued fraction of n_{1} / n_{2}, while for the last two coefficients θ^{\bullet} (of length 3) the continuous fraction has to be replaced by a quite interesting analogue for homogeneous integer triplets (n_{1}, n_{2}, n_{3}).

Such 'higher-order continuous fractions' in fact exist for integer sequences $\left(n_{1}, \ldots, n_{s}\right)$ of any length and have to be taken into consideration when studying the perinomal coefficients θ^{\bullet} of the general conversion formula (67). We intend to soon return to the subject in a much more detailed and explicit paper. Meanwhile, here is a nice little warm-up exercise for readers who might wish to acquaint themselves with perinomal calculus.

Recommended exercise: conversion formulae for ari and oddari.
Consider the elementary, length-1 bimoulds $E v_{n}^{\bullet}$ and $O d_{n}^{\bullet}$

$$
\begin{array}{lll}
\mathrm{Ev}_{n}^{w_{1}}:=P\left(u_{1}-n\right)-P\left(u_{1}+n\right) & \left(\mathrm{Ev}_{n}^{\bullet} \in \mathrm{BIMU}_{1}^{\text {even }}\right) \\
\mathrm{Od}_{n}^{w_{1}}:=P\left(u_{1}-n\right)+P\left(u_{1}+n\right) & \left(\mathrm{Od}_{n}^{\bullet} \in \mathrm{BIMU}_{1}^{\text {odd }}\right) \tag{72}
\end{array}
$$

and recall the definition the oddari-bracket from $B I M U_{1}^{\text {odd }} \times B I M U_{1}^{\text {odd }}$ into $B I M U \frac{\mathrm{al} / \mathrm{al}}{2}$:

$$
\begin{align*}
& C^{\bullet}=\operatorname{oddari}\left(A^{\bullet}, B^{\bullet}\right) \quad \Longrightarrow \tag{73}\\
& C^{\binom{u_{1}, u_{2}}{v_{1}, v_{2}}}:=+A^{\binom{u_{1}}{v_{1}}} B^{\binom{u_{2}}{v_{2}}}+A^{\left(-u_{1}-u_{2}\right)} B^{\binom{u_{1}}{v_{1}-v_{2}}}+A^{\binom{u_{2}}{v_{2}-v_{1}}} B^{\binom{-u_{1}-u_{2}}{v_{1}}}
\end{align*}
$$

Show that for any fixed pair of positive integers (m_{1}, m_{2}) (resp. $\left(n_{1}, n_{2}\right)$) there exist unique expansions of the form

$$
\begin{align*}
\operatorname{oddari}\left(\mathrm{Od}_{m_{1}}^{\bullet}, \mathrm{Od}_{m_{2}}^{\bullet}\right) & =\sum_{0<n_{1}<n_{2}} \mathrm{H}_{m_{1}, m_{2}}^{n_{1}, n_{2}} \operatorname{ari}\left(\mathrm{Ev}_{n_{1}}^{\bullet}, \mathrm{Ev}_{n_{2}}^{\bullet}\right) \tag{74}\\
\operatorname{ari}\left(\mathrm{Ev}_{n_{1}}^{\bullet}, \mathrm{Ev}_{n_{2}}^{\bullet}\right) & =\sum_{0<m_{1}<m_{2}} \mathrm{~K}_{n_{1}, n_{2}}^{m_{1}, m_{2}} \operatorname{oddari}\left(\mathrm{Od}_{m_{1}}^{\bullet}, \mathrm{Od}_{m_{2}}^{\bullet}\right) \tag{75}
\end{align*}
$$

Show that the structure coefficients $H_{m_{1}, m_{2}}^{n_{1}, n_{2}}, K_{n_{1}, n_{2}}^{m_{1}, m_{2}}$ automatically vanish unless $\operatorname{gcd}\left(m_{1}, m_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{2}\right)$. We may therefore assume that each pair $\left(m_{1}, m_{2}\right)$ and $\left(n_{1}, n_{2}\right)$ is co-prime. Show further that H_{\bullet} and K_{\bullet}^{\bullet} always assume their values in the set $\{0,2,-2\}$ except when the upper and lower indices coincide, in which case $H_{n_{1}, n_{2}}^{n_{1}, n_{2}} \equiv K_{n_{1}, n_{2}}^{n_{1}, n_{2}} \equiv-1$. Concentrate on the coefficients H_{\bullet}^{\bullet} which are somewhat simpler than the K_{\bullet}^{\bullet}. Show that for any fixed $\left(m_{1}, m_{2}\right)$ the vanishing or non-vanishing of $H_{n_{1}, n_{2}}^{n_{1}, n_{2}}$ only depends on the last entry in the continuous fraction $\operatorname{cofra}\left(n_{2} / n_{1}\right)$ and that, in the nonvanishing case, the sign before 2 depends only on the parity of the length $\# \operatorname{cofra}\left(n_{2} / n_{1}\right)$ of that continued fraction. Thus, for $\left(m_{1}, m_{2}\right)=(1,2)$ and $\left(n_{1}, n_{2}\right) \neq(1,2)$ and co-prime, $H_{n_{1}, n_{2}}^{n_{1}, n_{2}}$ never vanishes and is given by $H_{n_{1}, n_{2}}^{n_{1}, n_{2}} \equiv$ $(-1)^{\# \operatorname{cofra}\left(n_{2} / n_{1}\right)} 2$.

8.9 Singulates vs bisingulates. Merits and demerits.

Let us now take stock:

8.9.1. Deceptive simplicity of the bisingulators.

On the face of it, the bisingulators are much simpler to define than the singulators. The former require only multiple ari-bracketing, while the latter draw on the bisymmetral pal ${ }^{\bullet} /$ pil $^{\bullet}$ with all the attendant paraphernalia. Unlike the singulators, bisingulators are also capable of acting on bimoulds of any length, not just of length one. But this appearance turns out to be deceptive. The bisingulators' ease of definition is more a liability than an asset - an index of rawness, so to speak. The complexity in the singulators' make, on the other hand, is really a measure of their sophistication - the price to pay for fine-tuning our singularity-generating operators and achieving maximal economy of means in the operands.

8.9.2. Built-in redundancy in the bisingulands.

In the polynomial context, bisingulate expansions are needlessly wasteful in the sense of requiring polynomial singulands of abnormally high degree. Indeed, fix a length r, a degree δ, and a polar order π. The only monomial (bi)singulands capable of generating (bi)singulates of length r, homogeneous degree δ, and effective polarity π, are of the form:

$$
\begin{align*}
\operatorname{s} ø \mathrm{nd}^{w_{1}, \ldots, w_{s}}\left[\begin{array}{c}
d_{1}, \ldots, d_{s} \\
r_{1}, \ldots, r_{s}
\end{array}\right] & =u_{1}^{d_{1} \ldots u_{s}^{d_{s}} \quad \text { with } \quad \sum d_{i}=\delta+\pi \text { and } r_{i}+d_{i} \text { odd }} \tag{76}\\
\left.\operatorname{bis} ø n d_{w_{1}, \ldots, w_{s}}^{d_{1}, \ldots, d_{s}} \begin{array}{l}
r_{1}, \ldots, r_{s}
\end{array}\right] & =u_{1}^{d_{1} \ldots u_{s}^{d_{s}}} \text { with } \sum d_{i}=\delta+2 \pi \text { and } d_{i} \text { even } \geq 2 \tag{77}\\
(\text { and } & \left.s=r-\pi, \quad \sum r_{i}=r \quad \text { in both cases }\right)
\end{align*}
$$

The latter clearly span a larger space than the former:

$$
\begin{equation*}
\operatorname{dim}\left(\mathrm{SAND}_{r, \delta, \pi}\right)=: \alpha(r, \delta, \pi) \ll \beta(r, \delta, \pi):=\operatorname{dim}\left(\operatorname{BISAND}_{r, \delta, \pi}\right) \tag{78}
\end{equation*}
$$

8.9.3. Built-in indeterminacy in the bisingulates.

Let (BI)SAT $T_{r, \delta, \pi}$ denote the space of (bi)singulates generated by all the (bi)singulands in (BI)SAND ${ }_{r, \delta, \pi}$. One is a good deal larger than the other, but due to the polynomial conversion formulae (29) and (30), their quotient by Polar $_{r, \delta, \pi-1}$ coincide:

$$
\begin{equation*}
\operatorname{dim}\left(\mathrm{SAT}_{r, \delta, \pi} / \operatorname{Polar}_{r, \delta, \pi-1}\right)=\operatorname{dim}\left(\mathrm{BISAT}_{r, \delta, \pi} / \operatorname{Polar}_{r, \delta, \pi-1}\right)=: \gamma(r, \delta, \pi) \tag{79}
\end{equation*}
$$

As a consequence, the mass of "biwandering bialternals" is going to exceed
that of "wandering bialternals":

$$
\begin{align*}
\operatorname{dim}\left(\text { WANDER }_{r, \delta, \pi-1}\right) & =\alpha(r, \delta, \pi)-\gamma(r, \delta, \pi) \tag{80}\\
\operatorname{dim}\left(\operatorname{BIWANDER}_{r, \delta, \pi-1}\right) & =\beta(r, \delta, \pi)-\gamma(r, \delta, \pi) \tag{81}
\end{align*}
$$

This applies for all $\pi>0$, including $\pi=1$. This in turn means that the "semi-canonical" realisations of $l \varnothing m a^{\bullet} / l \varnothing m i \bullet$ or $r \varnothing m a^{\bullet} / r \varnothing m i^{\bullet}$ that rely on bisingulates will be blighted by a greater indeterminacy than the "semicanonical" realisations based on singulates.

8.9.4. Asymmetry in the singulate-bisingulate conversion rules.

Moving now from the polynomial to the perinomal setting, we note this arresting fact: while there are explicit and beautiful formulae for converting the perinomal bisingulates bisut ${ }^{\bullet}$ into perinomal singulates sut ${ }^{\bullet}$, no such formulae exist for the reverse change - at least not in perinomal form (they exist of course in polynomial form (30)). So we have mutual convertibility all right, but of a highly asymmetric sort - smooth and explicit from bisingulates to singulates, complicated and derivative in the reverse direction.
8.9.5. Because they violate 'simple polarity', bisingulators are constitutionally unsuited for perinomal calculus.
Multizeta algebra, when reframed in what is its natural language - flexion theory - makes constant use of eumeromorphic functions without poles of order higher than 1 (with respect, that is, to any given variable or combination of variables). While the singulators effortlessly move, breathe and operate within this pre-ordained setting, the bisingulators immediately drag us out of it (as explained in Remark 8.3.2) either by generating (albeit indirectly) poles of higher order ${ }^{23}$ or by introducing (again, indirectly) logarithmic singularities. ${ }^{24}$ This inadequation to perinomal calculus is perhaps the most damning indictment of bisingulators, and the reason why they could never step into the full spectrum of roles filled by the singulators.

8.9.6. Residual importance of bisingulators.

For all their flaws, bisingulators constitute one of the two big operator families capable of producing singular bialternality 'on demand', and it certainly would be rash to dismiss them as undeserving of attention. The fact remains that exploration is still in its early stages and that our knowledge of these objects is scanty at best. ${ }^{25}$ Situations may yet emerge, for all we know,

[^11]where the bisingulators could show themselves at an advantage and manifest greater flexibility than their elders, the well-established singulators. In any case, the bare fact of their existence is of already of some consequence: it has inspired the beautiful, richly structured conversion formula (67), some aspects of which (like the nature - rational or otherwise - of the Taylor coefficients carried by the singulands sund ${ }^{\bullet}$ implicit in (67)) are still unclear.

References.

[E1] J.Ecalle, ARI/GARI, La dimorphie et l'arithmétique des multizêtas: un premier bilan, Journal de Théorie des Nombres de Bordeaux, 15 (2003), pp 411-478.
[E2] J.Ecalle, Multizetas, perinomal numbers, arithmetical dimorphy, Ann. Fac. Toulouse 4 (2004),683-708.‘
[E3] J.Ecalle, The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles, Ann.Scuo.Norm.Pisa, 2011, Vol.2,pp 27-211, Asymptotics in Dynamics, Geometry and PDEs; Generalized Borel Summation; ed. O.Costin, F.Fauvet, F.Menous, D.Sauzin.
[E4] J.Ecalle, Eupolars and their bialternality grid, 114 pp, available on HAL, ArXiv, and on our homepage. Submitted to A.M.V.
[E5] J.Ecalle, Finitary flexion algebras, forthcoming.
gulators only at length 2 and 3 ; soon noticed that they were outperformed by singulators; and in the sequel completely forgot about them - somewhat prematurely, we now suspect.

[^0]: ${ }^{1}$ We have to say that, though S.Baumard was apparently put to work on subjects close to ours, and that too with methods due to us (flexion algebra etc), we were not at any stage informed of his progress. In fact, we initially learnt of this PhD project by pure happenstance, from a chance remark by our esteemed Orsay colleague, Pierre Pansu.
 ${ }^{2}$ To underscore the kinship and mutual convertibility between the earlier operators ("singulators") introduced by us in the early 2000s and those recently used by S.Baumard, we shall refer to the latter as "bisingulators" and adhere throughout to a terminology and notations probably alien to S.Baumard but as close as possible to the ones already in use for the "singulators".
 ${ }^{3}$ though L. Schneps gave us a sketch of the argument leading to it.

[^1]: ${ }^{4}$ For instance, we might change P to Q with $Q(t):=c / \tan (c t)$.
 ${ }^{5}$ they range over a discrete set $\mathbb{Z} / \frac{1}{n} \mathbb{Z}$.

[^2]: ${ }^{6}$ In [E3], we had adopted the opposite convention.

[^3]: ${ }^{7}$ i.e. in sums of type $\sum c^{r_{1}, \ldots, r_{n}}$ pre $(b i)$ slank ${ }_{r_{1}, \ldots, r_{n}}$, with alternal coefficients c^{\bullet}.
 ${ }^{8}$ The term effective polarity really explains itself. It differs of course from the apparent polarity (i.e. the degree of the denominator you get after brutally factoring everything), which in the present instance would be $r+1$. For composite (bi)singulands, the discrepancy between effective and apparent polarity is even larger.

[^4]: ${ }^{9}$ Ultimately, this is due to the finitariness of the combination alternality+pushinvariance, in sharp contrast to the non-finitariness of bialternality. See $\S 1$ supra.

[^5]: ${ }^{10}$ By definition, (bi)singulands are regular at the origin.
 ${ }^{11}$ respective to any given variable u_{i} or to any given partial sum $u_{i}+\ldots+u_{j}$.
 ${ }^{12}$ For details, see [E3], §7.2. The bimoulds doma constitute a basis for the space of all length- 2 bialternals. Here, we may adopt the simpler indexation doma $a_{m, n}^{w_{1} . w_{2}}:=$ $f a\left(u_{1}, u_{2}\right)\left(h a\left(u_{1}, u_{2}\right)\right)^{m}\left(g a\left(u_{1}, u_{2}\right)\right)^{n}$.

[^6]: ${ }^{13}$ Remarkably, (30) has no perinomal analogue: if has to be derived directly from (29) by inversion.
 ${ }^{14}$ The ban on terms of formal polarity 0 means that we exclude from $s ø t_{s ; r}$ any trivial contribution of the form $\operatorname{slank}_{1, \ldots, 1} \cdot s \emptyset n d_{1, \ldots, 1}^{\bullet}$. These are the "naive bialternals". They necessarily occur, for instance, in the conversion formulae (29) and (30). They are absent from (35), (37) etc - simply because we banished them! However, distinct realisations of $l \varnothing m a_{s}^{\bullet}$, like for instance the three canonical realisations $\operatorname{lam} a_{s}^{\bullet}, \operatorname{lom} a_{s}^{\bullet}, \operatorname{lum} a_{s}^{\bullet}$ may, and for large enough values of s always do, differ pairwise by quite special - and rather rare terms of the form slank $k_{1, \ldots, 1} . s ø n d_{1, \ldots, 1}^{\bullet}$. These are the so-called "wandering bialternals".

[^7]: ${ }^{15}$ We may be wrong, but we suspect that little would be gained by equating $A L A L_{\text {sing }}$ with other structures, for behind the changed appearance these stuctures would perforce be of equal messiness.
 ${ }^{16}$ i.e. singulates which, after multiplication by $u_{0} u_{1} . . u_{r}$, produce power series with only rational Taylor coefficients.
 ${ }^{17}$ i.e. singulands carrying at least some irrational Taylor coefficients.
 ${ }^{18}$ What follows is a very sketchy account of perinomal calculus. For a more detailed introduction, see [E3] and also [E2].

[^8]: ${ }^{19}$ globally, i.e. when regrouped inside A^{\bullet}.
 ${ }^{20}$ Contrary to appearances, the calculation of $C^{\bullet}=\operatorname{ari}\left(A^{\bullet}, B^{\bullet}\right)$ offers no difficulty even when A^{\bullet} and B^{\bullet} are both infinite combinations of eupolar multipoles, since for any given multi-integer \boldsymbol{n}, only a finite number of multipoles in A^{\bullet} and B^{\bullet} are liable to contribute to the multipoles of C^{\bullet} over \boldsymbol{n}.

[^9]: ${ }^{21}$ due to the a priori relation between multiple Lie brackets.

[^10]: ${ }^{22}$ i.e. with three tiers of indices $\left(n_{i}, \pi_{i}, r_{i}\right)$.

[^11]: ${ }^{23}$ like in the formula (57)
 ${ }^{24}$ See Remark 8.3.2, "Second consequence".
 ${ }^{25}$ As far as we are concerned, we originally (about twelve years ago) dabbled with bisin-

