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Abstract We deal with a second order image decomposition model to perform
denoising and texture extraction that was previously presented in [10]. We look
for the decomposition f = u + v + w where u is a first order term, v a second
order term and w the remainder term (0 order). For highly textured images the
model gives a two-scale texture decomposition: u can be viewed as a macro-texture

(larger scale) which oscillations are not too large and w is the micro-texture (very
oscillating) that contains the noise. Here, we perform mathematical analysis of
the model and give qualitative properties of solutions using the dual problem and
inf-convolution formulation.
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1 Introduction

The most famous variational denoising model is the Rudin-Osher-Fatemi one ([1,
29]). This model involves a regularization term that preserves discontinuities, what
a classical H1 -Tychonov regularization method does not. The observed image
to recover is split in two parts ud = w + u where w represents the oscillating
component (noise or texture) and u is the smooth part. So we look for a solution
u such that ud = w + u with u ∈ BV (Ω) and w ∈ L2(Ω), where BV (Ω) is the
functions of bounded variation space defined on an open subset Ω ⊂ Rd ([3,4,22]).
The regularization term involves only the so-called cartoon component u, while the
remainder term w := ud − u represents the noise to be minimized.

A lot of people have investigated such decomposition models based on vari-
ational formulation, considering that an image can be decomposed into many
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components, each component describing a particular property of the image ([5,7,
25–27,30] and references therein for example).

In [10,11] we have presented second order models where the (first order) clas-
sical total variation term has been replaced by a second order total variation term
with the appropriate functional framework, namely the space of functions with
bounded hessian introduced as BH(Ω) in [20] (and denoted BV 2(Ω) in [8,11,10]).
The use of such a model allows to get rid of the staircasing effect that appears with
the ROF model in denoising processes. To achieve this goal K. Bredies and al. have
recently introduced a generalized total variation definition (TGV) [13,14,12] that
is a nice compromise/mixture between the first and second order derivatives. It
is in some sense an extension of the inf-convolution (we recall the defintion later)
of the first and second order derivatives. The model we present here is not more
efficient than the TGV- based one for denoising. However, it provides a decom-
position of the image at different scales what the TGV -model does not a priori.
This paper is focused on this decomposition that provides a multiscale description
of textured images.

Second order models have also been investigated in the context of segmenta-
tion and inpainting problems with Mumford-Shah types functionals (see [2,16,17]
for example). The functional framework is the so called GSBV space composed of
functions u whose truncated forms (min(−N,max(u,N)) belong to SBVloc for ev-
ery N ∈ N). The definition of GSBV 2 is slightly different from the one we consider
since

GSBV 2(Ω = {u ∈ GSBV (Ω) | ∇u ∈ [GSBV (Ω)]d } .

The aim of this paper is to give an existence result without any additional
penalization term as in [10] and to perform a qualitative analysis of the model.
Uniqueness et regularity issues will also be addressed.

More precisely, we assume that an image (in L2(Ω)) can be split in three com-
ponents: a smooth (continuous) part v, a cartoon (piecewise constant) part u and
an oscillating part w that should involve noise and/or fine textures. Such decom-
positions have already been investigated by Aujol and al. [5,7]. These authors use
the Meyer space of oscillating functions [24] rather than the BH(Ω) space (we shall
present these spaces in the sequel). The model we propose here is different: the
oscillating part of the image is not penalized but a priori included in the remainder
term w = ud − u − v, while v is the smooth part (in BH(Ω)) and u belongs to
BV (Ω): we hope u to be piecewise constant so that its jump set gives the image
contours. For highly textured images, the model provides a two-scale texture de-
composition: u can be viewed as a macro-texture (large scale) whose oscillations are
not too large and w is the micro-texture (mmuch more oscillating) that contains
the noise.

Therefore, we look for components u, v and w that belong to different spaces:
u belongs to BV (Ω) (and if possible not to W 1,1(Ω)), v ∈ BH(Ω) and w ∈ L2(Ω).
This last component w = ud − u− v lies in the same space as the observed image
ud.

The paper is organized as follows. We first present the functional framework
and perform a quick comparison between the second-order total variation we use
and the one defined by Bredies et al. in [13]. In section 3, we present the variational
model, give existence result and an equivalent formulation with inf-convolution.
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This allows to compute the dual problem. Next section is devoted to giving qual-
itative properties of the solutions .

2 Functional framework for second order variational analysis

2.1 Spaces BV (Ω) and BH(Ω)

In the whole paper, Ω is an open bounded subset of Rd (practically d = 2) smooth
enough (with the cone property and Lipschitz for example). More precisely, if
d = 2, Ω may satisfy next assumption

{

Ω is a bounded connected open set, strongly Lipschitz such that
∂Ω is the union of finitely many C2 curves

(2.1)

Following [3,4,6] and [11,20], we recall the definitions and main properties of
the spaces of functions of first and second order bounded variation. The space
BV (Ω) is the classical Banach space of functions of bounded variation defined by

BV (Ω) = {u ∈ L1(Ω) | TV (u) < +∞},

where TV (u) is the total variation of u

TV (u) := sup

{
∫

Ω

u(x) div ξ(x) dx | ξ ∈ C1
c (Ω,R

d), ‖ξ‖∞ ≤ 1

}

, (2.2)

endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + TV (u).
We say that a sequence (un)n∈N of BV (Ω) converges to some u ∈ BV (Ω) for the
intermediate (or strict) convergence if un strongly converges to u for the L1(Ω)
topology and TV (un) converges to TV (u) (in R) (see [3,4,31] ).
The space of functions with bounded hessian has been introduced by Demengel
[20] (where it was denoted BH(Ω)). It is the space of W 1,1(Ω) functions such that
TV 2(u) < +∞, where

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) } ,

∇u stands for the first order derivative of u in the sense of distributions and

TV 2(u) := sup

{
∫

Ω

〈∇u, div(ξ)〉
Rd | ξ ∈ C2

c (Ω,R
d×d), ‖ξ‖∞ ≤ 1

}

<∞, (2.3)

is the second order total variation of u . Here, div(ξ) = (div(ξ1), div(ξ2), . . . , div(ξd)),
and

∀i, ξi = (ξi,1, ξi,2, . . . , ξi,d) ∈ R
d, div(ξi) =

d
∑

j=1

∂ξi,j
∂xj

.

The space BH(Ω) endowed with the following norm

‖f‖BH(Ω) := ‖f‖W 1,1(Ω) + TV 2(f) = ‖f‖L1 + ‖∇f‖L1 + TV 2(f), (2.4)
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where TV 2 is given by (2.3) is a Banach space. Note that a function u belongs

to BH(Ω) if and only if u ∈ W 1,1(Ω) and
∂u

∂xi
∈ BV (Ω) for i ∈ {1, . . . , d}. In

particular

TV 2(u) ≤
d

∑

i=1

TV

(

∂u

∂xi

)

≤ d TV 2(u).

We give thereafter important properties of these spaces which proofs can be
found in [3,4,11,15,20] for example.

Theorem 1 [Semi-continuity of total variation ]

i. The mapping u 7→ TV (u) is lower semi-continuous (denoted in short lsc) from

BV (Ω) to R+ for the L1(Ω) topology.

ii. The operator TV 2 is lower semi-continuous from BH(Ω) endowed with the strong

topology of W 1,1(Ω) to R.

Theorem 2 [Embedding results]Assume d ≥ 2. Then

i. BH(Ω) →֒W 1,q(Ω) with q ≤
d

d− 1
, with continuous embedding. Moreover the

embedding is compact if q < n
n−1 . In particular

BH(Ω) →֒ Lq(Ω), ∀q ∈ [1,∞[, if d = 2.

ii. If d = 2
– BV (Ω) ⊂ L2(Ω) with continuous embedding.

– BV (Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2).
iii. If d = 2 and if Ω satisfies assumption (2.1) then BH(Ω) ⊂ C0(Ω̄) .

So BH(Ω) ⊂ H1(Ω) with continuous embedding and BH(Ω) ⊂ W 1,1(Ω) with
compact embedding. Let us define the space BV0(Ω) as the space of functions of
bounded variation that vanish on the boundary ∂Ω of Ω. More precisely as Ω is
bounded and ∂Ω is Lipschitz, functions of BV (Ω) have a trace of class L1 on ∂Ω

[3,4,31], and the trace mapping T : BV (Ω) → L1(∂Ω) is linear, continuous from
BV (Ω) equipped with the intermediate convergence to L1(∂Ω) endowed with the
strong topology ([4] Theorem 10.2.2 p 386). The space BV0(Ω) is then defined as
the kernel of T . It is a Banach space, endowed with the induced norm:

BV0(Ω) := {u ∈ BV (Ω) | u|∂Ω = 0 } .

In addition, if u ∈ BH(Ω), ∇u ∈ BV (Ω)n ( as a consequence of the definitition of
BH(Ω) ) and we may define the normal derivative trace operator ν : BH(Ω) →
L1(∂Ω) (with ν(u) = ∇u · n = ∂u

∂n ). This operator is linear, continuous from
BH(Ω) equipped with the strong convergence in W 1,1 and the convergence of TV 2

( intermediate convergence in BH) to L1(∂Ω) endowed with the strong topology.
So we may define similarly

BH0(Ω) := {u ∈ BH(Ω) |
∂u

∂xi
= 0 on ∂Ω, i = 1, · · · , d} .

We set also

BVm(Ω) := {u ∈ BV (Ω) |

∫

Ω

u(x) dx = 0 i = 1, · · · , n} ,
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and

BHm(Ω) := {u ∈ BH(Ω) |

∫

Ω

∂u

∂xi
dx = 0 i = 1, · · · , d} .

The Ostrograski formula gives
∫

Ω

∂u

∂xi
dx = −

∫

∂Ω

ui ni ,

where ui is the ith partial function with respect to the ith coordinate and
n = (n1, · · · , nd) is the outer normal vector. In particular, if u = 0 on ∂Ω, then
u ∈ BHm(Ω). At last we shall use the following result of [8]:

Lemma 1 Let Ω ⊂ Rn be an open Lipschitz bounded set.There exist generic constants

only depending on Ω, C1, C2 > 0 such that

∀u ∈ BVm(Ω) ‖u‖L1(Ω) ≤ C1TV (u), (2.5)

∀u ∈ BH0(Ω) ∪BHm(Ω) TV (u) ≤ C2TV
2(u) (2.6)

2.2 Comparison with BGV2

As already mentionned, a different approach of second-order total variation spaces
has been set in [13]. The main difference lies in the choice of the test functions for
the weak variational formulation. The authors define the Total Generalized Varia-

tion TGV 2(u) as the supremum of the duality product between u and symmetric
tests functions that are bounded together with their derivative. First, we note that
we may define TV 2(u) in a equivalent way as following: for any ξ ∈ C2

c (Ω,R
d×d)

recall that

∀i, ξi = (ξi,1, ξi,2, . . . , ξi,d) ∈ R
d, div(ξi) =

d
∑

j=1

∂ξi,j
∂xj

and define as in [13]

div2ξ :=
d

∑

i,j=1

∂2ξi,j
∂xi∂xj

.

Let us call : B :=
{

ξ ∈ C2
c (Ω,R

d×d), ‖ξ‖∞ ≤ 1
}

. Then,

∀u ∈W 1,1(Ω) TV 2(u) := sup

{
∫

Ω

udiv2ξ dx, ξ ∈ B

}

, (2.7)

Indeed, an integration by parts gives
∫

Ω

udiv2ξ dx = −

∫

Ω

(∇u,div ξ)Rd dx .

Let be α = (α0, α1) > 0, we call

TGV 2
α (u) = sup

{
∫

Ω

udiv2ξ dx, ξ ∈ Bα

}

,

where Bα :=
{

ξ ∈ K, ξij = ξji ∀i, j, ‖ξ‖∞ ≤ α0, ‖div ξ‖∞ ≤ α1

}

. We may define
([13])

BGV 2
α (Ω) =

{

u ∈ L1(Ω) , TGV 2
α (u) < +∞

}

. (2.8)
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Proposition 1 Let be α = (α0, α1) > 0. For every function u in W 1,1(Ω) we get

TGV 2
α (u) ≤ α0TV

2(u) .

Therefore

∀α > 0 BH(Ω) ⊂ BGV 2
α (Ω)

with continuous embedding.

Proof. As Bα ⊂ α0B the first relation is obvious. Moreover if u ∈ BH(Ω), then
u ∈W 1,1(Ω) and TGV 2

α (u) < +∞. In addition

‖u‖BVG2
α
= ‖u‖L1 + TGV 2

α (u) ≤ ‖u‖W 1,1 + α0TV
2(u) ≤ max(1, α0)‖u‖BH ,

which gives the continuity of the embedding mapping. ⊓⊔

Corollary 1 For any u ∈ BH(Ω), TV 2(u) = 0 if and only if u is a polynomial

function of order 1.

Proof. For any u ∈ BH(Ω), TV 2(u) = 0 =⇒ TGV 2
α (u) = 0. Then we use

Proposition 3.3 of [13]. ⊓⊔
The main difference between the two approaches concerns the functions regu-

larity. The BGV 2(Ω) functions do not necessarily belong to L1(Ω). In particular,
the indicator function of smooth open sets belong to BGV 2(Ω) and not to BH(Ω).
On the other hand, we cannot have Sobolev-type embeddings for BGV 2(Ω).

3 A second-order variational model for image decomposition

3.1 Presentation of the model

We have already presented this model in [10] so that we do no detail so much.
However we provide here an existence result that was expected but only proved
in the finite dimensional case and give a inf-convolution formulation. We now
assume that ud belongs to L2(Ω) and that the image we want to recover can be
decomposed as ud = w + u+ v where u, v and w are functions that characterize
different parts of ud. Components belong to different functional spaces: v is the
(smooth) second order part and belongs to BH(Ω), u is a BV (Ω) component and
w ∈ L2(Ω) is the remainder term. We consider the following cost functional defined
on BV (Ω)×BH(Ω):

Fλ,µ(u, v) =
1

2
‖ud − u− v‖2L2(Ω) + λTV (u) + µTV 2(v), (3.9)

where λ, µ > 0. We are looking for a solution to the optimization problem

inf{ Fλ,µ(u, v) | (u, v) ∈ BV (Ω)×BH0(Ω) } (Pλ,µ)

Remark 1 We decide to look for the minima of Fλ,µ on BV (Ω)×BH0(Ω) and not

BV (Ω) × BH(Ω) to get an existence result. This will cause troubles to set the dual

problem because of the computation of Legendre-Fenchel conjugate functions. Never-

theless, the constraint v ∈ BH0(Ω) (that is
∂v

∂n
= 0 on ∂Ω) is a usual one in image

processing and the difficulty will be overcome in the discrete setting.
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We expect v to be the smooth colored part of the image, u to be a BV (Ω)\BH(Ω)
function which derivative is a measure supported by the contours and w :=
ud − u − v ∈ L2 is the noise and/or small textures (we shall detail this point
later). Problem Pλ,µ can be (formally) viewed as a minimization problem where
the regularization term is an inf-convolution. Recall that the inf-convolution ([4]
p 324 ) is defined as

(f#g)(v) = inf{f(u) + g(v − u), u ∈ V } ,

where f, g : V → R ∪ {+∞}. If we set V = L2(Ω),

Φ1
λ(u) =

{

λTV (u) if u ∈ BV (Ω)
+∞ else.

and Φ2
µ(v) =

{

µTV 2(v) if v ∈ BH0(Ω)
+∞ else.

(3.10)
then

(Φ1
λ#Φ

2
µ)(̟) = inf

u∈BV (Ω),v∈BH0(Ω),u+v=̟
λTV (u) + µTV 2(v) ,

and problem Pλ,µ may be written as

inf
̟∈L2(Ω)

1

2
‖ud −̟‖2L2(Ω) + (Φ1

λ#Φ
2
µ)(̟) .

This formulation is to compare to the one by Bredies and al. [13,14,12]

inf
̟∈L2(Ω)

1

2
‖ud −̟‖2L2(Ω) + TGV 2

α (̟) ,

which is seems to be more efficient for denoising. However, we are interested in the
decomposition components u and v. First, we give an existence result for problem
(Pλ,µ).

Theorem 3 (Existence) The problem (Pλ,µ) has at least an optimal solution (u∗, v∗)
in BV (Ω)×BH0(Ω).

Proof. We first prove that the auxiliary problem

inf{ Fλ,µ(u, v) | (u, v) ∈ BVm(Ω)×BH0(Ω) } (3.11)

has an optimal solution. Let (un, vn) ∈ BVm(Ω) × BH0(Ω) be a minimizing se-
quence, i.e.

lim
n→+∞

Fλ,µ(un, vn) = inf{ Fλ,µ(v) | (u, v) ∈ BVm(Ω)×BH0(Ω) } < +∞.

Therefore

– TV 2(vn) is bounded and with lemma 1, ‖∇vn‖L1 is bounded as well.
– TV (un) is bounded. Using once again lemma 1 this yields that un is bounded

in L1(Ω. Therefore the sequence un is bounded in BV (Ω).
– As un+ vn is L2 -bounded, it is L1 -bounded as well so that vn is L1 bounded.

As ‖∇vn‖L1 and TV 2(vn) are bounded this means that the sequence vn is
bounded in BH(Ω).
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With the compactness result of Theorem 2, this yields that (vn)n∈N strongly
converges (up to a subsequence) in W 1,1(Ω) to v∗ ∈ BH(Ω). Moreover, v∗ ∈
BH0(Ω) because the normal derivative operator is continuous (as mentionned
before). Similarly (un)n∈N strongly converges (up to a subsequence) in L1(Ω) to
u∗ ∈ BVm(Ω). Moreover un + vn weakly converges to u∗ + v∗ in L2(Ω). With
theorem 1 we get

TV (u∗) ≤ lim inf
n→+∞

TV (un), TV
2(v∗) ≤ lim inf

n→+∞
TV 2(vn).

So

Fλ,µ(u
∗, v∗) ≤ lim inf

n→+∞
Fλ,µ(un, vn) = min

(u,v)∈BVm(Ω)×BH0(Ω)
Fλ,µ(u, v),

and (u∗, v∗) is a solution to (3.11).
For every (u, v) ∈ BV (Ω) × BH0(Ω), we have (u − ū, v + ū) ∈ BVm(Ω) × BH0(Ω)

where ū =
1

|Ω|

∫

Ω

u is the mean value of u. Moreover

Fλ,µ(u, v) = Fλ,µ(u− ū, v + v̄) ≥ Fλ,µ(u
∗, v∗).

Therefore (u∗, v∗) is an optimal solution to (Pλ,µ). ⊓⊔

Remark 2 Uniqueness of the solution is challenging. We shall prove partial results in

section 4.2.

3.2 Optimality conditions

In what follows, we fix λ > 0 and µ > 0 and set for any u ∈ L2(Ω) : N (u) =
1

2
‖u‖22.

Functionals Φ1
λ and Φ2

µ have been defined in (3.10).
It is easy to see that (ū, v̄) is a solution to (Pλ,µ) if and only if

ū = argmin

{

1

2
‖ud − v̄ − u‖2 + Φ1

λ(u), u ∈ L2(Ω)

}

, (3.12)

v̄ = argmin

{

1

2
‖ud − ū− v‖2 + Φ2

µ(v), v ∈ L2(Ω)

}

. (3.13)

and we may derive optimality conditions in a standard way :

Theorem 4 (ū, v̄) is a solution to (Pλ,µ) if and only if

w̄ := ud − ū− v̄ ∈ ∂Φ1
λ(ū) ∩ ∂Φ

2
µ(v̄). (3.14)

The proof is obvious. Here ∂f(u) stands for the subdifferential of f at u where
f : V → R:

∂f(u) = {u∗ ∈ V ′ | ∀v ∈ V f(v)− f(u) ≥ 〈u∗, v − u〉 },

and 〈·, ·〉 is the duality product between V et V ′.
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3.3 Inf-convolution formulation

We have already noticed that the penalization term in (Pλ,µ) is an infimal con-
volution term. In addition, (Pλ,µ) can be viewed as successive inf-convolution
processes.

Lemma 2 The functionals N#Φ1
λ and N#Φ2

µ are convex, continuous from L2(Ω) to

L2(Ω).

Proof. In the sequel we set Φ = Φ1
λ or Φ2

µ indifferently. As Φ and N are convex
so is N#Φ (see [23] for example). Let be u ∈ L2(Ω):

(N#Φ)(u) = inf
v∈L2(Ω)

1

2
‖u− v‖22 + Φ(v) ≤

1

2
‖u‖22 + Φ(0) =

1

2
‖u‖22 .

As (N#Φ)(0) = 0 this gives the N#Φ continuity at 0 and its boundedness in a
neighborhood of 0. As it is convex, it continuous on its whole domain L2(Ω)(see
[21] for example). ⊓⊔

Note that problem (3.12) is equivalent to ū ∈ N#Φ1
λ(ud−v̄) and (3.13) is equiv-

alent to v̄ ∈ N#Φ2
µ(ud − ū). In fact, problem (Pλ,µ) can be written as successive

inf-convolution processes. More precisely we have

Theorem 5 Let (ū, v̄) ∈ BV (Ω)×BH0(Ω) be a solution to (Pλ,µ) and m̄ := inf(Pλ,µ).
Then

m̄ = N (ud − ū− v̄) + Φ1
λ(ū) + Φ2

µ(v̄)

= (N#Φ1
λ))(ud − v̄) + Φ2

µ(v̄) = (N#Φ2
µ))(ud − ū) + Φ1

λ(ū)

= (Φ1
λ#(N#Φ2

µ))(ud) = (Φ2
µ#(N#Φ1

λ))(ud).

Proof. Let (ū, v̄) ∈ BV (Ω)×BH0(Ω) be a solution to (Pλ,µ).
Then, for every (u, v) ∈ BV (Ω)×BH0(Ω), we get

m̄ = N (ud − ū− v̄) + Φ1
λ(ū) + Φ2

µ(v̄) ≤ N (ud − u− v) + Φ1
λ(ū) + Φ2

µ(v) . (3.15)

This gives, for every v ∈ BH0(Ω)

m̄ ≤ inf
u∈L2(Ω)

N (ud − u− v) + Φ1
λ(ū) + Φ2

µ(v) = (N#Φ1
λ)(ud − v) + Φ2

µ(v)

so that

m̄ ≤ inf
v∈BH0(Ω)

(N#Φ1
λ)(ud − v) + Φ2

µ(v) ≤ (Φ2
µ#(N#Φ1

λ))(ud) .

Similarly
m̄ ≤ (Φ1

λ#(N#Φ2
µ))(ud) .

Conversely, by definition of inf-convolution, we get for every (u, v) ∈ BV (Ω) ×
BH0(Ω)

(Φ2
µ#(N#Φ1

λ))(ud) ≤ (N#Φ1
λ)(ud − v) + Φ2

µ(v) ≤ N (ud − v − u) + Φ1
λ(u) + Φ2

µ(v) ,

so that (Φ2
µ#(N#Φ1

λ))(ud) ≤ m̄.
We finally obtain m̄ = (Φ1

λ#(N#Φ2
µ))(ud) = (Φ2

µ#(N#Φ1
λ))(ud). ⊓⊔
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3.4 Computing Fenchel conjugate function

We are going to write the dual problem of (Pλ,µ) and we need to compute the

conjugate functions of Φ1
λ and Φ2

µ and f̃ : u 7→ f(ud + u). We recall that if f : V →
R ∪ {+∞}, the Legendre-Fenchel conjugate f∗ is defined on V ′ as

∀u∗ ∈ V ′ f∗(u∗) = sup
u∈V

〈u∗, u〉 − f(u) .

We obviously have

∀λ > 0, ∀u∗ ∈ V ′ (λf)∗(u∗) = λf∗(
u∗

λ
) ,

and the following useful result:

Proposition 2 [4] Let V be a normed space and f : V → R∪{+∞} a closed, convex,

proper function. then

u∗ ∈ ∂f(u) ⇐⇒ u ∈ ∂f∗(u∗) ⇐⇒ f(u) + f∗(u∗) = 〈u∗, u〉,

where 〈·, ·〉 denotes the duality V − V ′product.

Lemma 3 Let be f : L2(Ω) → R∪ {+∞} and f̃ such that f̃(u) = f(ud + u). Then f̃
conjugate function writes

∀u∗ ∈ L2(Ω) (f̃)∗(u∗) = f∗(u∗)− (u∗, ud)2 ,

where (·, ·)2 denotes the L2(Ω) inner product.

Proof. Let be u∗ ∈ L2(Ω). We have

(f̃)∗(u∗) = sup
u∈L2(Ω)

(u, u∗)2 − f(ud + u) = sup
w∈L2(Ω)

(w − ud, u
∗)2 − f(w)

= sup
w∈L2(Ω)

(w, u∗)2 − f(w)− (ud, u
∗)2 = f∗(u∗)− (u∗, ud)2.

⊓⊔

In the sequel 1C denotes the indicator function of the set C :

1C(u) =

{

0 if u ∈ C

+∞ else.

Lemma 4 The conjugate function of Φ1
λ is (Φ1

λ)
∗ = λ1λK1

, where K1 = K1 is the

L2-closure of

K1 :=
{

ξ = div ϕ | ϕ ∈ C1
c (Ω), ‖ϕ‖∞ ≤ 1

}

. (3.16)

The conjugate function of Φ2
µ is (Φ2

µ)
∗ = µ1µK2

, where K2 ⊃ K2 and K2 is the

L2-closure of

K2 :=
{

ξ = div2ψ |ψ ∈ C2
c (Ω,R

d×d), ‖ψ‖∞ ≤ 1
}

. (3.17)
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Proof. It is known that the conjugate TV ∗ of TV is the indicator function
of K1 (see [6,19] for example). As Φ1

λ = λTV (or +∞ outside BV (Ω) ) then

(Φ1
λ)

∗(u∗) = λTV ∗
(

u∗

λ

)

. This gives the result.

The result is not exactly the same since Φ2
µ is equal to µTV 2 on BH0(Ω) and +∞

outside (and in particular on BH(Ω)\BH0(Ω)). Therefore the conjugate of Φ2
µ is

not the same as the conjugate of µTV 2. We know that the conjugate function of
TV 2 is 1

K2

(see [11]); as Φ2
1 is positively homogeneous (µ = 1), it is the indicator

function of a closed subset K2 of L2(Ω). Moreover

1K2
(v∗) = (Φ2

1)
∗(v∗) = sup

v∈BH0

〈

v∗, v
〉

−TV 2(v) ≤ sup
v∈BH

〈

v∗, v
〉

−TV 2(v) = 1
K2

(v∗) .

This implies that K2 ⊂ K2 but we cannot prove the converse inclusion (for exam-
ple). We end the proof with the same argument as in the BV case. ⊓⊔
Eventually it is easy to see that N ∗ = N .

3.5 Dual problem to (Pλ,µ)

In the present subsection we use convex duality tools that we recall thereafter (see
[4] for example).

Theorem 6 [ [4] p 366] Let V be a banach space, f, g : V → R ∪ {+∞} lower semi-

continuous convex functions and A a linear continuous operator from V to V . Assume

there exists uo ∈ dom g and f continuous at Auo. Then

inf
u∈V

(f(Au) + g(u)) = max
u∗∈V ′

(

−f∗(u∗)− g∗(−A∗u∗)
)

.

Moreover, if ū is a solution to the primal problem and ū∗ is a solution to the dual one

then

ū∗ ∈ ∂f(Aū) and −A∗ū∗ ∈ ∂g(ū) ,

where ∂f(u) stands for the subdifferential of f at u.

Theorem 7 [ [4] p 328] Let V be a banach space and f, g : V → R ∪ {+∞} proper

functions. Then

(f#g)∗ = f∗ + g∗ .

In addition if f and g satisfy the assumptions of Theorem 6, then

(f + g)∗ = f∗#g∗ .

Now we may compute the dual problem to (Pλ,µ) and get the following

Theorem 8 The dual problem to (Pλ,µ) writes

inf
w∈λK1∩µK2

1

2
‖ud − w‖22. (3.18)

The unique solution w∗ is the L2-projection of ud on the closed convex set λK1 ∩µK2:

w∗ = ΠλK1∩µK2
(ud) .
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Proof. Solving problem (Pλ,µ) is equivalent to solving

inf
u∈L2(Ω)

(N#Φ2
µ)(ud − u) + Φ1

λ(u) = inf
u∈L2(Ω)

(Ñ#Φ2
µ)(Au) + Φ1

λ(u)

with Au = −u. It clear that A∗ = A. Moreover, Φ1
λ is lsc with respect to the L1-

topology and thus for L2- topology since Ω is bounded. As N#Φ2
µ, Ñ#Φ2

µ, A and
Φ1
λ fulfill assumptions of Theorem 6, the dual problem of (Pλ,µ) writes

(P∗) max
w∈L2(Ω)

− ˜(N#Φ2
µ)

∗

(w)− (Φ1
λ)

∗(w) ,

where ˜(N#Φ2
µ)(w) = (N#Φ2

µ)(ud+w) . Using Lemma 3 and Theorem 7 it easy to
see that

˜(N#Φ2
µ)

∗

(w) = −(ud, w)2 + (N#Φ2
µ)

∗(w) = −(ud, w)2 +N ∗(w) + (Φ2
µ)

∗(w)

= −(ud, w)2 +N (w) + (Φ2
µ)

∗(w) .

Therefore, (P∗) writes

max
w∈L2(Ω)

(ud, w)2 −N (w)− (Φ1
λ)

∗(w)− (Φ2
µ)

∗(w) ,

⇐⇒ − min
w∈L2(Ω)

−(ud, w)2 +N (w) + (Φ1
λ)

∗(w) + (Φ2
µ)

∗(w) .

Finally, (P∗) is equivalent to

min
w∈λK1∩µK2

1

2
‖ud − w‖22, (3.19)

The dual problem has obviously a unique solution w∗ which is the L2 projection
of ud on the closed convex set λK1 ∩ µK2. ⊓⊔

Next we have a relation between the solutions to (Pλ,µ) and the (unique) solution
of the dual problem.

Theorem 9 1. Let w∗ be the (unique) solution to the dual problem (Pλ,µ)
∗:

w∗ = ΠλK1∩µK2
(ud) .

Then there exists (ū, v̄) ∈ BV (Ω)×BH0(Ω) an optimal solution to (Pλ,µ) such that

w∗ = ud − ū− v̄ and w∗ ∈ ∂Φ2
µ(v̄) ∩ ∂Φ

1
λ(ū) .

2. Conversely, if (ū, v̄) ∈ BV (Ω)×BH0(Ω) is any solution to (Pλ,µ) then

w̄ = ud − ū− v̄ = ΠλK1∩µK2
(ud) . (3.20)
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Proof. Let (ū, ṽ) be a solution to (Pλ,µ). A direct consequence of Theorem 6 is

w∗ ∈ ∂Φ1
λ(ū) and w∗ ∈ ∂ ˜(N#Φ2

µ)(−ū).

A simple calculus shows that

∂ ˜(N#Φ2
µ)(−ū) = ∂(N#Φ2

µ)(ud − ū)

so that
w∗ ∈ ∂Φ1

λ(ū) ∩ ∂(N#Φ2
µ)(ud − ū) .

As

(N#Φ2
µ)(ud− ū) = N (ud− ū− ṽ)+Φ

2
µ(ṽ) = argminv∈L2(Ω)

1

2
‖v+ ū−ud‖

2+Φ2
µ(v) ,

then
ud − ṽ − ū ∈ ∂Φ2

µ(ṽ);

so, the inf-convolution is exact and we get ([23])

∂(N#Φ2
µ)(ud − ū) =

⋃

v∈L2(Ω)

∂N (ud − ū− v) ∩ ∂Φ2
µ(v) .

As ∂N (ud− ū− v) = {ud− ū− v} this means that there exists v̄ ∈ L2(Ω) such that

w∗ = ud − ū− v̄ ∈ ∂Φ2
µ(v̄) .

So
w∗ ∈ ∂Φ2

µ(v̄) ∩ ∂Φ
1
λ(ū) ,

with v̄ = ud − ū−w∗. This prove that (ū, v̄) is a solution to (Pλ,µ) as well: we use
Theorem 4 with w̄ = w∗ to conclude.
Let us prove the converse property. Let (ū, v̄) ∈ BV (Ω) × BH0(Ω) be a solution
to (Pλ,µ) and w̄ = ud − ū− v̄. Theorem 4 yields

w̄ ∈ ∂Φ1
λ(ū) ∩ ∂Φ

2
µ(v̄) ,

that is
ū ∈ ∂(Φ1

λ)
∗(w̄) and v̄ ∈ ∂(Φ2

µ)
∗(w̄) .

With the previous computations this gives

ū ∈ ∂λ1λK1
(w̄) and v̄ ∈ ∂λ1µK2

(w̄) .

Therefore

∀w ∈ λK1 ∩ µK2 〈ū, w − w̄〉 ≤ 0 and 〈v̄, w − w̄〉 ≤ 0 .

Adding the above inequalities gives

∀w ∈ λK1 ∩ µK2 〈ū+ v̄, w − w̄〉 = 〈ud − w̄, w − w̄〉 ≤ 0 .

This is equivalent to (3.20).

Corollary 2 If (ū, v̄) is a solution to (Pλ,µ), then w̄ = ū+ v̄ is unique. In particular,

there is a unique solution to (Pλ,µ) such that ū = 0 almost everywhere.

Remark 3 We cannot permute the role of Φ1
λ and Φ2

µ in the previous proof because

Φ2
µ is not lower semi-continuous with respect to the L2 topology. Indeed L2(Ω) is not

embedded in W 1,1(Ω).
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4 Solution properties (d ≤ 2)

4.1 Structure of the solutions

Recall (see [5,24]) that the Meyer space G(Ω) is defined as

G(Ω) := { f ∈ L2(Ω) | ∃ϕ = (ϕ1, ϕ2) ∈ L∞(Ω,R2) f = div ϕ and ϕ·n = 0 on ∂Ω }

where n is the outer normal vector to ∂Ω. The space G is endowed with a norm
denoted by ‖ · ‖G and defined as

‖f‖G = inf{‖
√

ϕ2
1 + ϕ2

2‖∞ | f = div ϕ ,ϕ · n = 0 on ∂Ω } .

We shall need the

Lemma 5 ( [5], Lemma 2.1) For every u ∈ BV (Ω) and g ∈ G(Ω) then

∣

∣

∣

∣

∫

Ω

u(x) g(x) dx

∣

∣

∣

∣

≤ TV (u) ‖g‖G .

We may now precise the structure of a generic solution.

Theorem 10 Let us denote by (ū, v̄) ∈ BV (Ω)×BH0(Ω) a solution to problem (Pλ,µ)
(for any fixed λ and µ) and set w̄ = ud − ū− v̄.

i. w̄ = ud − ū− v̄ ∈ G(Ω)
ii. If d = 2 and Ω satisfies assumption (2.1), v̄ is continuous on Ω̄.

iii. If d = 2, Ω satisfies assumption (2.1) and ud ∈ BV (Ω) ∩ L∞(Ω), then the jump

set of ū is included in the jump set of ud.

Proof. (i) This is a direct consequence of Theorem 9. Indeed w̄ ∈ λK1. There-
fore, there exists a sequence ϕn ∈ C1

c (Ω,R
2) with ‖ϕn‖∞ ≤ 1 such that wn =

λdiv(ϕn) L
2-converges to w̄. As ‖ϕn‖∞ ≤ 1 on may extract a weak-star subse-

quence that converges to ϕ̄ in L∞(Ω). Therefore ϕ̄ ∈ L∞(Ω) and ϕ̄.n = 0 on ∂Ω.
So, we get :

∀u ∈ D(Ω) (wn, u)L2 = λ

∫

Ω

divϕnu = −λ

∫

Ω

ϕn ∇u→ −λ

∫

Ω

ϕ̄∇u.

As (wn, u)L2 → (w̄, u)L2 this gives

(w̄, u) = −λ 〈ϕ̄,∇u〉 = λ 〈div ϕ̄, u〉 ,

in the distributional sense. Therefore w̄ = div (λϕ̄). Moreover, ϕ̄ · n = 0 on ∂Ω

since ϕn as compact support. This proves that w̄ ∈ G(Ω).

(ii) Assumption (2.1) yields that v̄ ∈ BH(Ω) is continuous (Theorem 2, (iii)).
(iii) With (ii), the jump discontinuity set of ud is the same as the one of ud − v̄.
Moreover ū is a solution to

min
u∈BV (Ω)

1

2
‖ud − v̄ − u‖2 + λTV (u).,

Therefore, following [[18],Theorem 3.3 ] we get the result.
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Remark 4 The point (i) means that w̄ is an oscillating function: this is consistent

with the fact that we expect w̄ to be the noise and/or micro-textures.

The continuity of v̄ still hold if d ≥ 2. Assumptions on Ω are slightly different (see [15,

20]).

Corollary 3 Let us denote by (ū, v̄) ∈ BV (Ω)×BH0(Ω) a solution to problem (Pλ,µ)
(for any fixed λ and µ) and set w̄ = ud − ū− v̄. Then

∫

Ω

w̄(x) dx = 0 .

Proof. This is a direct consequence of proposition 2.1 of [5].
The previous theorem deals with the case where ud ∈ BV (Ω). This is not the

case if ud is noisy for example. In the case where ud /∈ BV (Ω) we have the following
results due to W. Ring [28].
We first consider the 1D case where Ω = (a, b). Following Proposition 4 of [28], if
we assume that

∀U open subset of (a, b) with positive Lebesgue measure (H1)

ud does not coincide on Uwith some function u ∈ BV (a, b).

then ud−v̄ satisfies H1 and we get Daū = 0 where Dau is the absolutely continuous
part of the measure Du. Let Γ be the support of the singular part of Dū. Therefore
ū is piecewise constant on (a, b)\Γ .
We have also a similar result for the 2D-case . Assume that

∀U open subset of Ω, ud|U is not equal not a BV (Ω) function. (H2)

then ud − v̄ satisfies (H2) as well (since v̄ ∈ W 1,1(Ω)). Following Proposition 6 of

[28], there is no open subset ω of Ω on which both components
∂ū

∂xi
, i = 1, 2 have

constant, non-zero sign.

4.2 Uniqueness

The functional Fλ,µ is convex but not strictly convex, because of the degenerating
direction u+ v = 0. It is obvious that if (u∗, v∗) is a solution then (u∗ + c, v∗ − c),
where c is constant, is a solution as well. Let us call

C(Ω) := {(u, v) ∈ BV (Ω)×BH0(Ω) |∃c ∈ R u = c and v = −c a.e on Ω }. (4.21)

The question of uniqueness reduces to uniqueness up to C(Ω) functions. In other
words, if (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ) can we show
that u2 = u1 + c and v2 = v1 − c where c is a constant function? It is still an
open problem for the 2D case. We shall discuss this point more precisely in the
numerical section. Nevertheless we may give partial results:

Proposition 3 Assume (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ).
Then there exists ϕ ∈ BV (Ω) ∩BH0(Ω) such that u2 = u1 − ϕ and v2 = v1 + ϕ.

Proof. Set u = u2−u1(∈ BV (Ω)) and v = v2−v1(∈ BH0(Ω)). As ud−u1−v1 =
ud −u2 − v2 (this is the unique solution of the dual problem), then u+ v = 0. This
yields that u = −v ∈ BV (Ω) ∩BH0(Ω) and we get the result.
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Lemma 6 The only solutions (ū, v̄) to (Pλ,µ) that satisfies ū+ v̄ = 0 are functions of

C(Ω).

Proof. Assume that ū+ v̄ = 0 then ū ∈ BH0(Ω) and Φ2(v̄) = Φ2(−ū) = Φ2(ū).
As Fλ,µ(ū, v̄) ≤ Fλ,µ(u, v), for every (u, v) ∈ BV (Ω)×BH0(Ω) this yields

‖ud‖
2
L2(Ω) + 2λTV (ū) + 2µTV 2(ū) ≤ ‖ud − u− v‖2L2(Ω) + 2λTV (u) + 2µTV 2(v) .

Taking u = v = 0 gives

‖ud‖
2
L2(Ω) + 2λTV (ū) + 2µTV 2(ū) ≤ ‖ud‖

2
L2(Ω).

So we get λTV (ū) + µTV 2(ū) = 0. This implies that TV (ū) = 0 and that ū is a
constant function.

Theorem 11 Let be (λ, µ) nonnegative real numbers such that λ ≥ ‖ud‖G and µ ≥
C2λ where C2 is the constant of Lemma 1. Then the C(Ω) functions are the only

solutions to (Pλ,µ).

Proof. Let us assume that λ ≥ ‖ud‖G and µ ≥ C2λ where C2 is the constant of
Lemma 1. Lemma 5 gives

∀(u, v) ∈ BV (Ω)×BH0(Ω)
∣

∣(ud, u+ v)2
∣

∣ ≤ λTV (u+ v)

since ud ∈ L2(Ω) and BH0(Ω) ⊂ BV (Ω). Then

∣

∣(ud, u+ v)2
∣

∣ ≤ λTV (u) + λTV (v) .

Lemma 1 gives a constant C2 (only depending on Ω) such that

∀v ∈ BH0(Ω) TV (v) ≤ C2TV
2(v) ,

so that ∀(u, v) ∈ BV (Ω)×BH0(Ω)

∣

∣(ud, u+ v)2
∣

∣ ≤ λTV (u) + C2λTV
2(v) ≤ λTV (u) + µTV 2(v). (4.22)

Finally, we get for every (u, v) ∈ BV (Ω)×BH0(Ω)

1

2
‖ud‖

2 =
1

2
‖ud−u−v‖

2−
1

2
‖u+v‖2+(ud, u+ v)2 ≤

1

2
‖ud−u−v‖

2+λTV (u)+µTV 2(v).

This means that Fλ,µ(0, 0) ≤ Fλ,µ(u, v) : so (0, 0) is a solution to (Pλ,µ). Let
(ū, v̄) ∈ BV (Ω)×BH0(Ω) be another solution to Pλ,µ. With proposition 3, we get
ū+ v̄ = 0 and lemma 6 gives (ū, v̄) ∈ C(Ω). This ends the proof.

Remark 5 The previous theorem tells that if
µ

λ
and λ are large enough then the set of

solutions is C(Ω) . In addition, if we impose (for example) that u ∈ G (that is u has

a null mean value), then the unique solution is (0, 0) since C(Ω) ∩ (G × BH0(Ω)) =
{(0, 0)}.

Eventually, we have a uniqueness result for the 1D case:
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Theorem 12 Assume n = 1, Ω =]a, b[ and that ud satisfies assumption (H1). Then,
for every λ > 0, µ > 0 problem (Pλ,µ) has a unique solution up to a C(Ω) function.

More precisely, if (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ) then ϕ :=
u2 − u1 = v2 − v1 is a constant function. In particular, problem (Pλ,µ) has a unique

solution (u∗, v∗) such that u∗ has a null mean value.

Proof. Let (u1, v1) and (u2, v2) be two optimal solutions of (Pλ,µ). Then, with
proposition 3, there exists ϕ ∈ BV (Ω) ∩BH0(Ω) such that ϕ = u2 − u1 = v2 − v1.
If ud satisfies (H1) then ud − vi, i = 1, 2 obviousy satisfies this assumption as well.
As ui, i = 1, 2 is solution to the ROF problem

ui = argmin

{

1

2
‖ud − vi − u‖2 + Φ1

λ(u), u ∈ L2(Ω)

}

, i = 1, 2.

then, u1, u2 and ϕ are piecewise constant on Ω. In addition ϕ = v2−v1 ∈ BH(Ω) ⊂
W 1,1(Ω). This implies that ϕ is continuous and proves that ϕ is constant.

5 Conclusion

The mathematical analysis of this problem has been completed by numerical ex-
periments ([9]). The model is well adapted to texture extraction. In the case, where
the data is noiseless and/or is not too much textured, the decomposition given par
λ - µ and initialization u0 = v0 = 0, gives a cartoon part which is piecewise con-
stant as expected. This means that u =

∑

i ui1Γi
where

⋃

i Γi is the contour set. In
this case, the remainder L2 term is the texture and/or noise. The decomposition
is robust with respect to quantification, sampling and is always the same for any
µ >> λ, once λ has been chosen.

In the case where the image is highly textured the model provides a two-scale
decomposition. The TV part represents the macro-texture and the L2 part the

micro-texture and/or noise. The scaling is tuned via the ratio ρ =
λ

µ
.

From numerical computations, we infer that problem (Pλ,µ) has a unique so-
lution (up to C(Ω)) functions but the question is still open.
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