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Mathematical and numerical analysis of a variational second order image
decomposition model

M. Bergounioux ∗

Abstract. We deal with a second order image decomposition model to perform denoising and texture extraction
that was previously presented in [9]. We look for the decomposition f = u+ v+w where u is a first
order term, v a second order term and w the remainder term (0 order). For highly textured images
the model gives a two-scale texture decomposition: u can be viewed as a macro-texture (larger
scale) which oscillations are not too large and w is the micro-texture (very oscillating) that contains
the noise. Here, we perform mathematical analysis of the model and give qualitative properties
of solutions using the dual problem and inf-convolution formulation. Then we perform numerical
experiments, discuss the behavior of the model and investigate the lack of uniqueness.
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1. Introduction . The most famous variational denoising model is the Rudin-Osher-
Fatemi one ([1, 26]). This model involves a regularization term that preserves discontinuities,
what a classical H1 -Tychonov regularization method does not. The observed image to re-
cover is split in two parts ud = w + u where w represents the oscillating component (noise
or texture) and u is the smooth part. So we look for a solution u such that ud = w + u
with u ∈ BV (Ω) and w ∈ L2(Ω), where BV (Ω) is the functions of bounded variation space
defined on an open subset Ω ⊂ Rd ([3, 4, 19]). The regularization term involves only the
so-called cartoon component u, while the remainder term w := ud − u represents the noise to
be minimized.

A lot of people have investigated such decomposition models based on variational formu-
lation, considering that an image can be decomposed into many components, each component
describing a particular property of the image ([5, 7, 22, 23, 24, 28] and references therein for
example).

In [9, 10] we have presented second order models where the (first order) classical total
variation term has been replaced by a second order total variation term with the appropriate
functional framework, namely the space of functions with bounded hessian introduced as
BH(Ω) in [17] (and denoted BV 2(Ω) in [8, 10, 9]). The use of such a model allows to get rid
of the staircasing effect that appears with the ROF model in denoising processes. However
we had to involve a penalization term in the continuous setting to get existence results for the
minimization problems.

Second order models have been investigated in the context of segmentation and inpainting
problems with Mumford-Shah types functionals (see [2, 13, 14] for example). The functional
framework is the so called GSBV space composed of functions u whose truncated forms
(min(−N,max(u,N)) belong to SBVloc for every N ∈ N). The definition of GSBV 2 is

∗ Université d’Orléans, UFR Sciences, Math., Labo. MAPMO, UMR 7349, Route de Chartres, BP 6759, 45067
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slightly different from the one we consider since

GSBV 2(Ω = {u ∈ GSBV (Ω) | ∇u ∈ [GSBV (Ω)]d } .

The aim of this paper is to give an existence result without any additional penalization
term as in [9] and to perform a qualitative analysis of the model. Uniqueness et regularity
issues will be also addressed.

More precisely, we assume that an image (in L2(Ω)) can be split in three components: a
smooth (continuous) part v, a cartoon (piecewise constant) part u and an oscillating part
w that should involve noise and/or fine textures. Such decompositions have already been
investigated by Aujol and al. [5, 7]. These authors use the Meyer space of oscillating functions
[21] rather than the BH(Ω) space (we shall present these spaces in the sequel). The model
we propose here is different: the oscillating part of the image is not penalized but a priori
included in the remainder term w = ud − u− v, while v is the smooth part (in BH(Ω)) and
u belongs to BV (Ω): we hope u to be piecewise constant so that its jump set gives the image
contours. For highly textured images, the model provides a two-scale texture decomposition:
u can be viewed as a macro-texture (large scale) whose oscillations are not too large and w is
the micro-texture (mmuch more oscillating) that contains the noise.

Therefore, we look for components u, v and w that belong to different spaces: u belongs
to BV (Ω) (and if possible not to W 1,1(Ω)), v ∈ BH(Ω) and w ∈ L2(Ω). This last component
w = ud − u− v lies in the same space as the observed image ud.

The paper is organized as follows. We first present the functional framework and perform
a quick comparison between the second-order total variation we use and the one defined
by Bredies et al. in [11]. In section 3, we present the variational model, give existence
result and an equivalent formulation with inf-convolution. This allows to compute the dual
problem. Next section is devoted to giving qualitative properties of the solutions . We end
with numerical experiments.

2. Functional framework for second order variational analysis .

2.1. Spaces BV (Ω) and BH(Ω) . In the whole paper, Ω is an open bounded subset of
Rd (practically d = 2) smooth enough (with the cone property and Lipschitz for example).
More precisely, if d = 2, Ω may satisfy next assumption

(2.1)

{

Ω is a bounded connected open set, strongly Lipschitz such that
∂Ω is the union of finitely many C2 curves

Following [3, 4, 6] and [10, 17], we recall the definitions and main properties of the spaces
of functions of first and second order bounded variation. The space BV (Ω) is the classical
Banach space of functions of bounded variation defined by

BV (Ω) = {u ∈ L1(Ω) | TV (u) < +∞},

where TV (u) is the total variation of u

(2.2) TV (u) := sup

{
∫

Ω
u(x) div ξ(x) dx | ξ ∈ C1

c (Ω,R
d), ‖ξ‖∞ ≤ 1

}

,
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endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + TV (u).
We say that a sequence (un)n∈N of BV (Ω) converges to some u ∈ BV (Ω) for the intermediate
(or strict) convergence if un strongly converges to u for the L1(Ω) topology and TV (un)
converges to TV (u) (in R) (see [3, 4, 29] ).
The space of functions with bounded hessian has been introduced by Demengel [17] (where it
was denoted BH(Ω)). It is the space of W 1,1(Ω) functions such that TV 2(u) < +∞, where

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) } ,

∇u stands for the first order derivative of u in the sense of distributions and

(2.3) TV 2(u) := sup

{
∫

Ω
〈∇u, div(ξ)〉

Rd | ξ ∈ C2
c (Ω,R

d×d), ‖ξ‖∞ ≤ 1

}

<∞,

is the second order total variation of u . Here, div(ξ) = (div(ξ1), div(ξ2), . . . , div(ξd)), and

∀i, ξi = (ξi,1, ξi,2, . . . , ξi,d) ∈ Rd, div(ξi) =
d

∑

j=1

∂ξi,j
∂xj

.

The space BH(Ω) endowed with the following norm

(2.4) ‖f‖BH(Ω) := ‖f‖W 1,1(Ω) + TV 2(f) = ‖f‖L1 + ‖∇f‖L1 + TV 2(f),

where TV 2 is given by (2.3) is a Banach space. Note that a function u belongs to BH(Ω) if

and only if u ∈W 1,1(Ω) and
∂u

∂xi
∈ BV (Ω) for i ∈ {1, . . . , d}. In particular

TV 2(u) ≤
d

∑

i=1

TV

(

∂u

∂xi

)

≤ d TV 2(u).

We give thereafter important properties of these spaces which proofs can be found in
[3, 4, 10, 12, 17] for example.

Theorem 2.1. [Semi-continuity of total variation ]
i. The mapping u 7→ TV (u) is lower semi-continuous (denoted in short lsc) from BV (Ω)

to R+ for the L1(Ω) topology.
ii. The operator TV 2 is lower semi-continuous from BH(Ω) endowed with the strong

topology of W 1,1(Ω) to R.
Theorem 2.2. [Embedding results]Assume d ≥ 2. Then

i. BH(Ω) →֒W 1,q(Ω) with q ≤
d

d− 1
, with continuous embedding. Moreover the em-

bedding is compact if q < n
n−1 . In particular

BH(Ω) →֒ Lq(Ω), ∀q ∈ [1,∞[, if d = 2.

ii. If d = 2
– BV (Ω) ⊂ L2(Ω) with continuous embedding.
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– BV (Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2).
iii. If d = 2 and if Ω satisfies assumption (2.1) then BH(Ω) ⊂ C0(Ω̄) .

So BH(Ω) ⊂ H1(Ω) with continuous embedding and BH(Ω) ⊂ W 1,1(Ω) with compact
embedding. Let us define the space BV0(Ω) as the space of functions of bounded variation that
vanish on the boundary ∂Ω of Ω. More precisely as Ω is bounded and ∂Ω is Lipschitz, functions
of BV (Ω) have a trace of class L1 on ∂Ω [3, 4, 29], and the trace mapping T : BV (Ω) → L1(∂Ω)
is linear, continuous from BV (Ω) equipped with the intermediate convergence to L1(∂Ω)
endowed with the strong topology ([4] Theorem 10.2.2 p 386). The space BV0(Ω) is then
defined as the kernel of T . It is a Banach space, endowed with the induced norm:

BV0(Ω) := {u ∈ BV (Ω) | u|∂Ω = 0 } .

In addition , if u ∈ BH(Ω) we may define the trace u|∂Ω ∈W 1,1(∂Ω) and the normal derivative
∂u

∂n
∈ L1(∂Ω) (Theorem 2.9 [12]). So we may define similarly

BH0(Ω) := {u ∈ BH(Ω) |
∂u

∂xi
= 0 on ∂Ω, i = 1, · · · , d} .

We set also

BVm(Ω) := {u ∈ BV (Ω) |

∫

Ω
u(x) dx = 0 i = 1, · · · , n} ,

and

BHm(Ω) := {u ∈ BH(Ω) |

∫

Ω

∂u

∂xi
dx = 0 i = 1, · · · , d} .

The Ostrograski formula gives

∫

Ω

∂u

∂xi
dx = −

∫

∂Ω
ui ni ,

where ui is the ith partial function with respect to the ith coordinate and
n = (n1, · · · , nd) is the outer normal vector. In particular, if u = 0 on ∂Ω, then u ∈ BHm(Ω).
At last we shall use the following result of [8]:

Lemma 2.3. Let Ω ⊂ Rn be an open Lipschitz bounded set.There exist generic constants
only depending on Ω, C1, C2 > 0 such that

∀u ∈ BVm(Ω) ‖u‖L1(Ω) ≤ C1TV (u),(2.5)

∀u ∈ BH0(Ω) ∪BHm(Ω) TV (u) ≤ C2TV
2(u)(2.6)

2.2. Comparison with BGV2. Another definition for second-order total variation spaces
has been set in [11]. The main difference lies in the choice of the test functions for the weak
variational formulation. The authors define the Total Generalized Variation TGV 2(u) as the
supremum of the duality product between u and symmetric tests functions that are bounded
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together with their derivative. First, we note that we may define TV 2(u) in a equivalent way
as following: for any ξ ∈ C2

c (Ω,R
d×d) recall that

∀i, ξi = (ξi,1, ξi,2, . . . , ξi,d) ∈ Rd, div(ξi) =

d
∑

j=1

∂ξi,j
∂xj

and define as in [11]

div2ξ :=
d

∑

i,j=1

∂2ξi,j
∂xi∂xj

.

Let us call
B :=

{

ξ ∈ C2
c (Ω,R

d×d), ‖ξ‖∞ ≤ 1
}

.

Then, for every function u ∈W 1,1(Ω)

(2.7) TV 2(u) := sup

{
∫

Ω
udiv2ξ dx, ξ ∈ B

}

,

Indeed, an integration by parts gives

∫

Ω
udiv2ξ dx = −

∫

Ω
(∇u,div ξ)Rd dx .

Let be α = (α0, α1) > 0, we call

TGV 2
α (u) = sup

{
∫

Ω
udiv2ξ dx, ξ ∈ Bα

}

,

where
Bα := {ξ ∈ K, ξij = ξji ∀i, j, ‖ξ‖∞ ≤ α0, ‖div ξ‖∞ ≤ α1 } .

We may define ([11])

(2.8) BGV 2
α (Ω) =

{

u ∈ L1(Ω) , TGV 2
α (u) < +∞

}

.

Proposition 2.1.Let be α = (α0, α1) > 0. For every function u in W 1,1(Ω) we get

TGV 2
α (u) ≤ α0TV

2(u) .

Therefore
∀α > 0 BH(Ω) ⊂ BGV 2

α (Ω)

with continuous embedding.
Proof. As Bα ⊂ α0B the first relation is obvious. Moreover if u ∈ BH(Ω), then u ∈

W 1,1(Ω) and TGV 2
α (u) < +∞. In addition

‖u‖BV G2
α
= ‖u‖L1 + TGV 2

α (u) ≤ ‖u‖W 1,1 + α0TV
2(u) ≤ max(1, α0)‖u‖BH ,
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which gives the continuity of the embedding mapping.
Corollary 2.1.For any u ∈ BH(Ω), TV 2(u) = 0 if and only if u is a polynomial function of

order 1.
Proof. For any u ∈ BH(Ω), TV 2(u) = 0 =⇒ TGV 2

α (u) = 0. Then we use Proposition 3.3
of [11].

The main difference between the two approaches concerns the functions regularity. The
BGV 2(Ω) functions do not necessarily belong to L1(Ω). In particular, the indicator function
of smooth open sets belong to BGV 2(Ω) and not to BH(Ω). On the other hand, we cannot
have Sobolev-type embeddings for BGV 2(Ω).

3. A second-order variational model for image decomposition .

3.1. Presentation of the model. We have already presented this model in [9] so that we
do no detail so much. However we provide here an existence result that was expected but only
proved in the finite dimensional case. We now assume that the ud belongs to L2(Ω) and that
the image we want to recover can be decomposed as ud = w + u + v where u, v and w are
functions that characterize different parts of ud. Components belong to different functional
spaces: v is the (smooth) second order part and belongs to BH(Ω), u is a BV (Ω) component
and w ∈ L2(Ω) is the remainder term. We consider the following cost functional defined on
BV (Ω)×BH(Ω):

(3.1) Fλ,µ(u, v) =
1

2
‖ud − u− v‖2L2(Ω) + λTV (u) + µTV 2(v),

where λ, µ > 0. We are looking for a solution to the optimization problem

(Pλ,µ) inf{ Fλ,µ(u, v) | (u, v) ∈ BV (Ω)×BH0(Ω) }

Remark 3.1.We decide to look for the minima of Fλ,µ on BV (Ω) × BH0(Ω) and not
BV (Ω) × BH(Ω) to get an existence result. This will cause troubles to set the dual prob-
lem because of the computation of Legendre-Fenchel conjugate functions. Nevertheless, the

constraint v ∈ BH0(Ω) (that is
∂v

∂n
= 0 on ∂Ω) is a usual one in image processing and the

difficulty will be overcome in the discrete setting.
We expect v to be the smooth colored part of the image, u to be a BV (Ω)\BH(Ω)

function which derivative is a measure supported by the contours and w := ud−u− v ∈ L2 is
the noise and/or small textures (we shall detail this point later). First, we give an existence
result for problem (Pλ,µ).

Theorem 3.1 (Existence). The problem (Pλ,µ) has at least an optimal solution (u∗, v∗) in
BV (Ω)×BH0(Ω).

Proof. We first prove that the auxiliary problem

(3.2) inf{ Fλ,µ(u, v) | (u, v) ∈ BVm(Ω)×BH0(Ω) }

has an optimal solution. Let (un, vn) ∈ BVm(Ω)×BH0(Ω) be a minimizing sequence, i.e.

lim
n→+∞

Fλ,µ(un, vn) = inf{ Fλ,µ(v) | (u, v) ∈ BVm(Ω)×BH0(Ω) } < +∞.

Therefore
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• TV 2(vn) is bounded and with lemma 2.3, ‖∇vn‖L1 is bounded as well.
• TV (un) is bounded. Using once again lemma 2.3 this yields that un is bounded in
L1(Ω. Therefore the sequence un is bounded in BV (Ω).

• As un + vn is L2 -bounded, it is L1 -bounded as well so that vn is L1 bounded. As
‖∇vn‖L1 and TV 2(vn) are bounded this means that the sequence vn is bounded in
BH(Ω).

With the compactness result of Theorem 2.2, this yields that (vn)n∈N strongly converges
(up to a subsequence) in W 1,1(Ω) to v∗ ∈ BH(Ω). Moreover, v∗ ∈ BH0(Ω) because the trace
operator is continuous [12, 17]. Similarly (un)n∈N strongly converges (up to a subsequence)
in L1(Ω) to u∗ ∈ BVm(Ω). Moreover un + vn weakly converges to u∗ + v∗ in L2(Ω). With
theorem 2.1 we get

TV (u∗) ≤ lim inf
n→+∞

TV (un), TV
2(v∗) ≤ lim inf

n→+∞
TV 2(vn).

So
Fλ,µ(u

∗, v∗) ≤ lim inf
n→+∞

Fλ,µ(un, vn) = min
(u,v)∈BVm(Ω)×BH0(Ω)

Fλ,µ(u, v),

and (u∗, v∗) is a solution to (3.2).
For every (u, v) ∈ BV (Ω) × BH0(Ω), we have (u − ū, v + ū) ∈ BVm(Ω) × BH0(Ω) where

ū =
1

|Ω|

∫

Ω
u is the mean value of u. Moreover

Fλ,µ(u, v) = Fλ,µ(u− ū, v + v̄) ≥ Fλ,µ(u
∗, v∗).

Therefore (u∗, v∗) is an optimal solution to (Pλ,µ).
Remark 3.2.Uniqueness of the solution is challenging. We shall prove partial results in

section 4.2.

3.2. Optimality conditions. In what follows, we fix λ > 0 and µ > 0 and set for any

u ∈ L2(Ω) : N (u) =
1

2
‖u‖22,

Φ1
λ(u) =

{

λTV (u) if u ∈ BV (Ω)
+∞ else.

and

Φ2
µ(v) =

{

µTV 2(v) if v ∈ BH0(Ω)
+∞ else.

It is easy to see that (ū, v̄) is a solution to (Pλ,µ) if and only if

ū = argmin

{

1

2
‖ud − v̄ − u‖2 +Φ1

λ(u), u ∈ L2(Ω)

}

,(3.3)

v̄ = argmin

{

1

2
‖ud − ū− v‖2 +Φ2

µ(v), v ∈ L2(Ω)

}

.(3.4)

and we may derive optimality conditions in a standard way :
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Theorem 3.2. (ū, v̄) is a solution to (Pλ,µ) if and only if

(3.5) w̄ := ud − ū− v̄ ∈ ∂Φ1
λ(ū) ∩ ∂Φ

2
µ(v̄).

The proof is obvious. Here ∂f(u) stands for the subdifferential of f at u where f : V → R:

∂f(u) = {u∗ ∈ V ′ | ∀v ∈ V f(v)− f(u) ≥ 〈u∗, v − u〉 },

and 〈·, ·〉 is the duality product between V et V ′.

3.3. Inf-convolution formulation . We are going to interpret (Pλ,µ) as successive inf-
convolution processes. Recall that the inf-convolution ([4] p 324 ) is defined as

(f#g)(v) = inf{f(u) + g(v − u), u ∈ V } ,

where f, g : V → R ∪ {+∞}.
Lemma 3.3.The functionals N#Φ1

λ and N#Φ2
µ are convex, continuous from L2(Ω) to

L2(Ω).
Proof. In the sequel we set Φ = Φ1

λ or Φ2
µ indifferently. As Φ and N are convex so is N#Φ

(see [20] for example). Let be u ∈ L2(Ω):

(N#Φ)(u) = inf
v∈L2(Ω)

1

2
‖u− v‖22 +Φ(v) ≤

1

2
‖u‖22 +Φ(0) =

1

2
‖u‖22 .

As (N#Φ)(0) = 0 this gives the N#Φ continuity at 0 and its boundedness in a neighborhood
of 0. As it is convex, it continuous on its whole domain L2(Ω)(see [18] for example).

Note that problem (3.3) is equivalent to ū ∈ N#Φ1
λ(ud − v̄) and (3.4) is equivalent to

v̄ ∈ N#Φ2
µ(ud − ū). In fact, problem (Pλ,µ) can be written as successive inf-convolution

processes. More precisely we have
Theorem 3.4.Let (ū, v̄) ∈ BV (Ω) × BH0(Ω) be a solution to (Pλ,µ) and m̄ := inf(Pλ,µ).

Then

m̄ = N (ud − ū− v̄) + Φ1
λ(ū) + Φ2

µ(v̄)

= (N#Φ1
λ))(ud − v̄) + Φ2

µ(v̄) = (N#Φ2
µ))(ud − ū) + Φ1

λ(ū)

= (Φ1
λ#(N#Φ2

µ))(ud) = (Φ2
µ#(N#Φ1

λ))(ud).

Proof. Let (ū, v̄) ∈ BV (Ω)×BH0(Ω) be a solution to (Pλ,µ).
Then, for every (u, v) ∈ BV (Ω)×BH0(Ω), we get

(3.6) m̄ = N (ud − ū− v̄) + Φ1
λ(ū) + Φ2

µ(v̄) ≤ N (ud − u− v) + Φ1
λ(ū) + Φ2

µ(v) .

This gives, for every v ∈ BH0(Ω)

m̄ ≤ inf
u∈L2(Ω)

N (ud − u− v) + Φ1
λ(ū) + Φ2

µ(v) = (N#Φ1
λ)(ud − v) + Φ2

µ(v)

so that
m̄ ≤ inf

v∈BH0(Ω)
(N#Φ1

λ)(ud − v) + Φ2
µ(v) ≤ (Φ2

µ#(N#Φ1
λ))(ud) .
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Similarly
m̄ ≤ (Φ1

λ#(N#Φ2
µ))(ud) .

Conversely, by definition of inf-convolution, we get for every (u, v) ∈ BV (Ω)×BH0(Ω)

(Φ2
µ#(N#Φ1

λ))(ud) ≤ (N#Φ1
λ)(ud − v) + Φ2

µ(v) ≤ N (ud − v − u) + Φ1
λ(u) + Φ2

µ(v) ,

so that (Φ2
µ#(N#Φ1

λ))(ud) ≤ m̄.
We finally obtain m̄ = (Φ1

λ#(N#Φ2
µ))(ud) = (Φ2

µ#(N#Φ1
λ))(ud).

3.4. Computing Fenchel conjugate function. We are going to write the dual problem of
(Pλ,µ) and we need to compute the conjugate functions of Φ1

λ and Φ2
µ and f̃ : u 7→ f(ud + u).

We recall that if f : V → R ∪ {+∞}, the Legendre-Fenchel conjugate f∗ is defined on V ′ as

∀u∗ ∈ V ′ f∗(u∗) = sup
u∈V

〈u∗, u〉 − f(u) .

We obviously have

∀λ > 0, ∀u∗ ∈ V ′ (λf)∗(u∗) = λf∗(
u∗

λ
) ,

and the following useful result:
Proposition 3.1.[4] Let V be a normed space and f : V → R ∪ {+∞} a closed, convex,

proper function. then

u∗ ∈ ∂f(u) ⇐⇒ u ∈ ∂f∗(u∗) ⇐⇒ f(u) + f∗(u∗) = 〈u∗, u〉,

where 〈·, ·〉 denotes the duality V − V ′product.
Lemma 3.5. Let be f : L2(Ω) → R ∪ {+∞} and f̃ such that f̃(u) = f(ud + u). Then f̃

conjugate function writes

∀u∗ ∈ L2(Ω) (f̃)∗(u∗) = f∗(u∗)− (u∗, ud)2 ,

where (·, ·)2 denotes the L2(Ω) inner product.
Proof. Let be u∗ ∈ L2(Ω). We have

(f̃)∗(u∗) = sup
u∈L2(Ω)

(u, u∗)2 − f(ud + u) = sup
w∈L2(Ω)

(w − ud, u
∗)2 − f(w)

= sup
w∈L2(Ω)

(w, u∗)2 − f(w)− (ud, u
∗)2 = f∗(u∗)− (u∗, ud)2.

In the sequel 1C denotes the indicator function of the set C :

1C(u) =

{

0 if u ∈ C
+∞ else.

Lemma 3.6. The conjugate function of Φ1
λ is (Φ1

λ)
∗ = λ1λK1

, where K1 = K1 is the L2-
closure of

(3.7) K1 :=
{

ξ = div ϕ | ϕ ∈ C1
c (Ω), ‖ϕ‖∞ ≤ 1

}

.
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The conjugate function of Φ2
µ is (Φ2

µ)
∗ = µ1µK2

, where K2 ⊃ K2 and K2 is the L2-closure of

(3.8) K2 :=
{

ξ = div2ψ |ψ ∈ C2
c (Ω,R

d×d), ‖ψ‖∞ ≤ 1
}

.

Proof. It is known that the conjugate TV ∗ of TV is the indicator function of K1 (see

[6, 16] for example). As Φ1
λ = λTV (or +∞ outside BV (Ω) ) then (Φ1

λ)
∗(u∗) = λTV ∗

(

u∗

λ

)

.

This gives the result.
The result is not exactly the same since Φ2

µ is equal to µTV 2 on BH0(Ω) and +∞ outside
(and in particular on BH(Ω)\BH0(Ω)). Therefore the conjugate of Φ2

µ is not the same as the
conjugate of µTV 2. We know that the conjugate function of TV 2 is 1

K2
(see [10]); as Φ2

1 is

positively homogeneous (µ = 1), it is the indicator function of a closed subset K2 of L2(Ω).
Moreover

1K2
(v∗) = (Φ2

1)
∗(v∗) = sup

v∈BH0

〈v∗, v〉 − TV 2(v) ≤ sup
v∈BH

〈v∗, v〉 − TV 2(v) = 1
K2

(v∗) .

This implies that K2 ⊂ K2 but we cannot prove the converse inclusion (for example). We end
the proof with the same argument as in the BV case.

Eventually it is easy to see that N ∗ = N .

3.5. Dual problem to (Pλ,µ) . In the present subsection we use convex duality tools that
we recall thereafter (see [4] for example).

Theorem 3.7. [ [4] p 366] Let V be a banach space, f, g : V → R ∪ {+∞} lower semi-
continuous convex functions and A a linear continuous operator from V to V . Assume there
exists uo ∈ dom g and f continuous at Auo. Then

inf
u∈V

(f(Au) + g(u)) = max
u∗∈V ′

(−f∗(u∗)− g∗(−A∗u∗)) .

Moreover, if ū is a solution to the primal problem and ū∗ is a solution to the dual one then

ū∗ ∈ ∂f(Aū) and −A∗ū∗ ∈ ∂g(ū) ,

where ∂f(u) stands for the subdifferential of f at u.
Theorem 3.8.[ [4] p 328] Let V be a banach space and f, g : V → R ∪ {+∞} proper

functions. Then
(f#g)∗ = f∗ + g∗ .

In addition if f and g satisfy the assumptions of Theorem 3.7, then

(f + g)∗ = f∗#g∗ .

Now we may compute the dual problem to (Pλ,µ) and get the following
Theorem 3.9. The dual problem to (Pλ,µ) writes

(3.9) inf
w∈λK1∩µK2

1

2
‖ud − w‖22.
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The unique solution w∗ is the L2-projection of ud on the closed convex set λK1 ∩ µK2:

w∗ = ΠλK1∩µK2
(ud) .

Proof. Solving problem (Pλ,µ) is equivalent to solving

inf
u∈L2(Ω)

(N#Φ2
µ)(ud − u) + Φ1

λ(u) = inf
u∈L2(Ω)

(Ñ#Φ2
µ)(Au) + Φ1

λ(u)

with Au = −u. It clear that A∗ = A. Moreover, Φ1
λ is lsc with respect to the L1- topology and

thus for L2- topology since Ω is bounded. As N#Φ2
µ, Ñ#Φ2

µ, A and Φ1
λ fulfill assumptions of

Theorem 3.7, the dual problem of (Pλ,µ) writes

(P∗) max
w∈L2(Ω)

− ˜(N#Φ2
µ)

∗
(w)− (Φ1

λ)
∗(w) ,

where ˜(N#Φ2
µ)(w) = (N#Φ2

µ)(ud + w) . Using Lemma 3.5 and Theorem 3.8 it easy to see
that

˜(N#Φ2
µ)

∗
(w) = −(ud, w)2 + (N#Φ2

µ)
∗(w)

= −(ud, w)2 +N ∗(w) + (Φ2
µ)

∗(w)

= −(ud, w)2 +N (w) + (Φ2
µ)

∗(w) .

Therefore, (P∗) writes

max
w∈L2(Ω)

(ud, w)2 −N (w)− (Φ1
λ)

∗(w) − (Φ2
µ)

∗(w) ,

that is
− min

w∈L2(Ω)
−(ud, w)2 +N (w) + (Φ1

λ)
∗(w) + (Φ2

µ)
∗(w) .

Finally, (P∗) is equivalent to

(3.10) min
w∈λK1∩µK2

1

2
‖ud − w‖22,

The dual problem has obviously a unique solution w∗ which is the L2 projection of ud on the
closed convex set λK1 ∩ µK2.

Next we have a relation between the solutions to (Pλ,µ) and the (unique) solution of the
dual problem.

Theorem 3.10. 1. Let w∗ be the (unique) solution to the dual problem (Pλ,µ)
∗:

w∗ = ΠλK1∩µK2
(ud) .

Then there exists (ū, v̄) ∈ BV (Ω)×BH0(Ω) an optimal solution to (Pλ,µ) such that

w∗ = ud − ū− v̄ and w∗ ∈ ∂Φ2
µ(v̄) ∩ ∂Φ

1
λ(ū) .
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2. Conversely, if (ū, v̄) ∈ BV (Ω)×BH0(Ω) is any solution to (Pλ,µ) then

(3.11) w̄ = ud − ū− v̄ = ΠλK1∩µK2
(ud) .

Proof. Let (ū, ṽ) be a solution to (Pλ,µ). A direct consequence of Theorem 3.7 is

w∗ ∈ ∂Φ1
λ(ū) and w∗ ∈ ∂ ˜(N#Φ2

µ)(−ū).

A simple calculus shows that

∂ ˜(N#Φ2
µ)(−ū) = ∂(N#Φ2

µ)(ud − ū)

so that

w∗ ∈ ∂Φ1
λ(ū) ∩ ∂(N#Φ2

µ)(ud − ū) .

As

(N#Φ2
µ)(ud − ū) = N (ud − ū− ṽ) + Φ2

µ(ṽ) = argminv∈L2(Ω)

1

2
‖v + ū− ud‖

2 +Φ2
µ(v) ,

then
ud − ṽ − ū ∈ ∂Φ2

µ(ṽ);

so, the inf-convolution is exact and we get ([20])

∂(N#Φ2
µ)(ud − ū) =

⋃

v∈L2(Ω)

∂N (ud − ū− v) ∩ ∂Φ2
µ(v) .

As ∂N (ud − ū− v) = {ud − ū− v} this means that there exists v̄ ∈ L2(Ω) such that

w∗ = ud − ū− v̄ ∈ ∂Φ2
µ(v̄) .

So

w∗ ∈ ∂Φ2
µ(v̄) ∩ ∂Φ

1
λ(ū) ,

with v̄ = ud − ū− w∗. This prove that (ū, v̄) is a solution to (Pλ,µ) as well: we use Theorem
3.2 with w̄ = w∗ to conclude.
Let us prove the converse property. Let (ū, v̄) ∈ BV (Ω) × BH0(Ω) be a solution to (Pλ,µ)
and w̄ = ud − ū− v̄. Theorem 3.2 yields

w̄ ∈ ∂Φ1
λ(ū) ∩ ∂Φ

2
µ(v̄) ,

that is
ū ∈ ∂(Φ1

λ)
∗(w̄) and v̄ ∈ ∂(Φ2

µ)
∗(w̄) .

With the previous computations this gives

ū ∈ ∂λ1λK1
(w̄) and v̄ ∈ ∂λ1µK2

(w̄) .
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Therefore

∀w ∈ λK1 ∩ µK2 〈ū, w − w̄〉 ≤ 0 and 〈v̄, w − w̄〉 ≤ 0 .

Adding the above inequalities gives

∀w ∈ λK1 ∩ µK2 〈ū+ v̄, w − w̄〉 = 〈ud − w̄, w − w̄〉 ≤ 0 .

This is equivalent to (3.11).

Corollary 3.1. If (ū, v̄) is a solution to (Pλ,µ), then w̄ = ū + v̄ is unique. In particular,
there is a unique solution to (Pλ,µ) such that ū = 0 almost everywhere.

Remark 3.3.We cannot permute the role of Φ1
λ and Φ2

µ in the previous proof because Φ2
µ is

not lower semi-continuous with respect to the L2 topology. Indeed L2(Ω) is not embedded in
W 1,1(Ω).

4. Solution properties (d ≤ 2).

4.1. Structure of the solutions. Recall (see [5, 21]) that the Meyer space G(Ω) is defined
as

G(Ω) := { f ∈ L2(Ω) | ∃ϕ = (ϕ1, ϕ2) ∈ L∞(Ω,R2) f = div ϕ and ϕ · n = 0 on ∂Ω }

where n is the outer normal vector to ∂Ω. The space G is endowed with a norm denoted by
‖ · ‖G and defined as

‖f‖G = inf{‖
√

ϕ2
1 + ϕ2

2‖∞ | f = div ϕ ,ϕ · n = 0 on ∂Ω } .

We shall need the

Lemma 4.1 ( [5], Lemma 2.1). For every u ∈ BV (Ω) and g ∈ G(Ω) then

∣

∣

∣

∣

∫

Ω
u(x) g(x) dx

∣

∣

∣

∣

≤ TV (u) ‖g‖G .

We may now precise the structure of a generic solution.

Theorem 4.2. Let us denote by (ū, v̄) ∈ BV (Ω)×BH0(Ω) a solution to problem (Pλ,µ) (for
any fixed λ and µ) and set w̄ = ud − ū− v̄.

i. w̄ = ud − ū− v̄ ∈ G(Ω)
ii. If d = 2 and Ω satisfies assumption (2.1), v̄ is continuous on Ω̄.
iii. If d = 2, Ω satisfies assumption (2.1) and ud ∈ BV (Ω)∩L∞(Ω), then the jump set of

ū is included in the jump set of ud.

Proof. (i) This is a direct consequence of Theorem 3.10. Indeed w̄ ∈ λK1. Therefore, there
exists a sequence ϕn ∈ C1

c (Ω,R
2) with ‖ϕn‖∞ ≤ 1 such that wn = λdiv(ϕn) L

2-converges to
w̄. As ‖ϕn‖∞ ≤ 1 on may extract a weak-star subsequence that converges to ϕ̄ in L∞(Ω).
Therefore ϕ̄ ∈ L∞(Ω) and ϕ̄.n = 0 on ∂Ω. So, we get :

∀u ∈ D(Ω) (wn, u)L2 = λ

∫

Ω
divϕnu = −λ

∫

Ω
ϕn∇u→ −λ

∫

Ω
ϕ̄∇u.
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As (wn, u)L2 → (w̄, u)L2 this gives

(w̄, u) = −λ 〈ϕ̄,∇u〉 = λ 〈div ϕ̄, u〉 ,

in the distributional sense. Therefore w̄ = div (λϕ̄). Moreover, ϕ̄ · n = 0 on ∂Ω since ϕn as
compact support. This proves that w̄ ∈ G(Ω).

(ii) Assumption (2.1) yields that v̄ ∈ BH(Ω) is continuous (Theorem 2.2, (iii)).
(iii) With (ii), the jump discontinuity set of ud is the same as the one of ud − v̄. Moreover ū
is a solution to

min
u∈BV (Ω)

1

2
‖ud − v̄ − u‖2 + λTV (u).,

Therefore, following [[15],Theorem 3.3 ] we get the result.

Remark 4.1.The point (i) means that w̄ is an oscillating function: this is consistent with
the fact that we expect w̄ to be the noise and/or micro-textures.
The continuity of v̄ still hold if d ≥ 2. Assumptions on Ω are slightly different (see [12, 17]).

Corollary 4.1.Let us denote by (ū, v̄) ∈ BV (Ω)×BH0(Ω) a solution to problem (Pλ,µ) (for
any fixed λ and µ) and set w̄ = ud − ū− v̄. Then

∫

Ω
w̄(x) dx = 0 .

Proof. This is a direct consequence of proposition 2.1 of [5].

The previous theorem deals with the case where ud ∈ BV (Ω). This is not the case if ud
is noisy for example. In the case where ud /∈ BV (Ω) we have the following results due to W.
Ring [25].
We first consider the 1D case where Ω = (a, b). Following Proposition 4 of [25], if we assume
that

∀U open subset of (a, b) with positive Lebesgue measure(H1)

ud does not coincide on Uwith some function u ∈ BV (a, b).

then ud − v̄ satisfies H1 and we get Daū = 0 where Dau is the absolutely continuous part of
the measure Du. Let Γ be the support of the singular part of Dū. Therefore ū is piecewise
constant on (a, b)\Γ.
We have also a similar result for the 2D-case . Assume that

(H2) ∀U open subset of Ω, ud|U is not equal not a BV (Ω) function.

then ud− v̄ satisfies (H2) as well (since v̄ ∈W 1,1(Ω)). Following Proposition 6 of [25], there is

no open subset ω of Ω on which both components
∂ū

∂xi
, i = 1, 2 have constant, non-zero sign.
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4.2. Uniqueness. The functional Fλ,µ is convex but not strictly convex, because of the
degenerating direction u+v = 0. It is obvious that if (u∗, v∗) is a solution then (u∗+c, v∗−c),
where c is constant, is a solution as well. Let us call

(4.1) C(Ω) := {(u, v) ∈ BV (Ω)×BH0(Ω) |∃c ∈ R u = c and v = −c a.e on Ω }.

The question of uniqueness reduces to uniqueness up to C(Ω) functions. In other words, if
(u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ) can we show that u2 = u1 + c and
v2 = v1 − c where c is a constant function? It is still an open problem for the 2D case. We
shall discuss this point more precisely in the numerical section. Nevertheless we may give
partial results:

Proposition 4.1. Assume (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ). Then
there exists ϕ ∈ BV (Ω) ∩BH0(Ω) such that u2 = u1 − ϕ and v2 = v1 + ϕ.

Proof. Set u = u2 − u1(∈ BV (Ω)) and v = v2 − v1(∈ BH0(Ω)). As ud − u1 − v1 =
ud − u2 − v2 (this is the unique solution of the dual problem), then u + v = 0. This yields
that u = −v ∈ BV (Ω) ∩BH0(Ω) and we get the result.

Lemma 4.3. The only solutions (ū, v̄) to (Pλ,µ) that satisfies ū + v̄ = 0 are functions of
C(Ω).

Proof. Assume that ū + v̄ = 0 then ū ∈ BH0(Ω) and Φ2(v̄) = Φ2(−ū) = Φ2(ū). As
Fλ,µ(ū, v̄) ≤ Fλ,µ(u, v), for every (u, v) ∈ BV (Ω)×BH0(Ω) this yields

‖ud‖
2
L2(Ω) + 2λTV (ū) + 2µTV 2(ū) ≤ ‖ud − u− v‖2L2(Ω) + 2λTV (u) + 2µTV 2(v) .

Taking u = v = 0 gives

‖ud‖
2
L2(Ω) + 2λTV (ū) + 2µTV 2(ū) ≤ ‖ud‖

2
L2(Ω).

So we get λTV (ū) + µTV 2(ū) = 0. This implies that TV (ū) = 0 and that ū is a constant
function.

Theorem 4.4. Let be (λ, µ) nonnegative real numbers such that λ ≥ ‖ud‖G and µ ≥ C2λ
where C2 is the constant of Lemma 2.3. Then the C(Ω) functions are the only solutions to
(Pλ,µ).

Proof. Let us assume that λ ≥ ‖ud‖G and µ ≥ C2λ where C2 is the constant of Lemma
2.3. Lemma 4.1 gives

∀(u, v) ∈ BV (Ω)×BH0(Ω) |(ud, u+ v)2| ≤ λTV (u+ v)

since ud ∈ L2(Ω) and BH0(Ω) ⊂ BV (Ω). Then

|(ud, u+ v)2| ≤ λTV (u) + λTV (v) .

Lemma 2.3 gives a constant C2 (only depending on Ω) such that

∀v ∈ BH0(Ω) TV (v) ≤ C2TV
2(v) ,

so that ∀(u, v) ∈ BV (Ω)×BH0(Ω)

(4.2) |(ud, u+ v)2| ≤ λTV (u) + C2λTV
2(v) ≤ λTV (u) + µTV 2(v).
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Finally, we get for every (u, v) ∈ BV (Ω)×BH0(Ω)

1

2
‖ud‖

2 =
1

2
‖ud − u− v‖2 −

1

2
‖u+ v‖2 + (ud, u+ v)2 ≤

1

2
‖ud − u− v‖2 + λTV (u) + µTV 2(v).

This means that Fλ,µ(0, 0) ≤ Fλ,µ(u, v) : so (0, 0) is a solution to (Pλ,µ). Let (ū, v̄) ∈
BV (Ω) × BH0(Ω) be another solution to Pλ,µ. With proposition 4.1, we get ū + v̄ = 0 and
lemma 4.3 gives (ū, v̄) ∈ C(Ω). This ends the proof.

Remark 4.2.The previous theorem tells that if
µ

λ
and λ are large enough then the set of

solutions is C(Ω) . In addition, if we impose (for example) that u ∈ G (that is u has a null
mean value), then the unique solution is (0, 0) since C(Ω) ∩ (G×BH0(Ω)) = {(0, 0)}.
Eventually, we have a uniqueness result for the 1D case:

Theorem 4.5. Assume n = 1, Ω =]a, b[ and that ud satisfies assumption (H1). Then, for
every λ > 0, µ > 0 problem (Pλ,µ) has a unique solution up to a C(Ω) function.
More precisely, if (u1, v1) and (u2, v2) are two optimal solutions of (Pλ,µ) then ϕ := u2−u1 =
v2 − v1 is a constant function. In particular, problem (Pλ,µ) has a unique solution (u∗, v∗)
such that u∗ has a null mean value.

Proof. Let (u1, v1) and (u2, v2) be two optimal solutions of (Pλ,µ). Then, with proposition
4.1, there exists ϕ ∈ BV (Ω) ∩ BH0(Ω) such that ϕ = u2 − u1 = v2 − v1. If ud satisfies (H1)
then ud − vi, i = 1, 2 obviousy satisfies this assumption as well. As ui, i = 1, 2 is solution to
the ROF problem

ui = argmin

{

1

2
‖ud − vi − u‖2 +Φ1

λ(u), u ∈ L2(Ω)

}

, i = 1, 2.

then, u1, u2 and ϕ are piecewise constant on Ω. In addition ϕ = v2−v1 ∈ BH(Ω) ⊂W 1,1(Ω).
This implies that ϕ is continuous and proves that ϕ is constant.

5. Numerical aspects.

5.1. Discretized problem and algorithm. This section is devoted to numerical com-
putation (see [9]). We assume that the image is rectangular with size N × M . We note
X := RN×M ≃ RNM endowed with the usual (normalized) inner product and the associated
Euclidean norm

(5.1) 〈u, v〉X :=
1

NM

∑

1≤i≤N

∑

1≤j≤M

ui,jvi,j, ‖u‖X :=

√

1

NM

∑

1≤i≤N

∑

1≤j≤M

u2i,j .

We set Y = X×X. It is classical to define the discrete total variation with finite difference
schemes as following (see for example [6]): the discrete gradient of the numerical image u ∈ X
is ∇u ∈ Y and may be computed by the following forward scheme for instance:

(5.2) (∇u)i,j =
(

(∇u)1i,j , (∇u)
2
i,j

)

,

where

(∇u)1i,j =

{

ui+1,j − ui,j if 1 < i < N
0 if i = 1, N,

and (∇u)2i,j =

{

ui,j+1 − ui,j if 1 < j < M
0 if j = 1,M.
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Note that the constraint
∂u

∂n
= 0 is involved in the discretization process of the gradient.

Therefore, in a discrete setting, the sets K2 and K2 coincide. The (discrete) total variation
corresponding to Φ1(u) is given by

(5.3) J1(u) =
1

NM

∑

1≤i≤N

∑

1≤j≤M

∥

∥

∥
(∇u)i,j

∥

∥

∥

R2

,

where
∥

∥

∥
(∇u)i,j

∥

∥

∥

R2

=
∥

∥

∥

(

∇u1i,j,∇u
2
i,j

)∥

∥

∥

R2

=

√

(

∇u1i,j

)2
+

(

∇u2i,j

)2
.

The discrete divergence operator -div is the adjoint operator of the gradient operator ∇:

∀(p, u) ∈ Y ×X, 〈−div p, u〉X = 〈p,∇u〉Y .

To define a discrete version of the second order total variation Φ2 we have to introduce the
discrete Hessian operator. For any v ∈ X, the Hessian matrix of v, denoted Hv is identified
to a X4 vector:

(Hv)i,j =
(

(Hv)11i,j , (Hv)
12
i,j , (Hv)

21
i,j , (Hv)

22
i,j

)

.

We refer to [10, 9] for the detailed expressions of these quantities. The discrete second order
total variation corresponding to Φ2(v) writes

(5.4) J2(v) =
1

NM

∑

1≤i≤N

∑

1≤j≤M

‖(Hv)i,j‖R4 ,

with
‖(Hv)i,j‖R4 =

√

(Hv11i,j)
2 + (Hv12i,j)

2 + (Hv21i,j)
2 + (Hv22i,j)

2 .

The discretized problem stands

(5.5) inf
(u,v)∈X×X

Fλ,µ :=
1

2
‖ud − u− v‖2X + λJ1(u) + µJ2(v).

Problem (5.5) has obviously a solution ũ and ṽ that satisfies the following necessary and
sufficient optimality conditions

(5.6a) ũ = ud − ṽ −ΠλK1
(ud − ṽ) ,

(5.6b) ṽ = ud − ũ−ΠµK2
(ud − ũ) ,

where K1 and K2 are the following convex closed subsets :

(5.7a) K1 = {div p | p ∈ X2, ‖pi,j‖R2 ≤ 1 ∀i = 1, . . . , N, j = 1, . . . ,M},

(5.7b) K2 = {H∗p | p ∈ X4, ‖pi,j‖R4 ≤ 1, ∀i = 1, . . . , N, j = 1, . . . ,M},
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and ΠKi
denotes the orthogonal projection on Ki. These projections are computed with a

Nesterov-type scheme as in [27]. We refer to [9] for more details. This leads to the following
fixed-point algorithm :

Algorithme 1

Initialization step. Choose u0, v0, set 0 < α < 1/2 and n = 1.
Iteration. Define the sequences ((un, vn))n as

{

un+1 = un + α (ud − un − vn −ΠλK1
(ud − vn))

vn+1 = vn + α (ud − un − vn −ΠµK2
(ud − un)) .

Stopping test. If max(‖un+1 − un‖L2 , ‖vn+1 − vn‖L2) ≤ ε where ε > 0 is a prescribed
tolerance, or if the iterations number is larger than a prescribed maximum number itmax,
then STOP.

For any α ∈ (0, 1/2), the sequence generated by the algorithm converges to a stationary point,
solution of (5.6) that we generically denote (u∗, v∗) in the sequel. The tolerance was set to
ε = 10−2 so that the stopping criterion is de facto the maximum number of iterations itmax.
In the sequel, we have set itmax = 10 000 for the 1D case and itmax = 400 for the 2D case.
We do not report on CPU time since all tests have been done with MATLAB c© and the code
is not optimized. A parallelized C++ is version is written that reduces the computational time
significantly.

5.2. Examples. We use 1D and 2D examples.
For the first (1D) example we set s = s0+ s1+ s2 on [0,1] with s0 a white gaussian noise with
standard deviation σ = 0.02 and

s1 =

{

0.4 on [ 310 ,
6
10 ]

0 elsewhere
, s2(x) =

{

0.8x+ 0.2 on [0, 12 ]
−1.2 (x− 1) elsewhere.

Figure 5.1. 1D example - 1000 points

The second example is a 2D picture of a butterfly and the third one an highly textured
image (old wall). We used geometrical images as well but we do not report on them.
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(a) Test 2D - Butterfly (b) Test 2D - Wall

Figure 5.2. 2D examples

We present some results and comments in the next subsections1.

5.3. Initialization process. We have tested many initialization choices for algorithm. In-
deed, we have not proved uniqueness (though we conjecture it). So the computed solution is
only a stationary point. As we may have many, we may think that the initialization process
has a significant influence on the generated sequence.
More precisely, we used

• u0 = 0, v0 = ud, that we call initialization (a) in the sequel,
• u0 = ud, v0 = 0 that we call initialization (a’) in the sequel,
• u0 = 0, v0 = 0 : initialization (b),
• randomized initializations around ud mean value.

Initialization (a) (resp. (a’)) provides a stationary pair (u∗, v∗) such that u∗ (resp. v∗)
has null mean value.

Proposition 5.1.Assume u0 = 0 and v0 = ud. Then any solution (u∗, v∗) given by the

algorithm satisfies

∫

Ω
u∗ = 0. Similarly, if u0 = ud and v0 = 0, the pair (u∗, v∗) given by the

algorithm satisfies

∫

Ω
v∗ = 0.

Proof. Though we consider a discrete setting we use a continuous setting notation (using
for example a piecewise affine approximation). We first note that

w ∈ K1 ∪K2 =⇒

∫

Ω
w = 0 .

We prove the first assertion. Assume that u0 = 0 and v0 = ud. It is easy to see by induction
that

(5.8) ∀n ∈ N

∫

Ω
un = 0 and

∫

Ω
(vn − ud) = 0 .

1Complete results (text files, movies, other examples) and MATLAB c© code, are available at
http://maitinebergounioux.net/PagePro/Movies.html

http://maitinebergounioux.net/PagePro/Movies.html
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using

{

un+1 = un + α (ud − un − vn −ΠλK1
(ud − vn))

vn+1 = vn + α (ud − un − vn −ΠµK2
(ud − un)) .

Passing to the limit we get

∫

Ω
u∗ = 0 and

∫

Ω
(v∗ − ud) = 0 .

The second assertion is proved similarly.

Proposition 5.1 yields that the BV - part u∗ (or the BH- part v∗) belongs to the discrete
Meyer space G (see [7]) if we perform the appropriate initialization step. This means it is an
oscillating function. More precisely, choosing u0 = ud, v0 = 0 gives a BH- part that belongs
to G. This is not what we want, since the BH- part should not be oscillating. Therefore, we
shall never use such an initialization.
Initializations (a) and (a’) seem to give different results from initialization (b). We shall see
in the sequel that the difference is small if the iteration number is large enough. Therefore,
we think that the initial guess has no influence on the result, but only on the convergence
speed.
We can see on Figure 5.3 (1D example) the oscillating effect of initialization u0 = 0, v0 = ud:

(a) Initialization u0 = 0, v0 = ud (b) Initialization u0 = 0, v0 = 0

Figure 5.3. Example 1D without noise, λ = 10−2, µ = 5 10−2 and different initializations. Both u∗ and
w∗ have null mean value for init (a). We recover the original decomposition with init (b).

Figure 5.4 and Table 1 gives the computed pairs with initializations (a) (a’) (b) and a
randomized initialization around the mean value of ud.
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Initialization Fλ,µ(u
∗, v∗) ‖w∗‖L2 TV (u∗) TV 2(v∗) Error # it.

λ = 1, µ = 10

u0 = 0, v0 = ud 23.68 1.04 12.70 1.04 2.35 400
u0 = ud, v0 = 0 18.29 1 13.43 0.43 0.73 400
u0 = 0, v0 = 0 20.36 1.03 12.87 0.69 0.89 400

Random 20.39 1.03 12.88 0.69 0.87 400

λ = 2, µ = 0.1

u0 = 0, v0 = ud 1.5414 2.24 e-01 3.64 e-04 15.15 8.48 e-03 22
u0 = ud, v0 = 0 8.0239 2.76 e-01 3.31 13.52 4.35 400
u0 = 0, v0 = 0 3.3335 2.45 e-01 0.92 14.65 3.12 400

Random 3.5384 3.18 e-01 1.02 14.62 3.30 400

λ = 5, µ = 7

u0 = 0, v0 = ud 61.7005 4.22 5.71 3.45 1.67 400
u0 = ud, v0 = 0 62.7803 4.02 7.29 2.60 3.25 400
u0 = 0, v0 = 0 61.6248 4.15 6.34 3.04 1.50 400

Random 61.6331 4.15 6.35 3.04 1.55 400

λ = 7, µ = 7

u0 = 0, v0 = ud 69.6775 5.23 2.29 5.69 9.76 e-01 400
u0 = ud, v0 = 0 72.6262 4.96 4.09 4.51 4.74 400
u0 = 0, v0 = 0 70.2957 5.13 2.97 5.19 2.45 400

Random 70.3114 5.12 2.98 5.18 2.52 400

λ = 7, µ = 9

u0 = 0, v0 = ud 79.7064 5.42 4.10 4.03 1.33 400
u0 = ud, v0 = 0 80.1229 5.18 5.40 3.33 4.09 400
u0 = 0, v0 = 0 79.8224 5.33 4.58 3.72 1.86 400

Random 79.8297 5.33 4.58 3.72 1.89 400

λ = 10, µ = 15

u0 = 0, v0 = ud 116.2130 7.04 3.59 3.69 1.39 400
u0 = ud, v0 = 0 116.9598 6.79 4.33 3.36 4.67 400
u0 = 0, v0 = 0 116.0822 6.95 3.83 3.56 2.02 400

Random 116.0918 6.95 3.84 3.56 2.10 400
Table 1

Comparison of different initializations (Butterfly )- itmax=400 -The stationary pair is denoted (u∗, v∗) and
w∗ = ud − u∗ − v∗.

The blue (grey) lines of Table 1 show the optimal solution, that is the computed pair
whose cost functional value is the lowest. We observed that

• the randomized initialization gives the same result as initialization (b),
• the component w∗ = ud − u∗ − v∗ is always the same, which is consistent with the

theoretical result of uniqueness,
• the values of the cost functional may be quite close and the computed pairs quite

different: see for example λ = 5, µ = 7 (and figure 5.4),
• initialization (b) gives a pair (ub, vb) such that neither ub nor vb has null mean value.
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(a) u0 = 0, v0 = ud (b) u0 = ud, v0 = 0 (c) u0 = 0, v0 = 0 (d) Random

(e) u0 = 0, v0 = ud (f) u0 = ud, v0 = 0 (g) u0 = 0, v0 = 0 (h) Random

Figure 5.4. BH-part v (first line) and BV -part u (second line) given by initializations (a), (a’), (b) and
random for λ = 5, µ = 7 - Butterfly example with 400 iterations

In the sequel, (ua, va) denotes the pair given by the algorithm with initialization (a) and
(ub, vb) the one given by the algorithm with initialization (b). Moreover, we set the signed
relative error as

(5.9) δFλ,µ =
Fλ,µ(ua, va)− Fλ,µ(ub, vb)

min(Fλ,µ(ua, va), Fλ,µ(ub, vb))
.

(a) δFλ,µ(λ, µ) (b) δFλ,µ(0.1, µ) (red dotted line) -
δFλ,µ(λ, 0.1)(blue solid line)

Figure 5.5. Behavior of δFλ,µ for 400 iterations (Butterfly example). If λ and µ are large enough (λ > 0.1
and µ > 0.1 for example), both optimal values are very close.

Figure 5.5 shows the behavior of δFλ,µ with respect to λ and µ.
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# it. Fλ,µ(ua, va) Fλ,µ(ub, vb) |δFλ,µ|

50 82.38439 81.69328 8 e-03
100 80.9555 80.9579 3 e-05
200 80.18443 80.35509 2 e-03
400 79.83481 79.94497 1.3 e-03
600 79.73564 79.80224 8 e-04
800 79.68948 79.73411 5.6 e-04
1000 79.66213 79.69571 4.2 e-04
1200 79.64396 79.67121 3.4 e-04
1500 79.62567 79.64659 2.6 e-04
5000 79.5738 79.5718 2.5 e-05

# it. TV (ua) TV (ub) TV (ϕ) TV 2(va) TV 2(vb) TV 2(ϕ) Error (a) Error (b)

50 2.45 5.62 3.57 5.40 3.20 4.05 7.41 7.14
100 3.29 5.31 2.53 4.69 3.33 2.82 4.88 5.03
200 3.85 4.93 1.66 4.23 3.52 1.87 2.87 3.26
400 4.12 4.60 1.03 4.01 3.70 1.18 1.34 1.87
600 4.19 4.47 0.771 3.95 3.77 0.896 1.02 1.32
800 4.22 4.40 0.628 3.93 3.81 0.736 0.855 1.03
1000 4.23 4.37 0.536 3.92 3.83 0.632 0.735 0.845
1200 4.24 4.35 0.470 3.91 3.84 0.556 0.642 0.723
1500 4.24 4.33 0.396 3.90 3.86 0.472 0.535 0.595
5000 4.28 4.26 0.148 3.88 3.89 0.180 0.207 0.208

Table 2
Cost functional, TV and TV 2 for pairs given by initializations (a) and (b) and λ = 7, µ = 9, as the

number of iterations increases. Here ϕ = ub − ua = vb − va and the error is given by the stopping criterion of
Algorithm.

Though Fλ,µ(ua, va) ≃ Fλ,µ(ub, vb) the pairs (ua, va) and (ub, vb) may be very different.
More precisely, we have ub = ua − ϕ and vb = va + ϕ. Though the computed function ϕk

at iteration k is not a constant function (see Figure 5.6), we infer that ϕk converges to a
constant function as the iteration number increases. Indeed, we have numerically observed
(see Table 2) that both TV (ϕ) and TV 2(ϕ) decreases to 0 as the iteration number increases.
Nevertheless, we can perform only a limited number of iterations. So the computed solutions
differ from a (small) piecewise constant function (see Figure 5.6). In addition, it is numerically
confirmed that wa = ud − ua − va = wb (what was theoretically proved).
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(a) va - init : u0 = 0, v0 = ud (b) ua - init : u0 = 0, v0 = ud

(c) vb - init : u0 = 0, v0 = 0 (d) ub - init : u0 = 0, v0 = 0

(e) Norm of ub gradient (f) wb = wa

(g) ϕ = ub − ua = va − vb (h) Norm of ϕ gradient

Figure 5.6. Difference between the solutions given by initializations (a) and (b) for λ = 7, µ = 9 -
5000 iterations . ‖ϕ‖2 = 0.1518, TV (ϕ) = 0.1484, TV 2(ϕ) = 0.1803. The function ϕ seems to be piecewise
constant as we see it on the gradient norm.
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5.4. Convergence. We chose α = 0.25 in the fixed point algorithm and we always ob-
served convergence. We set the maximal number of iterations quite large but we noticed that
the solution is satisfactory with less iterations (400 for 2D case and 1000 for 1D case).

# it. Fλ,µ(ua, va) Fλ,µ(ub, vb) |δFλ,µ|

λ = 1, µ = 10

50 39.132 25.513 5 e-01
100 31.727 23.113 3.7 e-01
200 26.907 21.440 2.5 e-01
400 23.711 20.377 1.6 e-01
600 22.410 19.978 1.2 e-01
800 21.688 19.774 9.6 e-02

λ = 10, µ = 15

50 119.448 117.102 2 e-02
100 117.578 116.601 8.3 e-03
200 116.612 116.257 3 e-03
400 116.215 116.083 1.1 e-03
600 116.106 116.031 6.5 e-04
800 116.052 116.006 4 e-04

λ = 10, µ = 2

50 25.90989 39.586 5.2 e-01
100 25.91003 33.501 2.9 e-01
200 25.91008 29.512 1.4 e-01
400 25.91009 27.558 6.3 e-02
600 25.91009 26.986 4.1 e-02
800 25.91009 26.699 3 e-02

# it. TV (ua) TV (ub) TV (ϕ) TV 2(va) TV 2(vb) TV 2(ϕ) Error (a) Error (b)

λ = 1, µ = 10

50 10.73 12.12 3.98 2.74 1.27 2.19 14.58 6.51
100 11.81 12.51 3.13 1.92 1 1.50 8.30 3.33
200 12.39 12.74 2.47 1.39 0.81 1.09 4.39 1.72
400 12.70 12.87 1.96 1.04 0.69 0.82 2.37 0. 90
600 12.80 12.92 1.70 0.9 0.65 0.70 1.53 0.58
800 12.85 12.94 1.53 0.83 0.63 0.63 1.09 0.42

λ = 10, µ = 15

50 2.59 4.83 2.74 4.42 3.09 3.14 9.04 9.33
100 3.19 4.44 1.85 3.98 3.27 2.14 5.29 6.17
200 3.48 4.07 1.18 3.77 3.45 1.39 2.49 3.77
400 3.59 3.83 0.73 3.69 3.56 0.87 1.39 2.03
600 3.61 3.76 0.55 3.67 3.60 0.67 1.08 1.40
800 3.62 3.72 0.45 3.67 3.62 0.54 0.87 1.07

λ = 10, µ = 2

50 8.937 e-03 1.619 1.619 11.214 9.88 1.80 1.15 e-02 18.18
100 8.951 e-03 8.948 e-01 8.94 e-01 11.214 10.566 9.62 e-01 4.72 e-03 12.92
200 8.956 e-03 4.116 e-01 4.11 e-01 11.214 11.010 3.35 e-01 1.93 e-03 8.92
400 8.957 e-03 1.804 e-01 1.80 e-01 11.214 11.183 6.05 e-02 9.30 e-04 4.48
600 8.957 e-03 1.180 e-01 1.17 e-01 11.214 11.207 1.54 e-02 6.23 e-04 2.54
800 8.957 e-03 8.841 e-02 8.77 e-02 11.214 11.212 6.4 e-03 4.42 e-04 1.77

Table 3
Sensitivity with respect to number of iterations. Here ϕ = ub − ua = vb − va and the error is given by the

stopping criterion of Algorithm. On can refer to Table 2 as well.
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(a) BV part - λ = 1, µ = 10 (b) BV part - λ = 10, µ = 15 (c) BV part -λ = 10, µ = 2. In
this case u ≃ 0

(d) ϕ - λ = 1, µ = 10 (e) ϕ - λ = 10, µ = 15 (f) ϕ -λ = 10, µ = 2

Figure 5.7. BV component ua and ϕcorresponding to Table 3 - 800 iterations

Figure 5.8 illustrates the generic behavior of the cost-functional Fλ,µ.
2

(a) Init (a) : u0 = 0, v0 = ud (b) Init (b) : u0 = 0, v0 = 0 (c) Zoom 75-100 iterations

Figure 5.8. Behavior of the cost functional for λ = 7, µ = 9, 100 iterations- Dotted (blue) line is
initialization (a) and solid (red) line is initialization (b)

2One can look at http://maitinebergounioux.net/PagePro/Movies.html to see the convergence process.

http://maitinebergounioux.net/PagePro/Movies.html 
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(a) BV part u - 800 iterations (b) Absolute difference of BV parts between
it 400 and it 800

(c) BH part v - 800 iterations (d) Absolute difference of BH parts between
it 400 and it 800

(e) L2- part w - 800 iterations (f) Absolute difference of L2- parts between
it 400 and it 800

Figure 5.9. Test 2D - Initialization (b) for λ = 10, µ = 15- Difference between the computed pairs at
iteration 400 and iteration 800.



28 M. Bergounioux

5.5. Sensitivity with respect to sampling and quantification. Table 4 and Figure 5.10
show that the model is robust with respect to sampling. Here, we have discretized the ana-
logical signal of example 1D with 103, 104 and 105 points respectively.

λ µ Fλ,µ(ub, vb) ‖wb‖L2 TV (ub) TV 2(vb)

103 points 103 points 103 points 103 points
104 points 104 points 104 points 104 points
105 points 105 points 105 points 105 points

1e -03 1 e-02 6.47 e-06 1.43 e-03 5.01 e-03 4.28 e-05
5.78 e-06 1.47e-03 4.37 e-03 3.19 e-05
5.73 e-06 1.5 e-03 4.34 e-03 3.09 e-05

1e-03 1 4.86 e-05 1.43 e-03 5.01 e-03 4.25 e-05
3.73 e-05 1.47 e-03 4.37 e-03 3.18 e-05
3.63 e-05 1.47 e-03 4.34 e-03 3.09 e-05

1e -02 1e-01 3.27 e-05 5.07 e-03 8.80 e-04 1.10 e-04
2.62 e-05 5.16 e-03 1.81 e-04 1.10 e-04
2.52 e-05 5.24 e-03 7.26 e-05 1.08 e-04

1e -02 1 1.32 e-04 5.07 e-03 8.80 e-04 1.10 e-04
1.26 e-04 5.16 e-03 1.81 e-04 1.10 e-04
1.22 e-04 5.24 e-03 7.26 e-05 1.08 e-04

1e-01 1e-01 1.01 e-04 6.90 e-03 5.43 e-04 2.32 e-04
3.71 e-05 5.53 e-03 8.74 e-05 1.30 e-04
2.73 e-05 5.38 e-03 1.20 e-05 1.16 e-04

Table 4
Test 1D (with noise) - sensitivity with respect to sampling - Initialization (b) (u0 = v0 = 0) and 10 000

iterations

(a) 103 points

(b) 104 points

Figure 5.10. Test 1D (with noise) - Pair given by initialization (b) for λ = 0.1, µ = 1, 10 000 iterations
and different samplings.
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We now investigate the sensitivity of the model with respect to quantification. Let ud a
data (with values in [0, 255] for example). Let (λ, µ) be chosen parameters and (uλ,µ, vλ,µ) the
corresponding computed pair (with the appropriate initialization). Let α > 0 and consider
the new data αud. This is the case, for example, if we get 16 bits images and convert them
to 8 bits : in this case α = (28 − 1)/(216 − 1). We may want to normalize the data as well:
in this case α = 1/max(ud). The question is to know what new parameters (λ̃, µ̃) must be
chosen to get uλ̃,µ̃ = αuλ,µ and vλ̃,µ̃ = αvλ,µ . For any (uλ,µ, vλ,µ) solution to (Pλ,µ), we get

Fλ,µ(uλ,µ, vλ,µ) =
1

2
‖ud − uλ,µ − vλ,µ‖

2 + λTV (uλ,µ) + µTV 2(vλ,µ)

=
1

2α2
‖αud − αuλ,µ − αvλ,µ‖

2 +
λ

α
TV (αuλ,µ) +

µ

α
TV 2(αvλ,µ)

=
1

α2

(

1

2
‖αud − u

λ̃,µ̃
− v

λ̃,µ̃
‖2 + αλTV (u

λ̃,µ̃
) + αµTV 2(v

λ̃,µ̃
)

)

=
1

α2
Fλ̃,µ̃(uλ̃,µ̃, vλ̃,µ̃) with

λ̃ = αλ and µ̃ = αµ.

α 1/255 100

λ = 7, µ = 9 Initialization (a)

‖uαλ,αµ − αuλ,µ‖∞/α 3.0291e-01 3.0291e-01

‖vαλ,αµ − αvλ,µ‖∞/α 3.1291e-01 3.1291e-01

λ = 7, µ = 9 Initialization (b)

‖uαλ,αµ − αuλ,µ‖∞/α 1.8006e-01 1.8006e-01

‖vαλ,αµ − αvλ,µ‖∞/α 1.7924e-01 1.7924e-01

λ = 10, µ = 2 Initialization (a)

‖uαλ,αµ − αuλ,µ‖∞/α 8.0280e-15 8.4421e-15

‖vαλ,αµ − αvλ,µ‖∞/α 1.1324e-13 1.4552e-13

λ = 10, µ = 2 Initialization (b)

‖uαλ,αµ − αuλ,µ‖∞/α 3.9216e-03 4.5475e-14

‖vαλ,αµ − αvλ,µ‖∞/α 1.1324e-13 1.0914e-13

Table 5
Sensitivity with respect to quantification- Initialization (b) - itmax = 400

5.6. Sensitivity with respect to parameters. As mentioned before the computed station-
ary pair depends on the initialization guess via the convergence speed. We consider three
cases and we illustrate them on test 2D (Butterfly).

• If µ << λ, then initialization (a) : u0 = 0 and v0 = ud is the best choice to make the
algorithm converge quickly. So we use this initialization to get the solution (u∗, v∗). In
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this case, theBV part is close to 0. However, we note that if we fix µ then TV (u∗(λ, µ))
decreases to 0 and TV 2(v∗(λ, µ)) increases to become constant (see Figure 5.11) when
λ → +∞. This means that if λ is large then u∗ is constant. As we know that u∗ has
a null mean value, then u∗ = 0. This is consistent with theorem 4.4.

(a) ‖w∗‖L2 (b) TV (u∗) (c) TV 2(v∗)

Figure 5.11. Generic L2- norm, TV and TV 2 behavior (µ fixed ) 400 iterations - Example 2D (Butterfly).

On can see an example on Figure 5.7 for λ = 10, µ = 2 and Figure 5.12.

(a) L2 part (b) BV part (c) BH part

Figure 5.12. λ = 7, µ = 5 - initialization u0 = 0 and v0 = ud , 400 iterations

• If µ ≃ λ, both initializations seem equivalent. For the Butterfly test, init (a) remains
slightly faster (in this case the minimum value of cost functional is achieved first) while
it is the converse for the Wall test and small values of λ. Figures 5.13 and 5.14 show
the behavior of the cost functional, L2- norm, TV and TV 2 for both initializations
and λ = µ ∈ [0.5, 1, 2, 3 · · · 25]. We report the behavior of cost functional, L2- norm,
TV and TV 2 in Table 6
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λ = µ Fλ,λ ‖wa‖2 TV (ua) TV 2(va) Error

0.5 6.3577 1.459 e-03 4.685 7.646 4.13 e-01

1 12.2448 2.655 e-03 4.756 6.853 5.19 e-01

5 52.4043 9.654 e-03 3.020 5.782 5.83 e-01

10 93.2718 1.562 e-02 1.733 5.395 5.59 e-01

13 114.9198 1.835 e-02 1.268 5.237 5.11 e-01

17 141.3794 2.128 e-02 8.506 e-01 5.066 4.78 e-01

21 165.9126 2.357 e-02 5.768 e-01 4.940 4.36 e-01

25 188.8569 2.537 e-02 3.941 e-01 4.840 3.86 e-01
Table 6

Cost functional, L2- norm, TV and TV 2 for λ = µ = 0.5, 1, 2, 3 · · · 25- init (a) - 800 iterations - Butterfly

(a) Cost functional (b) ‖w∗‖L2

(c) TV (u∗) (d) TV 2(v∗)

Figure 5.13. Cost functional, L2- norm, TV and TV 2 for λ = µ = 0.5, 1, 2, 3 · · · 25 - Dotted (blue) line is
initialization (a) and solid (red) line is initialization (b) - 800 iterations - Butterfly test

(a) TV (u∗) (b) TV 2(v∗)

Figure 5.14. TV and TV 2 for λ = µ = 0.5, 1, 2, 3 · · · 25 - Dotted (blue) line is initialization (a) and solid
(red) line is initialization (b) - 800 iterations - Wall test
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• If λ << µ, then we choose initialization (b) : u0 = 0 and v0 = 0 to get the solution.
The behavior is similar to the case µ < λ: if we fix λ, then TV (u∗(λ, µ)) increases
to a constant value and TV 2(v∗(λ, µ)) converges to 0 as µ → +∞ (see figure 5.15).
This means that if µ is large enough then solution is always the same : v∗ is an affine
fonction.

(a) ‖w∗‖L2 (b) TV (u∗) (c) TV 2(v∗)

Figure 5.15. Generic L2- norm, TV and TV 2 behavior - (λ fixed ) 400 iterations - Example 2D (Butterfly).

Examples of solutions are given in Figures 5.4, 5.7 and 5.9. We give another example
below on a textured image:

(a) L2- part λ = 1, µ = 5 (b) L2- part λ = 5, µ = 10 (c) L2- part λ = 10, µ = 20

(d) BV part λ = 1, µ = 5 (e) BV part λ = 5, µ = 10 (f) BV part λ = 10, µ = 20

Figure 5.16. BV and L2 components with λ < µ - 800 iterations - Wall example



Mathematical analysis of a second order variational model 33

λ µ Fλ,µ(u
∗, v∗) ‖w∗‖L2 TV (u∗) TV 2(v∗)

1 5 21.6334 4.270 e-03 18.453 3.868 e-01

5 10 87.2937 1.759 e-02 10.402 1.413

10 20 152.5461 2.854 e-02 4.922 2.382
Table 7

Wall- example, initialization u0 = 0, v0 = 0 - 800 iterations

6. Conclusion . The model is well adapted to texture extraction. In the case, where the
data is noiseless and/or is not too much textured, the decomposition given par λ - µ and
initialization u0 = v0 = 0, gives a cartoon part which is piecewise constant as expected. This
means that u =

∑

i ui1Γi
where

⋃

i Γi is the contour set. In this case, the remainder L2

term is the texture and/or noise. The decomposition is robust with respect to quantification,
sampling and is always the same for any µ >> λ, once λ has been chosen.

In the case where the image is highly textured the model provides a two-scale decompo-
sition. The TV part represents the macro-texture and the L2 part the micro-texture and/or

noise. The scaling is tuned via the ratio ρ =
λ

µ
.

The notion of highly textured may be quantified par the G-norm. In our 2D examples, the
butterfly G norm was ≃ 7.71 and the wall one was ≃ 4.92.

Figure 6.17 shows the behavior of the different components with respect to λ and µ. We
have chosen the 1D noiseless case, to see the multi-scale effect on components u and w when
µ < λ (init (a)).

(a) λ = 5 10−3, µ = 10−3- (init (a)) (b) λ = 5 10−3, µ = 10−2- (init (b))

Figure 6.17. Test 1D without noise (1000 points)

Moreover, the initialization process has no influence on the solution (up to a constant
function) but rather on the algorithm speed. The choice has to be made with respect to the
parameters: roughly speaking, if λ < µ we choose u0 = 0, v0 = 0 and if λ ≥ µ we choose
u0 = 0, v0 = ud. Finally, we have observed (numerically) that the L2-component w is unique.

Our next issue is to speed up the algorithm and set an automatic parameter tuning with
respect to data properties (G norm, Signal to Noise Ratio , and so on.) From the theoretical
point of view, we infer that problem (Pλ,µ) has a unique solution (up to C(Ω)) functions but
the question is still open.
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[8] M. Bergounioux, On poincaré-wirtinger inequalities in bv - spaces, Control & Cybernetics, 4 (2011),
pp. 921–929.

[9] M. Bergounioux and L. Piffet, A second-order model for image denoising, Set-Valued Var. Anal., 18
(2010), pp. 277–306.

[10] , A full second order variational model for multiscale texture analysis, Computational Optimization
and Applications, 54 (2013), pp. 215–237.

[11] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010),
pp. 492–526.

[12] M. Carriero, A. Leaci, and F. Tomarelli, Special bounded hessian and elatsic-plastic plate, Rend.
Ac. Naz delle Scienze, XVI (1992), pp. 223–258.

[13] , Uniform density estimates for the blake & zisserman functional, Discrete and Continuous Dynam-
ical Systems, 31 (2011), pp. 1129–1150.

[14] , Free gradient disconitnuity and image inpainting, J. Math. Sciences, 181 (2012), pp. 805–819.
[15] V. Caselles, A. Chambolle, and M. Novaga, The discontinuity set of solutions of the tv denoising

problem and some extensions, SIAM Multiscale Model. Simul., 6 (2007), pp. 879–894.
[16] A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical

Imaging and Vision, 20 (2004), pp. 89–97.
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