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Abstract

The atomically flat surface of graphene provides an opportunity to apply carbon-carbon bond-forming
chemical reactions to engineer the electronic properties of graphene circuitry. In particular, covalent
functionalization of the surface or the edge of graphene ribbons provides a novel way to introduce patterning
that can modulate the energy band gap, affect electron scattering, and direct current flow by producing
dielectric regions in a graphene wafer. We discuss the use of Raman spectroscopy and scanning tunneling
microscopy to characterize the surface functionalization periodicities and densities that have been produced
by the chemical derivatization of epitaxial graphene together with the concomitant changes in the electronic
and magnetic properties of the graphene surface layer.



The construction of electronic circuitry based on the conjugated graphene lattice
depends on the development of methods for nanopatterning of graphene wafers.!
Most obviously this would allow the fabrication of individual devices and wiring
within the graphene wafer in the same way that a silicon wafer is patterned in a
semiconductor foundry. In the case of graphene, however, the patterning is
necessary to develop a band gap; in a perfect graphene sheet the valence and
conduction bands touch at the Fermi level, and thus such structures cannot be
efficiently switched to a low conductance state and the application of a gate voltage
produces small changes in the device output.23

Graphene band gap engineering efforts are mainly focused on the use of lithographic
methods to dice the graphene lattice into nanoribbons which physically confine the
carriers.*® However, the lithography process involves high-energy electron beams
that has been shown to alter the intrinsic chemical structure of graphene.” The
demonstration that physical methods can open a band gap in graphene has also led
to efforts in synthesizing graphene nanoribbons.8-10

We have focused on the application of chemistry to engineer a band gap into
graphene;1112 covalent carbon-carbon bond formation reactions can be used to
change the hybridization of the graphitic atoms from sp2 to sp3 to modify the
conjugation length of the delocalized carbon

lattice. Such chemistry has been shown to be effective in modifying the electronic
structure of single-walled carbon nanotubes (SWNTSs), and these side-wall reactions
serve to introduce a band gap in metallic SWNTs.13.14

Here we show that the covalent functionalization discussed above produces
characteristic and clearly discernible modifications to the Raman spectra of
graphene. The inplane vibrations of the conjugated m-bonds have characteristic
Raman spectrum when excited with visible light, and we show that the frequency of
the Raman D-band as a result of the chemical functionalization on the graphene basal
plane is distinct from that due to localized, structural defects in sp? conjugated
carbon. We show that this characteristic is found in exfoliated as well as epitaxial
graphene and identify the distinguishing features between the different forms of
graphitic carbon. The observations are interpreted as a demonstration of the
application of covalent bond forming chemistry to affect the conjugation length and
periodicity in graphene that results in the ~0.4 eV band gap measured using angle-
resolved photoelectron spectroscopy (ARPES).1516

We begin by discussing the functionalization of exfoliated graphene because it gives
rise to the simplest spectra; we found that the same functionalization scheme that we
employed with epitaxial graphene wafers11 is also effective in derivatizing exfoliated
graphene on silicon substrates. The reaction occurs by spontaneous electron transfer
from graphene to p-nitrobenzenediazonium tetrafluoroborate, which ultimately
leads to the formation of a C-C bond between graphene and the nitrophenyl group;



the hybridization of the graphene carbon atom is changed to sp3in the process
(Figure 1a).11

The Raman spectrum of single layer graphene (1-LG) has two characteristic peaks,
the G-peak, which is due to the E2g vibrational mode of sp2 bonded carbon and is
observed at 1580 cm1, and the 2D peak (sometimes referred to as G’) at 2670 cm-1,
which is a second order vibration caused by the scattering of phonons at the zone
boundary;17.18 the intensity of the 2D peak is about three times the intensity of the G
band (Figure 1b). After the chemical reaction, the D-band at 1336 cm! becomes the
most prominent feature of the Raman spectrum (Figure 1b) and the characteristic 2D
band intensity is significantly reduced. The D-band is due to the A1g mode breathing
vibrations of six-membered sp2 carbon rings, and becomes Raman active after
neighboring sp2 carbons are converted to sp3 hybridization in graphitic materials.

Polycyclic aromatic hydro-carbons show Raman Alg mode peaks at ~1300 cm™! and
Eg modes at ~1500 cm-1;1°% however, these structures have not been experimentally
relevant as graphene derivatives before the current work. The observation of the D-
band is accompanied by the D* band at 1615 cm-! and the D + D* band around 2930
cm-1 In the product, the 2D band is a single peak at 2670 cm-! but the fwhm is 41 cm-
1 compared to 26 cm'! in graphene. In graphene and graphitic materials, the
widening of the 2D peak is associated with a frequency blue shift of 20-30 cm-!
(graphene to graphite), and it is related to interlayer electronic interactions, splitting
into two peaks in graphite and four peaks in bilayer graphene.l” We note that under
identical conditions HOPG samples did not give the same results and it appears that
the product structure responsible for the Raman features described above are
specific to graphene; in fact, even bilayer graphene (2-LG) samples behave
differently.20.21

In the bilayer graphene sample (Figure 1c), the 2D band can be fitted with four
Lorentzians (Figure 1c inset). The D, D*, D + D* bands in the product are broad and
weak although they are observed at the same frequency as in the 1-LG samples
(Figure 1d). The 2D band intensity is apparently reduced in the product (Figure
1b,c); a similar decrease in the 2D band intensity was previously ascribed to p-type
doping of graphene which changes the resonance condition characteristic of the
transition.22 The intensity of the band at 1510 cm ! (Figure 1d) was found to
increase with the D-band intensity and therefore is associated with graphene in-
plane vibrations but the bands at 1339 and 1442 cm-lmay originate from vibrations
of the nitrophenyl ring.21-23

Epitaxial graphene grown either on the Si-face or on the C-face of hexagonal SiC may
have domains of misoriented (rotationally disordered) and Bernal-stacked
graphene.2426 As shown in Figure 2a inset, domains can be visualized as shades of
gray in an optical microscope but the length scales over which the Raman spectrum
varies is much smaller than the optical images and hence it is difficult to visually
predict the Raman spectrum of an epitaxial graphene sample in the same manner as
is possible for exfoliated samples. Typically, the brighter regions in the image show



spectra similar to Figure 2b and the darker regions show spectra similar to Figure 2Zc.
A Raman spectrum with G band intensity greater than the 2D band intensity is the
characteristic of Bernal stacking. In Figure 2b (inset), the 2D band has been fitted to
four Lorentzians (2680, 2705, 2724, and 2746 cm! with fwhm of 50, 21, 35, and 22
cm1, respectively), resembling a Bernal-stacked 2-LG electronic structure, similar to
that in Figure 1c. The G band at 1586 cm-1, however, has a fwhm of 15 cm-1, which is
significantly narrower than that of graphite. Figure 2c shows the other characteristic
Raman spectrum observed in our epitaxial graphene samples, which resembles the
spectrum of graphene in Figure 1b, except, the G band observed at 1586 cm! has a
fwhm of 14 cm! and the 2D band at 2701 cm'! has a fwhm of 18 cm-1.

The two regions represented in Figure 2b,c can be considered as the extremes in the
three-dimensional spatial distribution (on the surface as well as in the c-axis
direction) of G and 2D band intensities over the 3.5 mm x 4.5 mm epitaxial graphene
wafers. This distinguishes the Raman characteristics of epitaxial graphene from
graphene and graphite. When the graphene layers are misoriented, it has been
shown that the band structure can be treated as that of a single layer graphene.2527.28
As in the exfoliated samples, the D-band is the most prominent peak in nitrophenyl
(NP) functionalized epitaxial graphene but it is observed at an even lower energy
between 1320-1330 cm! and the D* (1601 cm1) and D + D* bands appear
simultaneously.

Transport measurements and theoretical calculations imply the presence of an
energy band gap in sp3 functionalized graphene,11.1229 and thus we investigated the
effect of nitrophenyl functionalization on epitaxial graphene using angle-resolved
photoemission spectroscopy (ARPES); Figure 3a shows the band structure at the
graphene K-point. Although the spectra are diffuse, two clear bands are seen;

the presence of multiple bands in Figure 3a are the result of two different rotated
graphene sheets in the 40 pm ARPES beam normally associated with thick C-face
graphene films.11 After NP-functionalization the linear bands of graphene have been
transformed into massive bands shifted approximately 0.36 eV below the Fermi
level. Constant energy cuts (Figure 3b) clearly show that a gap has opened in the film.
Because ARPES only measures filled states below the Fermi level, it is not possible to
precisely determine the gap energy without doping the sample.1® Nonetheless, the
lower limit on the band gap is conservatively estimated as 0.36 eV; this gap is
comparable to that observed for atomic hydrogen doped graphene on Ir(111).30

Intense and sharp D-bands as shown in Figures 1b and 2a have previously been
reported in graphene nanoribbons and in functionalized exfoliated graphene
samples.”21.31-33 The frequency of the D-band in these samples is around 1340 cm!
with Agx = 532 nm and around 1350 cm-1 with Agx = 514 nm; the D-band frequency
shifts with the excitation energy (60 cm-1/eV).34 Disordered exfoliated samples,
defects in pristine epitaxial graphene samples, and nanodiamond show a D-band
between 1342-1347 cm! in our experiments. In physically defective graphitic
materials, the ratio of the D and G band integrated intensities (In/I¢) has been found
to depend on the crystallite size (La),3>3¢ and this correlation has been extensively



explored; in the original work the following relationship was reported: In/Ic = CL(A)/
La, where C.(A) ) 4.4 nm for A = 488 nm.35 A more recent analysis found Ip/I¢ =
C.(A)/LD, where C.(A) = 11 nm for A = 514 nm and Lp is the average distance
between defects; Lp = 6-1/2, where o is the defect density.3” However, it is now
recognized that the dependence of the intensities Ip/I¢ on the crystallite sizes La is
quite complex and the above equations only describe this relationship in the regime
of large crystallite sizes, La > 5-20 nm.3637 At small values of La, the strength of the D-
mode depends on the occurrence of conjugated six-membered rings in the graphitic
structure, and in this regime the relationship Ip/Ic= Cs(A)Lp2 was proposed in which
Cs(A) = 0.55 nm2 for A = 514 nm.36:37

We previously estimated the saturation density of NPfunctionalized epitaxial
graphene as~1015 molecules/cm?;1! this is equivalent to a surface coverage of
nitrophenyl groups in which ~20% of the graphene carbon atoms are functionalized
(converted to sp3 hybridization).12 Thus the density of sp3 carbon atoms is ¢ ~
8/nm?, which gives Lp ~ 0.35 nm and thus application of the equation Ip/Ic=Cs(A)Lp 2
(with Cs(A) = 0.55 nm-2),36.37 gives Ip/Ig= 7 X 10-2 in obvious disagreement with our
results; In/Ig= 2.6 for NP-functionalized exfoliated graphene as shown in Figures 1
and 4; In/Ig= 2.6 and 3.3 for NP-functionalized epitaxial graphene in Figures 2 and 4,
respectively. We conclude that the chemically functionalized graphene that we
discuss above is entirely distinct from the physically defective material that has been
considered in the past. In fact, an analysis of ion induced damage to graphene,
concludes that the defects themselves have a structurally disordered region of
radius, rs = 1 nm, which in turn activates the D-band in a surrounding region of
radius, ra = 3 nm;37 obviously the chemically induced modifications of the structure
that we discuss occur on a much smaller length scale.

Thus we turned to an analysis of hydrogenated amorphous carbon (a-C:H);36 this
material provides a more appropriate model for the chemistry that we have
employed in that it contains sp3 hybridized C-H groups as a result of the saturation of
spz2 carbon atoms by addition of hydrogen atoms which serves to open a band gap;
this behavior is very similar to our process (above) and strongly related to the
production of graphane.7,30,32 Furthermore as the sp3 content increases in (a-C:H),
the band gap increases,36 as noted in covalently functionalized graphene in both
experimental7,12,30,32 and theoretical investigations.29 We took selected data from the
analysis of (a-C:H)3e and plotted the reciprocal of the fractional sp3 content [F(sp3)]
against In/Ic (Supporting Information Figure S1), which allowed us to derive the
following relationship: In/Ic = 0.65/F(sp3) (see Figure 4, inset), or Ip/I¢ = Cc(A)Lp 2
(with Cc(A) = 25 nm-2), and thus we obtain In/IG ~ 3.1, which is in remarkably good
agreement with our results, but entirely distinct from the values which are
characteristic of structurally based physical defects in unfunctionalized samples.

Under thermodynamic control, theoretical calculations indicated a pairwise addition
of functionalities to the graphene A and the B sublattices leading to the formation of
formally spin-paired Kekule products with unit cell functionalization densities of 2:8



(25%; LD ~ 0.32 nm),2° and 2:18 (11%; Lp ~ 0.49 nm),38 which have been discussed
in terms of the Clar representations of these limiting substitution patterns.12 The 2:8-
mode of addition is expected for small substituents but the steric bulk of the phenyl
groups inhibits such a configuration that would require neighboring phenyl ring
contacts below the van der Waals separation,?238 and accounts for the fact that at
saturation, the graphene coverage with nitrophenyl groups is below 25% [F(sp3) ~
0.2, LD ~ 0.35 nm].12 The calculated Raman frequencies and intensities of hydroxyl
functionalized graphene surfaces are similar to that seen in our experiments.3°

In Figure 4 we compare the frequencies of the Raman peaks of both the exfoliated
and epitaxial graphene samples and their products. Previously, it has been shown
that modulating the Fermi level using either an electrostatic or an electrolyte gate
can result in a blue shift in the G band frequency of 1 L and 2 L graphene.1840-42 We
observe a similar blue shift in 1-LG but a much larger (22 cm-1) red shift in the
product from epitaxial graphene, along with a 60-70 cm1 red shift of the 2D band.
The widths of the spectral peaks do not broaden as is characteristic of disordered
graphitic materials.#3 Taking 1347 cm-! as the mean D-band frequency of a structural
defect in pristine graphene and graphitic materials with long-range crystalline order
and 1620 cm! as that for the D* band, the product of the nitrophenyl radical
functionalization on thin epitaxial graphene indicates that the introduction of the
nitrophenyl groups leads to saturated sites in the graphene lattice that may be
viewed as internal edges to the conjugated regions.

Thus, the covalent chemical reorganization of the m-bonds of graphene directed by
the formation of additional C-C bonds at basal plane sp? centers is a facile route for
bandgap engineering of graphene and patterning of electronic circuits on graphene
wafers, which is capable of modifying the electronic structure of graphene without
the attendant structural defects or the introduction of dangling bonds and
functionalitiesthataccompanyphysicalpatterningtechniques.
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Figure Captions

FIGURE 1. Characteristics of nitrophenyl (NP) functionalized exfoliated graphene. (a) Schematic of the
reaction of p-nitrobenediazonium tetrafluoroborate with graphene showing the initial nitrophenyl (NP)
functionalized graphene product. (b) Raman spectrum (with AEx ) 532 nm) of pristine exfoliated graphene
and NP-functionalized exfoliated graphene. The inset shows an optical image of the graphene sample
attached to a thicker graphene flake. (¢) Raman spectrum of a bilayer exfoliated graphene sample and the
same sample after the NP-functionalization reaction. The inset shows fitting of the 2D peak to four
Lorentzians. (d) Spectra of the NP-functionalized graphene and bilayer graphene samples showing peaks
with identical frequencies. In/IG ) > for the NP-functionalized graphene spectrum shown and the fwhm of
the G and D bands are 23 and 28 cm-1, respectively. () AFM height images of pristine and NP-
functionalized graphene showing the increased surface roughness after functionalization.

FIGURE 2. Characteristics of nitrophenyl (NP) functionalized epitaxial graphene. (a) Raman spectrum of
NP-functionalized epitaxial graphene; the inset is an optical image of epitaxial graphene on the C-face SiC.
In/Ic=2.6 and the fwhm of the G and D bands are 35 and 33 cm, respectively. (b,c) Raman spectra of
pristine epitaxial graphene samples. The fwhm of the G bands in these two spectra are 15 and 14 cm*
respectively. The spatial distribution of the Raman profile varies between these two extremes across the
wafer; the inset in panel b shows the 2D peak splitting pattern when fitted to four Lorentzians; in panel c, the
single component 2D band has a fwhm of 18 cm™. (d,e) AFM height images of epitaxial graphene before and
after NP-functionalization, respectively, showing increased surface roughness after functionalization.

FIGURE 3. The band gap in nitrophenyl-functionalized epitaxial graphene measured using ARPES. (a)
ARPES measured NP-functionalized graphene band structure perpendicular to the I'-K direction at the
graphene K-point (incident photon energy is 36 eV). Two diffuse bands representing gapped Dirac cones are
visible; dashed lines are used to highlight the bands. From the Ak broadening of the bands we estimate that
the coherent domain size of the functionalized epitaxial graphene is ~2 nm. (b) Constant energy cuts from
panel a for different values of ky (curves are vertically displaced). Dashed curve show the cones with the
band edge 0.36 eV below EFr.

FIGURE 4. Changes in the Raman spectra in exfoliated and epitaxial graphene due to NP-functionalization.
The individual spectra have been offset vertically for clarity. The observation of the sharp Aigmode peak
along with the shifted G and 2D bands is characteristic of a reorganized periodicity of the w-bonds in
nitrophenyl functionalized graphene. In the NP-functionalized epitaxial graphene spectrum, In/Ic= 3.3. The
inset shows the theoretical curve derived from a numerical fit to selected data in the literature, (see
Supporting Information Figure S1) relating the variation of In/IG to the fractional sp3 content [F(sp*)] in a-

C:H*



b Exfoliated graphene

D Optical image

Intensity(a.u.)

NP-functionaliZ

Pristine lG
A I L . A

—

1400 1600 500 3000
Raman shift(cm™)
d DB

1300 1400 1500 1600
Raman shift (cm™)

Figure 1

Intensity(a.u.)

Pnstlne

NP-functiona

Jo_ e

T

1400

1600 2500 3000
Raman shift(cm™)

SIO

N

o
wn
o
=N »»M,,
o
0



Intensity(a.u.)

PR NI T TN SNV | AN RS U NN N A

Pristine epitaxial graphene
a4 Functionalized ?’Pitaxial graphene p #Bernal c Mison‘cipted
D o Al o
1325 Optical image | L /A
i S T 1
2I:)2705 1586 2G

1570 2D
2650

1200 1500

Figure 2

E-E-(eV)

Figure 3

2500 3000

Raman shift(cm™)

0.0

Raman shift(cm™)

d AFM, pristine

pm

A il i
14001600 2500 3000
Raman shift(cm™)

€ AFM, functionalized

10 nm

5nm

0 nm

-
A

0.36eV

co0 05 10 15 20

E-E. (eV)



1f 2
I/1.= 0 65/F (sp°)

02040608
F(sp®)

NP-functionalized
exfoliated

=) -
= o1 |{"°°*™ 2630 e
E NP-functionalized
B= 1601 cm-! epitaxial
[ o
g 0< 1580 ¢m
C— -1
“BE1 o exfoliated
A
0 1586 cm’’ -
My 2701 e epitaxial
| ,_JL =ik J A
O 1 I’ l 1 1 1 L l 1 1 1 1

1400 1600 2500 3000
Raman shift (cm™)

Figure 4



